

Automatic Determination of Sedimentary Units from Well Data

Anna Bubnova, Jacques Rivoirard, Fabien Ors, Isabelle Cojan

▶ To cite this version:

Anna Bubnova, Jacques Rivoirard, Fabien Ors, Isabelle Cojan. Automatic Determination of Sedimentary Units from Well Data. EAGE 2017, 2017, Paris, France. hal-01775154

HAL Id: hal-01775154 https://minesparis-psl.hal.science/hal-01775154

Submitted on 24 Apr 2018 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Automatic Determination of Sedimentary Units from Well Data

<u>A. BUBNOVA¹, J. RIVOIRARD¹, F. ORS¹, I. COJAN¹</u>

(1) Center of Geosciences MINES ParisTech (Fontainebleau, France)

Introduction

Heterogeneous reservoirs often consist in several subhorizontal geological units. The determination of these units is important in order to create realistic models of the reservoirs. The best solution is a geological expertise, which will provide all the information about reservoir stratigraphy. But if it is impossible to perform such expertise, or if there is no exact conclusion, we propose a new numerical analysis method which is able to describe the vertical heterogeneity of the reservoir and help defining optimally the geological units from the well data. This method can be useful for modeling heterogeneous reservoirs, using for instance a process-based modeling (e.g., Flumy software for meandering channelized reservoirs, Lopez et al., 2008) or a stochastic modeling like Truncated or Plurigaussian simulations (M. Armstrong et al., 2011).

Problematic

Question: how to choose the geological units?

Fluvial reservoir analog, Loranca basin, Spain

Vertical Proportion Curves (VPC)

Aim

To automate the geological units determination from the VPC data by a procedure "stronger" than a visual criterion

Note: for now, it is enough to compute strictly horizontal simulation units. Flumy performs the simulations in paleogeographic space (relative geological age).

Method

Geostatistical Hierarchical Clustering (T. Romary, 2015):

Hierarchical clustering: A division of data set into partitions (clusters) which become larger and larger with each step of the algorithm: each new cluster is obtained by a successive consolidation of two similar clusters.

Graphical Representation: Dendrogram (a) or graph of Clusters Dissimilarities (b):

Data set: We use the wells VPC statistics (Flumy): Vertical 1D data Each sample **i** has a vertical elevation value (\mathbf{z}_i) and a sand proportion value (\mathbf{sand}_i)

Results

(a) Simulation VPC, red lines represent the limits between the initial units (b) VPC of 20 extracted wells

c) Clusters Dissimilarities graph, the 3 last clusters are the most dissimilar (d) Sand part of the wells VPC, the colors correspond to the 3 last clusters

- (b) VPC of 8 extracted wells

Additional method concepts:

Only **adjacent** VPC intervals can be grouped into clusters. Example:

Initial dissimilarity between unit clusters i and j: $d_{ij} = (sand_i - sand_j)^T$

Linkage Criterion (LC) is used to compute the updated intercluster dissimilarity value resulting from the cluster merger.

Ward's Minimum Variance: intercluster dissimilarity is the increase of within-cluster variance after merging.

PARIS 2017

Conclusions

The proposed clustering method for analyzing wells VPC shows good results on synthetic tests: it permits to determine the initial simulation units even if the extracted wells VPC are not clearly representative. Results for real data set (Loranca) are also quite interesting: geological units proposed by geologists are almost similar to the units obtained by clustering.

This method can be applied automatically in order to propose a division of a heterogeneous reservoir into several contrasted horizontal units.

Perspectives

• Automation of the choice of the units optimal number (from the graph of Clusters Dissimilarities).

• Implementation of the method into Flumy as a wells analysis tool.

• Non-horizontal units from the well data.

Acknowledgements

We are grateful to ENGIE and ENI, partners of the Flumy Research Program.

References

-) Lopez S., Cojan I., Rivoirard J., Galli A., 2008. Process-based stochastic modeling: meandering channelized reservoirs. Spec. Publ. Int. Assoc. Sedimentol. 40 – 139 :144.
- 2) T. Romary, F. Ors, J. Rivoirard, J. Deraisme. Unsupervised classification of multivariate geostatistical data: Two algorithms. Computers and Geosciences, Elsevier, 2015, Statistical learning in geoscience modeling: Novel algorithms and challenging case studies, 85, pp. 96-103.
- M. Armstrong, A. Galli, H. Beucher, G. Loc'h, D. Renard, B. Doligez, R. Eschard, F. Geffroy. Plurigaussian simulations in Geosciences. Springer, 2011.

Contact Information

anna.bubnova@mines-paristech.fr

FLUMY® [2017] © MINES PARISTECH / ARMINES, http://cg.ensmp.fr/flumy