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Energy-based modeling of electric motors

Al Kassem Jebai, Pascal Combes, François Malrait, Philippe Martin and Pierre Rouchon

Abstract— We propose a new approach to modeling electrical
machines based on energy considerations and construction sym-
metries of the motor. We detail the approach on the Permanent-
Magnet Synchronous Motor and show that it can be extended to
Synchronous Reluctance Motor and Induction Motor. Thanks to
this approach we recover the usual models without any tedious
computation. We also consider effects due to non-sinusoidal
windings or saturation and provide experimental data.

I. INTRODUCTION

Good models of electric motors are paramount for the
design of control laws. The well-established linear sinusoidal
models may be not accurate enough for some applications.
That is why great interest has been shown in modeling
non-linear and non-sinusoidal effects in electrical machines.
Magnetic saturation modeling has become even more critical
when considering sensorless control schemes with signal
injection [1]–[5].

Linear sinusoidal models are usually derived by a micro-
scopic analysis of the machine, see e.g. [6], [7]. Based on
such models, there has been some effort aiming at modeling
torque ripple [8]–[10] and magnetic saturation [11], [12].
One problem is that the models must respect the so-called
reciprocity conditions [13] to be physically acceptable. An
alternative way to model physical systems is to use the
energy-based approach, see e.g. [14]–[16], which has been
applied to electrical machines in [17]–[19].

In this paper we retrieve the usual linear sinusoidal models
of most AC machines using a simple macroscopic approach
based on energy considerations and construction symmetries.
Choosing an adapted frame (which happens to be the usual
dq frame) allows us to obtain simple forms for the energy
function. A nice feature of this approach is that it can easily
include saturation or non-sinusoidal effects, and that the
reciprocity conditions are automatically enforced. We also
prove the modeling of saturation can actually be done in
the fictitious frames αβ or dq provided the star-connection
scheme is used; this fact is commonly used in practice but
apparently never properly justified.

The paper is organized as follows: in section II, we apply
the energy-based approach to a general Permanent Magnet
Synchronous Motor (PMSM). Then in section III, we use
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the construction symmetries to simplify the energy function
of the PMSM. In sections IV and V we develop models for
the non-sinusoidal or saturated PMSM. Finally in section VI
we shortly show this approach can be directly applied also
to the Induction Machine (IM).

II. ENERGY-BASED MODELING OF THE PMSM

A. Notations

When x is a vector we denote its coordinates in the uvw
frame by xuvw := (xu, xv, xw)

T . When f is a scalar function

we denote its gradient by ∂f
∂xuvw :=

(
∂f
∂xu ,

∂f
∂xv ,

∂f
∂xw

)T
; to be

consistent when f is a vector function, ∂f
∂xuvw is the transpose

of its Jacobian matrix.

B. A brief survey of energy-based modeling

The evolution of a physical system exchanging energy
through the external forces Qi can be found by applying
a variational principle to a function L –the so-called La-
grangian function– of its generalized coordinates {qi} and
their derivatives {q̇i}, see e.g. [14]–[16],

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Qi. (1)

However (1) is not in state form, which may be incon-
venient. Such a state form with pi :=

∂L
∂q̇i

and qi as state
variables can be obtained by considering the Hamiltonian
function, also called the energy function,

H := pT q̇ − L. (2)

Indeed the differential dH = ∂H
∂p

T
dp+ ∂H

∂q

T
dq reads by (2)

dH = pT dq̇+ q̇T dp− ∂L
∂q

T

dq− ∂L
∂q̇

T

dq̇ = q̇T dp− ∂L
∂q

T

dq.

(3)
Hence H can be seen as a function of the generalized
coordinates {qi} and the generalized momenta {pi}. As a
consequence we find the so-called Hamiltonian equations

dpi
dt

= −∂H
∂qi

+Qi (4a)

dqi
dt

=
∂H

∂pi
, (4b)

which are in state form.



C. Application to a PMSM in the abc frame

For a PMSM with three identical windings the generalized
coordinates are

q = (θ, qas , q
b
s, q

c
s)
T
,

where θ is the (electrical) rotor angle and qabcs are the
electrical charges in the stator windings. Their derivatives
are

q̇ = (ω, ıas , ı
b
s, ı

c
s)
T
,

where ω is the (electrical) rotor velocity and ıabcs are the
currents in the stator windings. The power exchanges are:
• the electrical power uabcs

T
ıabcs provided to the motor by

the electrical source, where uabcs is the vector of voltage
drops across the windings; this power is associated with
the generalized force uabcs

• the electrical power −Rsıabcs
T
ıabcs dissipated in the sta-

tor resistances Rs; it is associated with the generalized
force −Rsıabcs

• the mechanical power −TL ωn dissipated in the load,
where TL is the load torque and n the number of pole
pairs; it is associated with the generalized force −TLn .

Applying (1) and noting there is no storage of charges in
an electrical motor, hence the Lagrangian function does not
depend on qabcs , we find

d

dt

∂Labc

∂ıabcs
= uabcs −Rsıabcs (5a)

d

dt

∂Labc

∂ω
− ∂Labc

∂θ
= −TL

n
. (5b)

We denote the Lagrangian function by Labc to underline it
is considered as a function of the variables ıabcs . We then
recover the usual equations of the PMSM, see e.g. [6], [7],
by defining

φabcs (θ, ω, ıabcs ) :=
∂Labc

∂ıabcs
(θ, ω, ıabcs ) (6)

T abce (θ, ω, ıabcs ) := n
∂Labc

∂θ
(θ, ω, ıabcs ); (7)

φabcs can be identified with the stator flux and T abce with
the electro-mechanical torque. Hence the specification of the
Lagrangian function yields not only the dynamical equations
but also the current-flux relation and the electro-mechanical
coupling.

To get a system in state form we define as in (2) the
Hamiltonian function

Habc := ω
∂Labc

∂ω
+ ıabcs

T ∂Labc

∂ıabcs
− Labc. (8)

Habc can be seen as a function of the angle θ, the ro-
tor kinetic momentum ρ := ∂Labc

∂ω and the stator flux
φabcs := ∂Labc

∂ıabcs
; Habc of course does not depend on qabcs .

By (3) and (4) we then find the state form

dφabcs
dt

= uabcs −Rsıabcs (9a)

n
dρ

dt
= T abce − TL, (9b)
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Fig. 1. Star-connected motor electrical circuit

with

ıabcs (θ, ρ, φabcs ) =
∂Habc

∂φabcs
(θ, ρ, φabcs ) (10)

T abce (θ, ρ, φabcs ) = −n∂H
abc

∂θ
(θ, ρ, φabcs ). (11)

In the next subsections we show this Hamiltonian formu-
lation can be simplified by expressing it in the αβ and dq
frames.

D. Hamiltonian formulation in the αβ frame

The stator windings of the PMSMs are usually star-
connected, see figure 1. This implies

ıas + ıbs + ıcs = 0. (12)

This algebraic relation can easily be taken into account after
a change of coordinates. Indeed we change variables to the
αβ0 frame with xαβ0 := Cxabc, thanks to the orthogonal
matrix (i.e. C−1 = CT )

C :=

√
2

3

 1 − 1
2 − 1

2

0
√
3
2 −

√
3
2

1√
2

1√
2

1√
2

 .

We then define the Hamiltonian function in the αβ0 variables
by

Hαβ0(θ, ρ, φαβ0s ) := Habc(θ, ρ,CTφαβ0s ).

This transformation preserves (9), (10) and (11); for instance

ıαβ0s = Cıabcs = C
∂Habc

∂φabcs
=
∂Hαβ0

∂φαβ0s



and

Tαβ0e (θ, ρ, φαβ0s ) := T abce (θ, ρ,CTφαβ0s )

= −n∂H
abc

∂θ
(θ, ρ,CTφαβ0s )

= −n∂H
αβ0

∂θ
(θ, ρ, φαβ0s ).

The constraint (12), i.e. ı0s(θ, ρ, φ
αβ0
s ) = 0, and the assump-

tion of a non-degenerated Hamiltonian function implies φ0s
is a function of (θ, ρ, φαs , φ

β
s ) by the implicit function the-

orem. Hence we can define the star-connection-constrained
Hamiltonian function

Hαβ(θ, ρ, φαβs ) := Hαβ0
(
θ, ρ,

(
φαβs , φ0s(θ, ρ, φ

αβ
s )
))
.

Obviously, the system can be decomposed into

dφαβs
dt

= uαβs −Rsıαβs (13a)

n
dρ

dt
= Tαβe − TL (13b)

dφ0s
dt

= u0s; (14)

moreover

∂Hαβ

∂φαβs
=

∂

∂φαβs
Hαβ0

(
θ, ρ,

(
φαβs , φ0s(θ, ρ, φ

αβ
s )
))

=
∂Hαβ0

∂φαβs
+
∂Hαβ0

∂φ0s

∂φ0s

∂φαβs

=
∂Hαβ0

∂φαβs

=: ıαβs (θ, ρ, φαβs ) (15)

−n∂H
αβ

∂θ
= −n ∂

∂θ
Hαβ0

(
θ, ρ,

(
φαβs , φ0s(θ, ρ, φ

αβ
s )
))

= −n∂H
αβ0

∂θ
− n∂H

αβ0

∂φ0s

∂φ0s
∂θ

= −n∂H
αβ0

∂θ
=: Tαβe (θ, ρ, φαβs ), (16)

where we used ∂Hαβ0

∂φ0
s

(
θ, ρ,

(
φαβs , φ0s(θ, ρ, φ

αβ
s )
))

= ı0s = 0.
This means the current-flux and electromechanical relations
are also decoupled from the 0-axis.

Therefore we have simplified the equation coming from
the Hamiltonian formulation by decoupling from the 0-axis
(there are less equations and less variables). The derivation
is valid for any Hamiltonian function, which is usually not
acknowledged in the literature.

E. Hamiltonian formulation in the dq frame

We can further simplify the formulation by expressing
variables in the dq0 frame, i.e. φdq0s := R(θ)

T
φαβ0s with

R(θ) :=

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 ,

and defining

Hdq0(θ, ρ, φdq0s ) := Hαβ0(θ, ρ,R(θ)φdq0s ).

Unfortunately this transformation does not preserve the
Hamiltonian equations. However the flavor of the Hamilto-
nian formulation is preserved; indeed on the one hand

dφdq0s

dt
=

d

dt

(
R(θ)

T
φαβ0s

)
= R(θ)

T dφ
αβ0
s

dt
+
dR(θ)

T

dt
φαβ0s

= R(θ)
T
(uαβ0s −Rsıαβ0s ) + ωR′(θ)

T
R(θ)φdq0s

= udq0s −Rsıdq0s − J3ωφ
dq0
s (17a)

n
dp

dt
= T dq0e − TL, (17b)

where

J3 := −R′(θ)TR(θ) =

0 −1 0
1 0 0
0 0 0

 .

On the other hand
∂Hdq0

∂φdq0s

=
∂φαβ0s

∂φdq0s

∂Hαβ0

∂φαβ0s

= R(θ)
T
ıαβ0s

=: ıdq0s

∂Hdq0

∂θ
=

∂Hαβ0

∂θ
+
∂φαβ0s

∂θ

T
∂Hαβ0

∂φαβ0s

=
∂Hαβ0

∂θ
+
(
R′(θ)φdq0s

)T
R(θ)

∂Hdq0

∂φdq0s

=
∂Hαβ0

∂θ
− φdq0s

T
J3ı

dq0
s ,

hence the current-flux relation and electro-mechanical torque
are

ıdq0s (θ, ρ, φdq0s ) =
∂Hdq0

∂φdq0s

(θ, ρ, φdq0s ) (18)

T dq0e (θ, ρ, φdq0s ) := Tαβ0e (θ, ρ,R(θ)φdq0s )

= −n∂H
dq0

∂θ
+ nıdq0s

T
J3φ

dq0
s . (19)

Since ı0s(θ, ρ, φ
dq0
s ) = 0 when evaluated under the con-

straint (12), the 0-axis can be decoupled as in section II-D:

dφdqs
dt

= udqs −Rsıdqs − Jωφdqs (20a)

n
dρ

dt
= T dqe − TL (20b)

dφ0s
dt

= u0s, (21)

with current-flux relation and electro-mechanical torque
given by

ıdqs (θ, ρ, φdqs ) =
∂Hdq

∂φdqs
(θ, ρ, φdqs ) (22)

T dqe (θ, ρ, φdqs ) = −n∂H
dq

∂θ
+ nıdqs

T
Jφdqs (23)



where J :=

(
0 −1
1 0

)
.

We will see in the next section that the construction
symmetries of the PMSM are more easily expressed in the
dq frame, resulting in simpler Hamiltonian functions.

F. Partial conclusion

The whole model of the PMSM can thus be obtained
with the specification of only one energy function, yet to be
defined. Since no assumptions were made on the motor, this
approach applies to any PMSM. In particular this implies
that modeling the saturation in the dq frame is equivalent
to modeling it in the physical frame abc if the motor is
star-connected; to our knowledge this has never been proven
before though the conclusion is widely used.

Besides the reciprocity condition [13] of the flux-current
relation ∂φds

∂ıqs
=

∂φqs
∂ıds

directly stems from the energy formula-

tion. Indeed, as ıds =
∂Hdq

∂φds
and ıqs =

∂Hdq

∂φqs
, we have

∂ıds
∂φqs

=
∂2H

∂φqs∂φds
=

∂2H

∂φds∂φ
q
s
=

∂ıqs
∂φds

,

which is equivalent to the reciprocity condition.

III. CONSTRUCTION SYMMETRY CONSIDERATIONS

To restrict the number of possible Hamiltonian functions
we now put constraints on the form of these functions. To
do so we use three simple and general geometric symmetries
enjoyed by any well-built PMSM.

A. Phase permutation symmetry

Circularly permuting the phases, then rotating the rotor
by 2π

3 leaves the motor unchanged, hence the energy. Thus

Habc(θ, ρ, φabcs ) = Habc(θ +
2π

3
, ρ,Pφabcs ), (24)

where

P :=

0 0 1
1 0 0
0 1 0

 .

Writing this relation in the αβ0 and dq0 frames yields

Hαβ0(θ, ρ, φαβ0s ) = Hαβ0(θ +
2π

3
, ρ,CPCTφαβ0s ) (25)

Hdq0(θ, ρ, φds , φ
q
s, φ

0
s) = Hdq0(θ +

2π

3
, ρ, φds , φ

q
s, φ

0
s). (26)

B. Central symmetry

Reversing the currents in the phases, then rotating the rotor
by π leaves the motor unchanged, hence the energy. Thus

Habc(θ, ρ, φabcs ) = Habc(θ + π, ρ,−φabcs ). (27)

Writing this relation in the αβ0 and dq0 frames yields

Hαβ0(θ, ρ, φαβ0s ) = Hαβ0(θ + π, ρ,−CCTφαβ0s ) (28)
Hdq0(θ, ρ, φds , φ

q
s, φ

0
s) = Hdq0(θ + π, ρ, φds , φ

q
s,−φ0s). (29)

C. Orientation symmetry

Permuting the phases b and c preserves the energy, then
changing direction. the direction of rotation leaves the motor
unchanged, hence the energy. Thus

Habc(θ, ρ, φabcs ) = Habc(−θ,−ρ,Oφabcs ), (30)

where

O :=

1 0 0
0 0 1
0 1 0

 .

Writing this relation in the αβ0 and dq0 frames yields

Hαβ0(θ, ρ, φαβ0s ) = Hαβ0(−θ,−ρ,COCTφαβ0s ) (31)
Hdq0(θ, ρ, φds , φ

q
s, φ

0
s) = Hdq0(−θ,−ρ, φds ,−φqs, φ0s). (32)

D. Partial conclusion

Gathering (26), (29) and (32) and decoupling the 0-axis,
we eventually find

Hdq(θ, ρ, φds , φ
q
s) = Hdq(θ +

π

3
, ρ, φds , φ

q
s) (33a)

Hdq(θ, ρ, φds , φ
q
s) = Hdq(−θ,−ρ, φds ,−φqs). (33b)

In other words, Hdq is π
3 -periodic with respect to θ and

satisfies a parity condition on θ, ρ and φqs. These symmetries
constrain the possible energy functions as shown in the next
sections.

E. The linear sinusoidal model

As an example we consider the simplest case, namely
a PMSM whose magnetic energy in the dq frame is a
second-order polynomial not depending on the position θ
nor on the kinetic momentum ρ. This means we assume
a sinusoidally wound motor with a first-order flux-current
relation. Moreover, as we are not modeling mechanics, we
take the simplest kinetic energy. That is to say

H
dq
l :=

ρ2

2Jn2
+a+bφds+cφ

q
s+

d

2
φds

2
+eφdsφ

q
s+

f

2
φqs

2, (34)

where J is the rotor inertia moment and a, b, c, d, e, f are
some constants.

The symmetry (33b) implies c = e = 0. As the the
energy function Hdq is defined up to a constant we can freely
change a, in particular set a = b2

2d . Defining
• the d-axis inductance Ld := 1

d
• the q-axis inductance Lq := 1

f

• the permanent magnet flux φM := Ldb,
(34) eventually reads

H
dq
l =

1

2Jn2
ρ2 +

1

2Ld
(φds − φM )2 +

1

2Lq
φqs

2. (35)

As a consequence (20), (22) and (23) become

dφdqs
dt

= udqs −Rsıdqs − Jωφdqs (36a)

n
dρ

dt
= T dqe − TL (36b)



ıds =
1

Ld
(φds − φM )

ıqs =
1

Lq
φqs

T dqe = nıdqs
T
Jφdqs = n

(
1

Lq
− 1

Ld

)
φdsφ

q
s +

n

Ld
φqsφM ,

which is the usual model for PMSM, see e.g. [6], [7]. It
is remarkable that this model can be recovered without the
traditional microscopic approach. We have simply followed
a standard energy approach with simplest possible energy
function, and taken into account very general construction
symmetries.

Notice the model of the Synchronous Reluctance Motor
can be obtained in exactly the same way. Indeed since the
rotor is not oriented, we have the extra symmetry

Hdq0(θ, ρ, φds , φ
q
s, φ

0
s) = Hdq0(θ, ρ,−φds ,−φqs,−φ0s), (37)

which implies b = 0 in (34) hence φM = 0.

IV. A NON-SINUSOIDAL PMSM MODEL

One interest of the energy approach is to provide models
which are more general than the usual linear sinusoidal
PMSM, simply by considering more general energy func-
tions. In particular it easily explains the so-called torque
ripple phenomenon, i.e. the π

3 -periodicity of the torque with
respect to θ, see e.g. [8], [9]. We still assume the magnetic
energy does not depend on the kinetic momentum ρ, and the
simplest possible kinetic energy.

By (33a) Hdq is π
3 -periodic with respect to θ hence can

be expended in Fourier series

Hdq(θ, ρ, φds , φ
q
s) =

1

2Jn2
ρ2 +H

dq
0 (φds , φ

q
s)

+

∞∑
k=1

a6k(φ
d
s , φ

q
s) cos 6kθ + b6k(φ

d
s , φ

q
s) sin 6kθ︸ ︷︷ ︸

H
dq
6k

. (38)

Thanks to symmetry (32) H
dq
0 and {a6k} are even func-

tions of φqs, and {b6k} are odd functions of φqs. Particularizing
(22)-(23) to this energy function gives

ıdqs (θ, ρ, φs) =
∂Hdq

0

∂φs
(ρ, φdqs ) +

∞∑
k=1

∂Hdq
6k

∂φs
(θ, ρ, φdqs )

T dqe (θ, ρ, φs) = −n
∞∑
k=1

∂Hdq
6k

∂θ
(θ, ρ, φdqs ) + nıdqs

T
Jφs,

which shows ıdqs and T dqe are also π
3 -periodic.

We experimentally checked this phenomenon on a test
bench featuring current, position and torque sensors. We used
two test motors, a Surface Permanent Magnet (SPM) and an
Interior Permanent Magnet (IPM) PMSM, see characteristics
in table I. As expected the experimental plots in figure 2
exhibit a π

3 -periodicity with respect to θ. The experiments
were done at low velocity (4% of rated value) and no load
so that this effect is well-visible.

PMSM kind IPM SPM
Rated power 750W 1500W

Rated current (peak) 4.51A 5.19A

Rated voltage (peak) 110V 245V

Rotor flux (peak) 196mWb 155mWb

Rated speed 1800rpm 3000rpm

Rated torque 3.98Nm 6.06Nm

Number of pole pairs (n) 3 5

TABLE I
TEST MOTOR PARAMETERS.
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(b) IPM torque measurement
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Fig. 2. Stator current and torque measurements (SPM and IPM)

V. MODELING OF MAGNETIC SATURATION

We now investigate the effect of magnetic saturation; this
is very important when trying to control the motor at low
velocity and high load, see e.g. [1]–[5]. To highlight cross-
coupling and saturation effects, we give the curves φds and
φqs as functions of ıds and ıqs on figure 3 for the IPM motor
described in table I.

We consider only sinusoidal motors (i.e. the energy func-
tion Hdq is independent of θ) since the non-sinusoidal
effects in well-wound PMSMs are experimentally small in
the presence of magnetic saturation. We still assume the
magnetic energy does not depend on the kinetic momentum
ρ, and the simplest possible kinetic energy.

In normal operation φds is close to the permanent magnet
flux φM , while φqs is small with respect to φM . It is thus
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Fig. 3. Experimental flux-current relations.

natural to expand Hdq as a Taylor series in the variables
(φds − φM ) and φqs

Hdq = H
dq
l +

∞∑
n=3

n∑
k=0

αn−k,k(φ
d
s − φM )n−kφqs

k, (39)

where H
dq
l is given by (35). Moreover, all odd powers of φqs

have by (33b) null coefficients, hence

Hdq = H
dq
l +

∞∑
n=3

bn2 c∑
m=0

αn−2m,2m(φds − φM )n−2mφqs
2m.

(40)
We experimentally checked the validity of this conclusion

on the two motors described in table I. We first obtained the
flux-current relation by integrating the back-electromotive
force when applying voltage steps, see figure 4. We then
truncated the series at n = 4 and experimentally identified
Ld, Lq, α3,0, α1,2, α4,0, α2,2, α0,4, see [20] for details. The
agreement between the flux-current relation obtained from
Hdq and the experimental flux-current relation is excellent.
Notice the linear model using only H

dq
l is good only at low

current.

Motor IPM SPM

Measured Rs 1.52Ω 2.1Ω
φ2
M

Ld
4.20 ± 0.12A.Wb 3.06 ± 0.08A.Wb

φ2
M
Lq

2.83 ± 0.12A.Wb 2.94 ± 0.08A.Wb

φ3Mα3,0 0.770 ± 0.007A.Wb 0.655 ± 0.006A.Wb

φ3Mα1,2 0.702 ± 0.009A.Wb 0.617 ± 0.010A.Wb

φ4Mα4,0 0.486 ± 0.012A.Wb 0.724 ± 0.010A.Wb

φ4Mα2,2 0.734 ± 0.015A.Wb 1.010 ± 0.025A.Wb

φ4Mα0,4 0.175 ± 0.004A.Wb 0.262 ± 0.006A.Wb

TABLE II
EXPERIMENTAL MAGNETIC PARAMETERS

VI. ENERGY-BASED MODELING FOR THE INDUCTION
MOTOR

We now apply our approach to the Induction Motor (IM).
We show that taking the most basic assumptions (sinusoidal
and linear motor) we find again the linear model as we did
in section III-E.

A. Deploying the formalism

Assuming the squirrel-cage rotor is actually equivalent to
three identical wound phases, the generalized coordinates of
an IM with three identical stator windings are

q = (θ, qas , q
b
s, q

c
s, q

a
r , q

b
r, q

c
r)
T
,

where θ is the (electrical) rotor angle and qabcs and qabcr

are the electrical charges in the stator and rotor windings
respectively. Their derivatives are

q̇ = (ω, ıas , ı
b
s, ı

c
s, ı

a
r , ı

b
r, ı

c
r)
T
,

where ω is the (electrical) rotor velocity and ıabcs and ıabcr
are the currents in stator and rotor windings respectively.
Proceeding as in II-C, the generalized momenta are

p = (ρ, φas , φ
b
s, φ

c
s, φ

a
r , φ

b
r, φ

c
r)
T
,

where ρ is the kinetic momentum and φabc and φabcr are the
flux produced by stator and rotor windings respectively. The
power exchanges are:

• the electrical power uabcs
T
ıabcs provided to the motor by

the electrical source, where uabcs is the vector of voltage
drops along the stator winding; this power is associated
with the generalized force uabcs

• the electrical power −Rsıabcs
T
ıabcs dissipated in the sta-

tor resistances Rs; it is associated with the generalized
force −Rsıabcs .

• the electrical power−Rrıabcr
T
ıabcr dissipated in the rotor

resistances Rr; it is associated with the generalized
force −Rrıabcr .

• the mechanical power −TL ωn dissipated in the load,
where TL is the load torque and n the number of pole
pairs; it is associated with the generalized force −TLn .
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Fig. 4. Experimental and fitted flux-current relations.

Using the same method as in II-C, we find

dφabcs
dt

= uabcs −Rsıabcs (41a)

dφabcr
dt

= −Rrıabcr (41b)

n
dρ

dt
= T abce − TL, (41c)

where the stator variables are expressed in the stator frame
and the rotor variables are expressed in the rotor frame. The
current-flux and electro-mechanical relations are also similar,

ıabcs (θ, ρ, φabcs , φabcr ) :=
∂Habc

∂φabcs
(θ, ρ, φabcs , φabcr ) (42)

ıabcr (θ, ρ, φabcs , φabcr ) :=
∂Habc

∂φabcr
(θ, ρ, φabcs , φabcr ) (43)

T abce (θ, ρ, φabcs , φabcr ) := −n∂H
abc

∂θ
(θ, ρ, φabcs , φabcr ). (44)

Due to the connection scheme of the rotor,

ıar + ıbr + ıcr = 0 (45)

and the fact that most stators are star-connected (see figure 1),
it is still interesting to change frame and decouple the 0-axis
as was done in II-D. It is also interesting to express all the

variables in the same frame rotating at the synchronous speed
ωs. To do so we define xdq0s := K(θs)

T
xabcs and xdq0r :=

K(θs − θ)Txabcr where dθs
dt := ωs and

K(θ) :=

√
2

3

 cos θ cos θ − 2
3 cos θ − 4

3
− sin θ − sin θ − 2

3 − sin θ − 4
3

1√
2

1√
2

1√
2


Even through the equation will not be preserved, as in II-E,
we can get similar relations

dφdqs
dt

= udqs −Rsıdqs − Jωsφ
dq
s (46a)

dφdqr
dt

= −Rrıdqr − J(ωs − ω)φdqr (46b)

n
dρ

dt
= T dqe − TL (46c)

These are the usual dynamic equations for the IM (see e.g.
[6], [7]).

In the dq frame the current-flux and electromechanical
relations then read

ıdqs (θ, ρ, φdqs , φ
dq
r ) :=

∂Hdq

∂φdqs
(θ, ρ, φdqs , φ

dq
r ) (47)

ıdqr (θ, ρ, φdqs , φ
dq
r ) :=

∂Hdq

∂φdqr
(θ, ρ, φdqs , φ

dq
r ) (48)

T dqe (θ, ρ, φdqs , φ
dq
r ) := −n∂H

dq

∂θ
+ nıdqr

T
Jφdqr . (49)

B. Symmetries

We now use the motor construction symmetries as in
section III considering only the case of a sinusoidal induction
machine.

So, whatever the angle θ of the rotor, the energy will be
the same, as long as the relative position of the rotor flux
space vector with respect to stator flux space vector remains
the same. Thus the energy function in the dq frame does not
depend on θ.

Rotating the stator and rotor flux space vectors by the same
angle η preserves the energy, so

Hdq(ρ, φdqs , φ
dq
r ) = Hdq(ρ,R(η)φdqs ,R(η)φ

dq
r ). (50)

Exchanging two phases on the stator and the rotor and
symmetrizing the rotor position also preserves the energy so

Hdq(ρ, φdqs , φ
dq
r ) = Hdq(−ρ, Sφdqs , Sφdqr ), (51)

with
S :=

(
1 0
0 −1

)
.

C. The linear sinusoidal model

We consider a second order-polynomial energy function
independent on θ and with magnetic part independent on ρ.
We keep the simplest expression of the kinetic energy. Such
a model is of the form

H
dq
l :=

1

2Jn2
ρ2 + a+ bφdqs + cφdqr

+ φdqs
T
Dφdqs + φdqs

T
Eφdqr + φdqr

T
Fφdqr , (52)



where a ∈ R, (b, c) ∈ (R2)2 and (D,E, F ) ∈ (M2(R))3.
The equation (50) implies that b = c = (0, 0) and D,

E and F commute with the rotations. So (D,E, F ) ∈{
αI+ βJ, (α, β) ∈ R2

}
where I ∈ M2(R) is the identity

matrix and J was defined in II-E. Due to (51) D, E and
F are colinear with I because J does not commute with S,
hence the energy function is of the form

H
dq
l :=

1

2Jn2
ρ2 + a+ dφdqs

T
φdqs + eφdqs

T
φdqr + fφdqr

T
φdqr .

(53)
We can choose freely a = 0 as the energy function is defined
up to a constant. We define σ, Lm, Ls and Lr by the implicit
relations (it can be checked that it is invertible when it is
defined)

LrLsσ = LsLr − L2
m

d =
1

2Lsσ
e = − 2Lm

2LrLsσ
f =

1

2Lrσ

Thus, the energy function reads

Hdq :=
1

2Jn2
ρ2 +

Lm
2LsLrσ

(φdqs − φdqr )
T
(φdqs − φdqr )

+
Lr − Lm
2LsLrσ

φdqs
T
φdqs +

Ls − Lm
2LsLrσ

φdqr
T
φdqr . (54)

Applying (47) and (48) one gets the current-flux relations

LsLrσı
dq
s = Lm(φdqs − φdqr ) + (Lr − Lm)φdqs

LsLrσı
dq
r = Lm(φdqr − φdqs ) + (Ls − Lm)φdqr .

Inverting these equations and taking into account the electro-
mechanical torque is Te = nıdqr

T
Jφdqs , the usual relations

(see e.g. [6], [7]) are easily identified. Therefore we re-
covered the linear sinusoidal model for the IM without the
tedious microscopic approach.

VII. CONCLUSION

We have proposed an energy-based approach to modeling
electrical motors. It is simpler than the traditional one (see
e.g. [6], [7]), since there is no need to know the precise
design of the machine and to integrate the microscopic
variables into a macroscopic model. The basic models of
most electrical machines can be retrieved without tedious
computations; besides, these models are shown to be the sim-
plest physically acceptable models for each kind of motor.
Moreover, non-linearity and non-sinusoidality can be easily
taken into account in these energy-based models. Indeed, the
reciprocity condition is naturally enforced, whereas this is
much more difficult to do with the traditional approach. All
the conservative phenomena occurring in a motor can easily
be modeled using this formalism, including cross-saturation
between d and q axes (compare with e.g. [3]) and torque
ripple (see e.g. [9]).

This kind of model has been successfully used to account
for the effects of signal injection in a PMSM and implement
a control law (see [5]). The model is currently being extended
to handle magnetic saturation in induction machines.
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