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I. INTRODUCTION

Good models of electric motors are paramount for the design of control laws. The well-established linear sinusoidal models may be not accurate enough for some applications. That is why great interest has been shown in modeling non-linear and non-sinusoidal effects in electrical machines. Magnetic saturation modeling has become even more critical when considering sensorless control schemes with signal injection [START_REF] Bianchi | Effect of stator and rotor saturation on sensorless rotor position detection[END_REF]- [START_REF] Jebai | Signal injection and averaging for position estimation of Permanent-Magnet Synchronous Motors[END_REF].

Linear sinusoidal models are usually derived by a microscopic analysis of the machine, see e.g. [START_REF] Chiasson | Modeling and high performance control of electric machines[END_REF], [START_REF] Krause | Analysis of Electrical Machinery and Drive Systems[END_REF]. Based on such models, there has been some effort aiming at modeling torque ripple [START_REF] Bianchi | Design techniques for reducing the cogging torque in surface-mounted pm motors[END_REF]- [START_REF] Zhu | Analytical prediction of the cogging torque in radial-field permanent magnet brushless motors[END_REF] and magnetic saturation [START_REF] Levi | Saturation modelling in d-q axis models of salient pole synchronous machines[END_REF], [START_REF] Stumberger | Evaluation of saturation and cross-magnetization effects in interior permanent-magnet synchronous motor[END_REF]. One problem is that the models must respect the so-called reciprocity conditions [START_REF] Melkebeek | Reciprocity relations for the mutual inductances between orthogonal axis windings in saturated salientpole machines[END_REF] to be physically acceptable. An alternative way to model physical systems is to use the energy-based approach, see e.g. [START_REF] Jeltsema | Multidomain modeling of nonlinear networks and systems[END_REF]- [START_REF] Whittaker | A Treatise on the Analytical Dynamics of Particules and Rigid Bodies[END_REF], which has been applied to electrical machines in [START_REF] White | Electromechanical energy conversion[END_REF]- [START_REF] Nicklasson | Passivity-based control of a class of blondel-park transformable electric machines[END_REF].

In this paper we retrieve the usual linear sinusoidal models of most AC machines using a simple macroscopic approach based on energy considerations and construction symmetries. Choosing an adapted frame (which happens to be the usual dq frame) allows us to obtain simple forms for the energy function. A nice feature of this approach is that it can easily include saturation or non-sinusoidal effects, and that the reciprocity conditions are automatically enforced. We also prove the modeling of saturation can actually be done in the fictitious frames αβ or dq provided the star-connection scheme is used; this fact is commonly used in practice but apparently never properly justified.

The paper is organized as follows: in section II, we apply the energy-based approach to a general Permanent Magnet Synchronous Motor (PMSM). Then in section III, we use A.-K. Jebai is with Akka Technologies and is working as a consultant with Schneider Toshiba Inverter Europe, 27120 Pacy-sur-Eure, France. al-kassem.jebai@non.schneider-electric.com P. Combes, P. Martin and P. Rouchon are with the Centre Automatique et Systèmes, MINES ParisTech, PSL Research University, Paris, France {philippe.martin, pierre.rouchon}@minesparistech.fr P. Combes and F. Malrait are with Schneider Toshiba Inverter Europe, 27120 Pacy-sur-Eure, France {pascal.combes, francois. malrait}@schneider-electric.com the construction symmetries to simplify the energy function of the PMSM. In sections IV and V we develop models for the non-sinusoidal or saturated PMSM. Finally in section VI we shortly show this approach can be directly applied also to the Induction Machine (IM).

II. ENERGY-BASED MODELING OF THE PMSM

A. Notations

When x is a vector we denote its coordinates in the uvw frame by x uvw := (x u , x v , x w )

T . When f is a scalar function we denote its gradient by ∂f ∂x uvw := ∂f ∂x u , ∂f ∂x v , ∂f ∂x w

T

; to be consistent when f is a vector function, ∂f ∂x uvw is the transpose of its Jacobian matrix.

B. A brief survey of energy-based modeling

The evolution of a physical system exchanging energy through the external forces Q i can be found by applying a variational principle to a function L -the so-called Lagrangian function-of its generalized coordinates {q i } and their derivatives { qi }, see e.g. [START_REF] Jeltsema | Multidomain modeling of nonlinear networks and systems[END_REF]- [START_REF] Whittaker | A Treatise on the Analytical Dynamics of Particules and Rigid Bodies[END_REF],

d dt ∂L ∂ qi - ∂L ∂q i = Q i . (1) 
However ( 1) is not in state form, which may be inconvenient. Such a state form with p i := ∂L ∂ qi and q i as state variables can be obtained by considering the Hamiltonian function, also called the energy function,

H := p T q -L. (2) 
Indeed the differential dH = ∂H ∂p T dp + ∂H ∂q T dq reads by ( 2)

dH = p T d q + qT dp - ∂L ∂q T dq - ∂L ∂ q T d q = qT dp - ∂L ∂q T dq.
(3) Hence H can be seen as a function of the generalized coordinates {q i } and the generalized momenta {p i }. As a consequence we find the so-called Hamiltonian equations

dp i dt = - ∂H ∂q i + Q i ( 4a 
)
dq i dt = ∂H ∂p i , (4b) 
which are in state form.

dissipated in the stator resistances R s ; it is associated with the generalized force -R s ı abc s • the mechanical power -T L ω n dissipated in the load, where T L is the load torque and n the number of pole pairs; it is associated with the generalized force -T L n . Applying (1) and noting there is no storage of charges in an electrical motor, hence the Lagrangian function does not depend on q abc s , we find d dt

∂L abc ∂ı abc s = u abc s -R s ı abc s (5a) d dt ∂L abc ∂ω - ∂L abc ∂θ = - T L n . (5b) 
We denote the Lagrangian function by L abc to underline it is considered as a function of the variables ı abc s . We then recover the usual equations of the PMSM, see e.g. [START_REF] Chiasson | Modeling and high performance control of electric machines[END_REF], [START_REF] Krause | Analysis of Electrical Machinery and Drive Systems[END_REF], by defining

φ abc s (θ, ω, ı abc s ) := ∂L abc ∂ı abc s (θ, ω, ı abc s ) (6) 
T abc e (θ, ω, ı abc s ) := n ∂L abc ∂θ (θ, ω, ı abc s );

φ abc s can be identified with the stator flux and T abc e with the electro-mechanical torque. Hence the specification of the Lagrangian function yields not only the dynamical equations but also the current-flux relation and the electro-mechanical coupling.

To get a system in state form we define as in (2) the Hamiltonian function

H abc := ω ∂L abc ∂ω + ı abc s T ∂L abc ∂ı abc s -L abc . (8) 
H abc can be seen as a function of the angle θ, the rotor kinetic momentum ρ := ∂L abc ∂ω and the stator flux φ abc s := ∂L abc ∂ı abc s ; H abc of course does not depend on q abc s . By (3) and (4) we then find the state form

dφ abc s dt = u abc s -R s ı abc s (9a) n dρ dt = T abc e -T L , (9b) 
L s i a s R s L s i b s R s L s i c s R s O v a s v b s v c s u a s u b s u c s Fig. 1. Star-connected motor electrical circuit with ı abc s (θ, ρ, φ abc s ) = ∂H abc ∂φ abc s (θ, ρ, φ abc s ) (10) 
T abc e (θ, ρ, φ abc s ) = -n

∂H abc ∂θ (θ, ρ, φ abc s ). (11) 
In the next subsections we show this Hamiltonian formulation can be simplified by expressing it in the αβ and dq frames.

D. Hamiltonian formulation in the αβ frame

The stator windings of the PMSMs are usually starconnected, see figure 1. This implies

ı a s + ı b s + ı c s = 0. (12) 
This algebraic relation can easily be taken into account after a change of coordinates. Indeed we change variables to the αβ0 frame with x αβ0 := Cx abc , thanks to the orthogonal matrix (i.e.

C -1 = C T ) C := 2 3    1 -1 2 -1 2 0 √ 3 2 - √ 3 2 1 √ 2 1 √ 2 1 √ 2    .
We then define the Hamiltonian function in the αβ0 variables by H αβ0 (θ, ρ, φ αβ0 s

) := H abc (θ, ρ, C T φ αβ0 s ).
This transformation preserves ( 9), ( 10) and [START_REF] Levi | Saturation modelling in d-q axis models of salient pole synchronous machines[END_REF]; for instance ).

The constraint [START_REF] Stumberger | Evaluation of saturation and cross-magnetization effects in interior permanent-magnet synchronous motor[END_REF], i.e. ı 0 s (θ, ρ, φ αβ0 s ) = 0, and the assumption of a non-degenerated Hamiltonian function implies φ 0 s is a function of (θ, ρ, φ α s , φ β s ) by the implicit function theorem. Hence we can define the star-connection-constrained Hamiltonian function

H αβ (θ, ρ, φ αβ s ) := H αβ0 θ, ρ, φ αβ s , φ 0 s (θ, ρ, φ αβ s ) .
Obviously, the system can be decomposed into

dφ αβ s dt = u αβ s -R s ı αβ s (13a) n dρ dt = T αβ e -T L (13b) dφ 0 s dt = u 0 s ; (14) 
moreover

∂H αβ ∂φ αβ s = ∂ ∂φ αβ s H αβ0 θ, ρ, φ αβ s , φ 0 s (θ, ρ, φ αβ s ) = ∂H αβ0 ∂φ αβ s + ∂H αβ0 ∂φ 0 s ∂φ 0 s ∂φ αβ s = ∂H αβ0 ∂φ αβ s =: ı αβ s (θ, ρ, φ αβ s ) (15) 
-n

∂H αβ ∂θ = -n ∂ ∂θ H αβ0 θ, ρ, φ αβ s , φ 0 s (θ, ρ, φ αβ s ) = -n ∂H αβ0 ∂θ -n ∂H αβ0 ∂φ 0 s ∂φ 0 s ∂θ = -n ∂H αβ0 ∂θ =: T αβ e (θ, ρ, φ αβ s ), (16) 
where we used

∂H αβ0 ∂φ 0 s θ, ρ, φ αβ s , φ 0 s (θ, ρ, φ αβ s ) = ı 0 s = 0.
This means the current-flux and electromechanical relations are also decoupled from the 0-axis.

Therefore we have simplified the equation coming from the Hamiltonian formulation by decoupling from the 0-axis (there are less equations and less variables). The derivation is valid for any Hamiltonian function, which is usually not acknowledged in the literature.

E. Hamiltonian formulation in the dq frame

We can further simplify the formulation by expressing variables in the dq0 frame, i.e. φ dq0 s

:= R(θ) T φ αβ0 s with R(θ) :=   cos θ -sin θ 0 sin θ cos θ 0 0 0 1   ,
and defining

H dq0 (θ, ρ, φ dq0 s ) := H αβ0 (θ, ρ, R(θ)φ dq0 s )
. Unfortunately this transformation does not preserve the Hamiltonian equations. However the flavor of the Hamiltonian formulation is preserved; indeed on the one hand

dφ dq0 s dt = d dt R(θ) T φ αβ0 s = R(θ) T dφ αβ0 s dt + dR(θ) T dt φ αβ0 s = R(θ) T (u αβ0 s -R s ı αβ0 s ) + ωR (θ) T R(θ)φ dq0 s = u dq0 s -R s ı dq0 s -J 3 ωφ dq0 s (17a) n dp dt = T dq0 e -T L , (17b) 
where

J 3 := -R (θ) T R(θ) =   0 -1 0 1 0 0 0 0 0   .
On the other hand

∂H dq0 ∂φ dq0 s = ∂φ αβ0 s ∂φ dq0 s ∂H αβ0 ∂φ αβ0 s = R(θ) T ı αβ0 s =: ı dq0 s ∂H dq0 ∂θ = ∂H αβ0 ∂θ + ∂φ αβ0 s ∂θ T ∂H αβ0 ∂φ αβ0 s = ∂H αβ0 ∂θ + R (θ)φ dq0 s T R(θ) ∂H dq0 ∂φ dq0 s = ∂H αβ0 ∂θ -φ dq0 s T J 3 ı dq0 s ,
hence the current-flux relation and electro-mechanical torque are

ı dq0 s (θ, ρ, φ dq0 s ) = ∂H dq0 ∂φ dq0 s (θ, ρ, φ dq0 s ) (18) 
T dq0 e (θ, ρ, φ dq0 s

) := T αβ0 e (θ, ρ, R(θ)φ dq0 s ) = -n ∂H dq0 ∂θ + nı dq0 s T J 3 φ dq0 s . ( 19 
)
Since ı 0 s (θ, ρ, φ dq0 s ) = 0 when evaluated under the constraint ( 12), the 0-axis can be decoupled as in section II-D:

dφ dq s dt = u dq s -R s ı dq s -Jωφ dq s (20a) n dρ dt = T dq e -T L (20b) dφ 0 s dt = u 0 s , (21) 
with current-flux relation and electro-mechanical torque given by

ı dq s (θ, ρ, φ dq s ) = ∂H dq ∂φ dq s (θ, ρ, φ dq s ) (22) 
T dq e (θ, ρ, φ dq s ) = -n

∂H dq ∂θ + nı dq s T Jφ dq s ( 23 
)
where J := 0 -1 1 0 .

We will see in the next section that the construction symmetries of the PMSM are more easily expressed in the dq frame, resulting in simpler Hamiltonian functions.

F. Partial conclusion

The whole model of the PMSM can thus be obtained with the specification of only one energy function, yet to be defined. Since no assumptions were made on the motor, this approach applies to any PMSM. In particular this implies that modeling the saturation in the dq frame is equivalent to modeling it in the physical frame abc if the motor is star-connected; to our knowledge this has never been proven before though the conclusion is widely used.

Besides the reciprocity condition [START_REF] Melkebeek | Reciprocity relations for the mutual inductances between orthogonal axis windings in saturated salientpole machines[END_REF] of the flux-current relation 

= ∂H dq ∂φ q s , we have ∂ı d s ∂φ q s = ∂ 2 H ∂φ q s ∂φ d s = ∂ 2 H ∂φ d s ∂φ q s = ∂ı q s ∂φ d s ,
which is equivalent to the reciprocity condition.

III. CONSTRUCTION SYMMETRY CONSIDERATIONS

To restrict the number of possible Hamiltonian functions we now put constraints on the form of these functions. To do so we use three simple and general geometric symmetries enjoyed by any well-built PMSM.

A. Phase permutation symmetry

Circularly permuting the phases, then rotating the rotor by 2π 3 leaves the motor unchanged, hence the energy. Thus

H abc (θ, ρ, φ abc s ) = H abc (θ + 2π 3 , ρ, Pφ abc s ), (24) 
where

P :=   0 0 1 1 0 0 0 1 0   .
Writing this relation in the αβ0 and dq0 frames yields

H αβ0 (θ, ρ, φ αβ0 s ) = H αβ0 (θ + 2π 3 , ρ, CPC T φ αβ0 s ) (25) 
H dq0 (θ, ρ, φ d s , φ q s , φ 0 s ) = H dq0 (θ + 2π 3 , ρ, φ d s , φ q s , φ 0 s ). (26) 

B. Central symmetry

Reversing the currents in the phases, then rotating the rotor by π leaves the motor unchanged, hence the energy. Thus

H abc (θ, ρ, φ abc s ) = H abc (θ + π, ρ, -φ abc s ). (27) 
Writing this relation in the αβ0 and dq0 frames yields

H αβ0 (θ, ρ, φ αβ0 s ) = H αβ0 (θ + π, ρ, -CC T φ αβ0 s ) (28) H dq0 (θ, ρ, φ d s , φ q s , φ 0 s ) = H dq0 (θ + π, ρ, φ d s , φ q s , -φ 0 s ). (29)

C. Orientation symmetry

Permuting the phases b and c preserves the energy, then changing direction. the direction of rotation leaves the motor unchanged, hence the energy. Thus

H abc (θ, ρ, φ abc s ) = H abc (-θ, -ρ, Oφ abc s ), (30) 
where

O :=   1 0 0 0 0 1 0 1 0   .
Writing this relation in the αβ0 and dq0 frames yields

H αβ0 (θ, ρ, φ αβ0 s ) = H αβ0 (-θ, -ρ, COC T φ αβ0 s ) (31) H dq0 (θ, ρ, φ d s , φ q s , φ 0 s ) = H dq0 (-θ, -ρ, φ d s , -φ q s , φ 0 s ). (32) 

D. Partial conclusion

Gathering (26), ( 29) and (32) and decoupling the 0-axis, we eventually find

H dq (θ, ρ, φ d s , φ q s ) = H dq (θ + π 3 , ρ, φ d s , φ q s ) (33a) 
H dq (θ, ρ, φ d s , φ q s ) = H dq (-θ, -ρ, φ d s , -φ q s ). ( 33b 
)
In other words, H dq is π 3 -periodic with respect to θ and satisfies a parity condition on θ, ρ and φ q s . These symmetries constrain the possible energy functions as shown in the next sections.

E. The linear sinusoidal model

As an example we consider the simplest case, namely a PMSM whose magnetic energy in the dq frame is a second-order polynomial not depending on the position θ nor on the kinetic momentum ρ. This means we assume a sinusoidally wound motor with a first-order flux-current relation. Moreover, as we are not modeling mechanics, we take the simplest kinetic energy. That is to say

H dq l := ρ 2 2Jn 2 +a+bφ d s +cφ q s + d 2 φ d s 2 +eφ d s φ q s + f 2 φ q s 2 , ( 34 
)
where J is the rotor inertia moment and a, b, c, d, e, f are some constants.

The symmetry (33b) implies c = e = 0. As the the energy function H dq is defined up to a constant we can freely change a, in particular set a = b 2 2d . Defining

• the d-axis inductance L d := 1 d • the q-axis inductance L q := 1 f • the permanent magnet flux φ M := L d b, (34) 
eventually reads

H dq l = 1 2Jn 2 ρ 2 + 1 2L d (φ d s -φ M ) 2 + 1 2L q φ q s 2 . ( 35 
)
As a consequence (20), ( 22) and ( 23) become

dφ dq s dt = u dq s -R s ı dq s -Jωφ dq s (36a) n dρ dt = T dq e -T L (36b) 
ı d s = 1 L d (φ d s -φ M ) ı q s = 1 L q φ q s T dq e = nı dq s T Jφ dq s = n 1 L q - 1 L d φ d s φ q s + n L d φ q s φ M ,
which is the usual model for PMSM, see e.g. [START_REF] Chiasson | Modeling and high performance control of electric machines[END_REF], [START_REF] Krause | Analysis of Electrical Machinery and Drive Systems[END_REF]. It is remarkable that this model can be recovered without the traditional microscopic approach. We have simply followed a standard energy approach with simplest possible energy function, and taken into account very general construction symmetries.

Notice the model of the Synchronous Reluctance Motor can be obtained in exactly the same way. Indeed since the rotor is not oriented, we have the extra symmetry

H dq0 (θ, ρ, φ d s , φ q s , φ 0 s ) = H dq0 (θ, ρ, -φ d s , -φ q s , -φ 0 s ), (37) 
which implies b = 0 in (34) hence φ M = 0.

IV. A NON-SINUSOIDAL PMSM MODEL

One interest of the energy approach is to provide models which are more general than the usual linear sinusoidal PMSM, simply by considering more general energy functions. In particular it easily explains the so-called torque ripple phenomenon, i.e. the π 3 -periodicity of the torque with respect to θ, see e.g. [START_REF] Bianchi | Design techniques for reducing the cogging torque in surface-mounted pm motors[END_REF], [START_REF] Petrovic | Design and implementation of an adaptive controller for torque ripple minimization in pm synchronous motors[END_REF]. We still assume the magnetic energy does not depend on the kinetic momentum ρ, and the simplest possible kinetic energy.

By (33a) H dq is π 3 -periodic with respect to θ hence can be expended in Fourier series

H dq (θ, ρ, φ d s , φ q s ) = 1 2Jn 2 ρ 2 + H dq 0 (φ d s , φ q s ) + ∞ k=1 a 6k (φ d s , φ q s ) cos 6kθ + b 6k (φ d s , φ q s ) sin 6kθ H dq 6k . (38) 
Thanks to symmetry (32) H dq 0 and {a 6k } are even functions of φ q s , and {b 6k } are odd functions of φ q s . Particularizing ( 22)-( 23) to this energy function gives

ı dq s (θ, ρ, φ s ) = ∂H dq 0 ∂φ s (ρ, φ dq s ) + ∞ k=1 ∂H dq 6k ∂φ s (θ, ρ, φ dq s ) T dq e (θ, ρ, φ s ) = -n ∞ k=1 ∂H dq 6k ∂θ (θ, ρ, φ dq s ) + nı dq s T Jφ s ,
which shows ı dq s and T dq e are also π 3 -periodic. We experimentally checked this phenomenon on a test bench featuring current, position and torque sensors. We used two test motors, a Surface Permanent Magnet (SPM) and an Interior Permanent Magnet (IPM) PMSM, see characteristics in table I. As expected the experimental plots in figure 2 exhibit a π 3 -periodicity with respect to θ. The experiments were done at low velocity (4% of rated value) and no load so that this effect is well-visible. 

θ in deg i q in A Current i q ı q s in A (c) SPM current ı q s measurement 0 
i q in A Current i q ı q s in A (d) IPM current ı q s measurement
Fig. 2. Stator current and torque measurements (SPM and IPM)

V. MODELING OF MAGNETIC SATURATION

We now investigate the effect of magnetic saturation; this is very important when trying to control the motor at low velocity and high load, see e.g. [START_REF] Bianchi | Effect of stator and rotor saturation on sensorless rotor position detection[END_REF]- [START_REF] Jebai | Signal injection and averaging for position estimation of Permanent-Magnet Synchronous Motors[END_REF]. To highlight crosscoupling and saturation effects, we give the curves φ d s and φ q s as functions of ı d s and ı q s on figure 3 for the IPM motor described in table I.

We consider only sinusoidal motors (i.e. the energy function H dq is independent of θ) since the non-sinusoidal effects in well-wound PMSMs are experimentally small in the presence of magnetic saturation. We still assume the magnetic energy does not depend on the kinetic momentum ρ, and the simplest possible kinetic energy.

In normal operation φ d s is close to the permanent magnet flux φ M , while φ q s is small with respect to φ M . It is thus Flux φ q in mW b natural to expand H dq as a Taylor series in the variables

Current i

d in A (b) Linear i q =0 i q =5 i q =7 i q =10 ı d s in A φ d s -φ M in
Current i q in A (b) Linear i d =-5 i d =0 i d =5 i d =9 ı q s in A φ q s in
(φ d s -φ M ) and φ q s H dq = H dq l + ∞ n=3 n k=0 α n-k,k (φ d s -φ M ) n-k φ q s k , (39) 
where H dq l is given by (35). Moreover, all odd powers of φ q s have by (33b) null coefficients, hence

H dq = H dq l + ∞ n=3 n 2 m=0 α n-2m,2m (φ d s -φ M ) n-2m φ q s 2m .
(40) We experimentally checked the validity of this conclusion on the two motors described in table I. We first obtained the flux-current relation by integrating the back-electromotive force when applying voltage steps, see figure 4. We then truncated the series at n = 4 and experimentally identified L d , L q , α 3,0 , α 1,2 , α 4,0 , α 2,2 , α 0,4 , see [START_REF] Jebai | Estimation of saturation of permanent-magnet synchronous motors through an energybased model[END_REF] for details. The agreement between the flux-current relation obtained from H dq and the experimental flux-current relation is excellent. Notice the linear model using only H dq l is good only at low current.

Motor IPM SPM Measured Rs 1.52Ω 2.1Ω φ 2 M L d 4.20 ± 0.12A.W b 3.06 ± 0.08A.W b φ 2 M L q 2.83 ± 0.12A.W b 2.94 ± 0.08A.W b φ 3 M α 3,0 0.770 ± 0.007A.W b 0.655 ± 0.006A.W b φ 3 M α 1,2 0.702 ± 0.009A.W b 0.617 ± 0.010A.W b φ 4 M α 4,0 0.486 ± 0.012A.W b 0.724 ± 0.010A.W b φ 4 M α 2,2 0.734 ± 0.015A.W b 1.010 ± 0.025A.W b φ 4 M α 0,4 0.175 ± 0.004A.W b 0.262 ± 0.006A.W b TABLE II EXPERIMENTAL MAGNETIC PARAMETERS

VI. ENERGY-BASED MODELING FOR THE INDUCTION

MOTOR

We now apply our approach to the Induction Motor (IM). We show that taking the most basic assumptions (sinusoidal and linear motor) we find again the linear model as we did in section III-E.

A. Deploying the formalism

Assuming the squirrel-cage rotor is actually equivalent to three identical wound phases, the generalized coordinates of an IM with three identical stator windings are q = (θ, q a s , q b s , q c s , q a r , q b r , q c r ) T , where θ is the (electrical) rotor angle and q abc s and q abc r are the electrical charges in the stator and rotor windings respectively. Their derivatives are

q = (ω, ı a s , ı b s , ı c s , ı a r , ı b r , ı c r ) T ,
where ω is the (electrical) rotor velocity and ı abc s and ı abc r are the currents in stator and rotor windings respectively. Proceeding as in II-C, the generalized momenta are

p = (ρ, φ a s , φ b s , φ c s , φ a r , φ b r , φ c r ) T ,
where ρ is the kinetic momentum and φ abc and φ abc r are the flux produced by stator and rotor windings respectively. The power exchanges are: 

T abc e (θ, ρ, φ abc s , φ abc r ) := -n ∂H abc ∂θ (θ, ρ, φ abc s , φ abc r ). (44)

Due to the connection scheme of the rotor,

ı a r + ı b r + ı c r = 0 (45) 
and the fact that most stators are star-connected (see figure 1), it is still interesting to change frame and decouple the 0-axis as was done in II-D. It is also interesting to express all the variables in the same frame rotating at the synchronous speed ω s . To do so we define x dq0 s := K(θ s ) T x abc s and x dq0 r := K(θ sθ)

T x abc r where dθs dt := ω s and

K(θ) := 2 3   cos θ cos θ -2 3 cos θ -4 3 -sin θ -sin θ -2 3 -sin θ -4 3 1 √ 2 1 √ 2 1 √ 2  
Even through the equation will not be preserved, as in II-E, we can get similar relations

dφ dq s dt = u dq s -R s ı dq s -Jω s φ dq s (46a) dφ dq r dt = -R r ı dq r -J(ω s -ω)φ dq r (46b) n dρ dt = T dq e -T L (46c) 
These are the usual dynamic equations for the IM (see e.g.

[6], [START_REF] Krause | Analysis of Electrical Machinery and Drive Systems[END_REF]).

In the dq frame the current-flux and electromechanical relations then read

ı dq s (θ, ρ, φ dq s , φ dq r ) := ∂H dq ∂φ dq s (θ, ρ, φ dq s , φ dq r ) (47) 
ı dq r (θ, ρ, φ dq s , φ dq r ) := ∂H dq ∂φ dq r (θ, ρ, φ dq s , φ dq r ) (48) 
T dq e (θ, ρ, φ dq s , φ dq r ) := -n

∂H dq ∂θ + nı dq r T Jφ dq r . (49) 

B. Symmetries

We now use the motor construction symmetries as in section III considering only the case of a sinusoidal induction machine.

So, whatever the angle θ of the rotor, the energy will be the same, as long as the relative position of the rotor flux space vector with respect to stator flux space vector remains the same. Thus the energy function in the dq frame does not depend on θ.

Rotating the stator and rotor flux space vectors by the same angle η preserves the energy, so

H dq (ρ, φ dq s , φ dq r ) = H dq (ρ, R(η)φ dq s , R(η)φ dq r ). (50) 
Exchanging two phases on the stator and the rotor and symmetrizing the rotor position also preserves the energy so

H dq (ρ, φ dq s , φ dq r ) = H dq (-ρ, Sφ dq s , Sφ dq r ), (51) 
with S := 1 0 0 -1 .

C. The linear sinusoidal model

We consider a second order-polynomial energy function independent on θ and with magnetic part independent on ρ. We keep the simplest expression of the kinetic energy. Such a model is of the form We can choose freely a = 0 as the energy function is defined up to a constant. We define σ, L m , L s and L r by the implicit relations (it can be checked that it is invertible when it is defined)

L r L s σ = L s L r -L 2 m d = 1 2L s σ e = - 2L m 2L r L s σ f = 1 2L r σ
Thus, the energy function reads Inverting these equations and taking into account the electromechanical torque is T e = nı dq r T Jφ dq s , the usual relations (see e.g. [START_REF] Chiasson | Modeling and high performance control of electric machines[END_REF], [START_REF] Krause | Analysis of Electrical Machinery and Drive Systems[END_REF]) are easily identified. Therefore we recovered the linear sinusoidal model for the IM without the tedious microscopic approach.

VII. CONCLUSION

We have proposed an energy-based approach to modeling electrical motors. It is simpler than the traditional one (see e.g. [START_REF] Chiasson | Modeling and high performance control of electric machines[END_REF], [START_REF] Krause | Analysis of Electrical Machinery and Drive Systems[END_REF]), since there is no need to know the precise design of the machine and to integrate the microscopic variables into a macroscopic model. The basic models of most electrical machines can be retrieved without tedious computations; besides, these models are shown to be the simplest physically acceptable models for each kind of motor. Moreover, non-linearity and non-sinusoidality can be easily taken into account in these energy-based models. Indeed, the reciprocity condition is naturally enforced, whereas this is much more difficult to do with the traditional approach. All the conservative phenomena occurring in a motor can easily be modeled using this formalism, including cross-saturation between d and q axes (compare with e.g. [START_REF] Reigosa | Measurement and adaptive decoupling of cross-saturation effects and secondary saliencies in sensorless-controlled IPm synchronous machines[END_REF]) and torque ripple (see e.g. [START_REF] Petrovic | Design and implementation of an adaptive controller for torque ripple minimization in pm synchronous motors[END_REF]). This kind of model has been successfully used to account for the effects of signal injection in a PMSM and implement a control law (see [START_REF] Jebai | Signal injection and averaging for position estimation of Permanent-Magnet Synchronous Motors[END_REF]). The model is currently being extended to handle magnetic saturation in induction machines.
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 2 ρ 2 + a + bφ dq s + cφ dq r dq r , (52)where a ∈ R, (b, c) ∈ (R 2 ) 2 and (D, E, F ) ∈ (M 2 (R))3 . The equation (50) implies that b = c = (0, 0) and D, E and F commute with the rotations. So (D, E, F ) ∈ αI + βJ, (α, β) ∈ R 2 where I ∈ M 2 (R) is the identity matrix and J was defined in II-E. Due to (51) D, E and F are colinear with I because J does not commute with S, hence the energy function is of the form

H

  dq := 1 2Jn 2 ρ 2 + L m 2L s L r σ (φ dq sφ dq r ) T (φ dq sφ dq r ) + L r -L m 2L s L r σ φ dq s T φ dq s + L s -L m2L s L r and (48) one gets the current-flux relationsL s L r σı dq s = L m (φ dq sφ dq r ) + (L r -L m )φ dq s L s L r σı dq r = L m (φ dq rφ dq s ) + (L s -L m )φ dq r .