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CONTROLLABILITY OF PARABOLIC EQUATIONS BY THE FLATNESS

APPROACH

by

Philippe Martin, Lionel Rosier & Pierre Rouchon

Abstract. — We consider linear one-dimensional parabolic equations with space dependent coefficients that

are only measurable and that may be degenerate or singular. We prove the null controllability with one
boundary control by following the flatness approach, which provides explicitly the control and the associated

trajectory as series. As an application, we consider the heat equation with a discontinuous coefficient in

the principal part. The note ends with a numerical experiment which demonstrates the effectiveness of the
method.
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1. Introduction

The null controllability of parabolic equations has been extensively investigated since several decades.
After the pioneering work in [11, 15, 20], mainly concerned with the one-dimensional case, there has been
significant progress in the general N-dimensional case [13, 14, 19] by using Carleman estimates. The
more recent developments of the theory were concerned with discontinuous coefficients [1, 2], degenerate
coefficients [4, 5, 6, 12], or singular coefficients [8, 10].

In [1], the authors derived the null controllability of a linear one-dimensional parabolic equation with
(essentially bounded) measurable coefficients. The method of proof combined the Lebeau-Robbiano
approach [19] with some complex analytic arguments.

Here, we are concerned with the null controllability of the system

(a(x)ux)x + b(x)ux + c(x)u− ρ(x)ut = 0, x ∈ (0, 1), t ∈ (0, T ),(1.1)

α0u(0, t) + β0(aux)(0, t) = 0, t ∈ (0, T ),(1.2)

α1u(1, t) + β1(aux)(1, t) = h(t), t ∈ (0, T ),(1.3)

u(x, 0) = u0(x), x ∈ (0, 1),(1.4)

where (α0, β0), (α1, β1) ∈ R2 \ {(0, 0)} are given, u0 ∈ L2(0, 1) is the initial state and h ∈ L2(0, T ) is the
control input.

The given functions a, b, c, ρ will be assumed to fulfill the following conditions

a(x) > 0 and ρ(x) > 0 for a.e. x ∈ (0, 1),(1.5)

(
1

a
,
b

a
, c, ρ) ∈ [L1(0, 1)]4,(1.6)

∃K ≥ 0,
c(x)

ρ(x)
≤ K for a.e. x ∈ (0, 1),(1.7)

∃p ∈ (1,∞], a1−
1
p ρ ∈ Lp(0, 1).(1.8)

The assumptions (1.5)-(1.8) are clearly less restrictive than the assumptions from [1]:

(1.9) a, b, c, ρ ∈ L∞(0, 1) and a(x) > ε, ρ(x) > ε > 0 for a.e. x ∈ (0, 1)

for some ε > 0.
Let us introduce some notations. Let B be a Banach space with norm ‖ · ‖B . For any t1 < t2 and

s ≥ 0, we denote by Gs([t1, t2], B) the class of (Gevrey) functions u ∈ C∞([t1, t2], B) for which there
exist positive constants M,R such that

(1.10) ‖u(p)(t)‖B ≤M
p!s

Rp
∀t ∈ [t1, t2], ∀p ≥ 0.

When (B, ‖ · ‖B) = (R, | · |), Gs([t1, t2], B) is merely denoted Gs([t1, t2]). Let

L1
ρ := {u : (0, 1)→ R; ||u||L1

ρ
:=

∫ 1

0

|u(x)|ρ(x)dx <∞}.

Note that L2(0, 1) ⊂ L1
ρ if ρ ∈ L2(0, 1). The main result in this note is the following

Theorem 1.1. — Let the functions a, b, c, ρ : (0, 1) → R satisfy (1.5)-(1.8) for some numbers K ≥ 0,
p ∈ (1,∞]. Let (α0, β0), (α1, β1) ∈ R2 \ {(0, 0)} and T > 0. Pick any u0 ∈ L1

ρ and any s ∈ (1, 2 − 1/p).
Then there exists a function h ∈ Gs([0, T ]), that may be given explicitly as a series, such that the solution
u of (1.1)-(1.4) satisfies u(., T ) = 0. Moreover u, aux ∈ Gs([ε, T ],W 1,1(0, 1)) for all ε ∈ (0, T ).
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Clearly, Theorem 1.1 can be applied to parabolic equations with discontinuous coefficients that may be
degenerate or singular at a point (or more generally at a sequence of points). The proof of it is not based
on the classical duality approach, in the sense that it does not rely on the proof of some observability
inequality for the adjoint equation. It follows the flatness approach developed in [16, 17, 18, 21, 22,
24, 25, 27, 28, 29]. This direct approach gives explicitly both the control and the trajectory as series,
which leads to efficient numerical schemes by taking partial sums in the series [24]. The flatness approach
was used in [28] to improve the results in [11] concerning the reachable states for the heat equation. It
was also successfully applied to Schrödinger equation in [23]. Let us describe its main steps. In the first
step, following [1], we show that after a series of changes of dependent/independent variables, system
(1.1)-(1.4) can be put into the canonical form

uxx − ρ(x)ut = 0, x ∈ (0, 1), t ∈ (0, T ),(1.11)

α0u(0, t) + β0ux(0, t) = 0, t ∈ (0, T ),(1.12)

α1u(1, t) + β1ux(1, t) = h(t), t ∈ (0, T ),(1.13)

u(x, 0) = u0(x), x ∈ (0, 1),(1.14)

where ρ(x) > 0 a.e. in (0, 1) and ρ ∈ Lp(0, 1) with p ∈ (1,∞]. In the second step, following [21, 24], we
seek u in the form

u(x, t) =
∑
n≥0

e−λnten(x), x ∈ (0, 1), t ∈ [0, τ ],(1.15)

u(x, t) =
∑
i≥0

y(i)(t)gi(x), x ∈ (0, 1), t ∈ [τ, T ],(1.16)

where τ ∈ (0, T ) is any intermediate time; en : (0, 1) → R (resp. λn ∈ R) denotes the nth eigenfunction
(resp. eigenvalue) associated with (1.11)-(1.13) and satisfying [16, 17]

−e′′n = λn ρ en, x ∈ (0, 1)(1.17)

α0en(0) + β0e
′
n(0) = 0,(1.18)

α1en(1) + β1e
′
n(1) = 0,(1.19)

while gi : (0, 1)→ R is defined inductively as the solution to the Cauchy problem

g′′0 = 0, x ∈ (0, 1)(1.20)

α0g0(0) + β0g
′
0(0) = 0,(1.21)

β0g0(0)− α0g
′
0(0) = 1(1.22)

for i = 0, and to the Cauchy problem

g′′i = ρ gi−1, x ∈ (0, 1)(1.23)

gi(0) = 0,(1.24)

g′i(0) = 0(1.25)

for i ≥ 1. Expanding u on generating functions as in (1.16) rather than on powers of x as in [18, 21] was
introduced in [17] and studied in [16].

The fact that the generating function gi is defined as the solution of a Cauchy problem, rather than the
solution of a boundary-value problem, is crucial in the analysis developed here. First, it allows to prove
that every initial state in the space L1

ρ (and not only states in some restricted class of Gevrey functions)
can be driven to 0 in time T . Secondly, from (1.23)-(1.25), we see by an easy induction on i that for
ρ ∈ L∞(0, 1), the function gi is uniformly bounded by C/(2i)!, and hence the series in (1.16) is indeed
convergent when y ∈ Gs([τ, T ]) with 1 < s < 2.
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The corresponding control function h is given explicitly as

h(t) =

{
0 if 0 ≤ t ≤ τ,∑
i≥0 y

(i)(t)(α1gi(1) + β1g
′
i(1)) if τ < t ≤ T.

It is easy to see that the function u(x, t) defined in (1.16) satisfies (formally) (1.11), and also the
condition u(x, T ) = 0 if y(i)(T ) = 0 for all i ∈ N, so that the null controllability can be established
for some initial states. The main issue is then to extend it to every initial state u0 ∈ L1

ρ. Following
[21, 22, 24], we first use the strong smoothing effect of the heat equation to smooth out the state
function in the time interval (0, τ). Next, to ensure that the two expressions of u given in (1.15)-(1.16)
coincide at t = τ , we have to relate the eigenfunctions en to the generating functions gi.

It will be shown that any eigenfunction en can be expanded in terms of the generating functions gi as

(1.26) en(x) = ζn
∑
i≥0

(−λn)igi(x)

with ζn ∈ R. Note that, for ρ ≡ 1 and (α0, β0, α1, β1) = (0, 1, 0, 1), λn = (nπ)2 for all n ≥ 0, e0(x) = 1

and en(x) =
√

2 cos(nπx) for n ≥ 0 while gi(x) = x2i/(2i)!, so that (1.26) for n ≥ 1 is nothing but the
classical Taylor series expansion of cos(nπx) at x = 0:

(1.27) cos(nπx) =
∑
i≥0

(−1)i
(nπx)2i

(2i)!
·

Thus (1.26) can be seen as a natural extension of (1.27), in which the generating functions gi, a priori
not smoother than W 2,p(0, 1), replace the functions x2i/(2i)!.

The condition (1.8) is used to prove the estimate

|gi(x)| ≤ C

R2i(i!)2−
1
p

needed to ensure the convergence of the series in (1.16) when y ∈ Gs([τ, T ]) with 1 < s < 2− 1/p.
Theorem 1.1 applies in particular to any system

(a(x)ux)x − ut = 0, x ∈ (0, 1), t ∈ (0, T ),(1.28)

α0u(0, t) + β0(aux)(0, t) = 0, t ∈ (0, T ),(1.29)

α1u(1, t) + β1(aux)(1, t) = h(t), t ∈ (0, T ),(1.30)

u(x, 0) = u0(x), x ∈ (0, 1),(1.31)

where a(x) > 0 for a.e. x ∈ (0, 1) and a+ 1/a ∈ L1(0, 1). This includes the case where a is measurable,
positive and essentially bounded together with its inverse (but not necessarily piecewise continuous), and
the case where a(x) = xr with −1 < r < 1. (Actually any r ≤ −1 is also admissible, by picking p > 1
sufficiently close to 1 in (1.8).) Note that our result applies as well to a(x) = (1 − x)r with 0 < r < 1,
yielding a positive null controllability result when the control is applied at the point (x = 1) where the
diffusion coefficient degenerates (see [5, Section 2.7]). Note also that the coefficient a(x) is allowed to be
degenerate/singular at a sequence of points: consider e.g. a(x) := | sin(x−1)|r with −1 < r < 1. Then
a+ 1/a ∈ L1(0, 1).

The null controllability of (1.28)-(1.31) for a(x) = xr with 0 < r < 2 was established (in appropriate
spaces) in [5].
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Another important family of heat equations with variable coefficients is those with inverse square
potential localized at the boundary, namely

uxx +
µ

x2
u− ut = 0, x ∈ (0, 1), t ∈ (0, T ),(1.32)

u(0, t) = 0, t ∈ (0, T ),(1.33)

α1u(1, t) + β1ux(1, t) = h(t), t ∈ (0, T ),(1.34)

u(x, 0) = u0(x), x ∈ (0, 1),(1.35)

where µ ∈ R is a given number. Note that Theorem 1.1 cannot be applied to (1.32)-(1.35), for c(x) = µx−2

is not integrable on (0, 1). It was proved in [8] that (1.32)-(1.35) is null controllable in L2(0, 1) when
µ ≤ 1/4 by combining Carleman inequalities to Hardy inequalities. We note that this result can be
retrieved by the flatness approach as well.

Theorem 1.2. — Let µ ∈ (0, 1/4], (α1, β1) ∈ R2\{(0, 0)}, T > 0, and τ ∈ (0, T ). Pick any u0 ∈ L2(0, 1)
and any s ∈ (1, 2). Then there exists a function h ∈ Gs([0, T ]) with h(t) = 0 for 0 ≤ t ≤ τ and such that
the solution u of (1.32)-(1.35) satisfies u(T, .) = 0. Moreover, u ∈ Gs([ε, T ],W 1,1(0, 1)) for all ε ∈ (0, T ).
Finally, if 0 ≤ µ < 1/4 and r > (1 +

√
1− 4µ)/2, then xrux ∈ Gs([ε, T ],W 1,1(0, 1)) for all ε ∈ (0, T ).

The note is organized as follows. In Section 2 we give a sketch of the proof of Theorem 1.1. Section
3 is concerned with the numerical control of a heat equation with discontinuous coefficients, that may
serve as a model for the heat conduction of a one-dimensional rod with constant thermals properties.

2. Sketch of the proof of Theorem 1.1

2.1. Reduction to the canonical form (1.11)-(1.14). — Let a, b, c, ρ, and p be as in (1.5)-(1.8). Set

B(x) :=

∫ x

0

b(s)

a(s)
ds,

ã(x) := a(x)eB(x)

c̃(x) := (Kρ(x)− c(x))eB(x).

Then B ∈W 1,1(0, 1), c̃ ∈ L1(0, 1), and

ã(x) > 0 and c̃(x) ≥ 0 for a.e. x ∈ (0, 1).

We introduce the solution v to the elliptic boundary value problem

−(ãvx)x + c̃v = 0, x ∈ (0, 1),(2.1)

v(0) = v(1) = 1,(2.2)

and set

u1(x, t) := e−Ktu(x, t), u2(x, t) :=
u1(x, t)

v(x)
·

Finally, let

(2.3) L :=

∫ 1

0

(a(s)v2(s)eB(s))−1ds, y(x) :=
1

L

∫ x

0

(a(s)v2(s)eB(s))−1ds

and

(2.4) û(y, t) := u2(x, t), ρ̂(y) := L2a(x)v4(x)e2B(x)ρ(x)

for 0 < t < 1, y = y(x) with 0 < x < 1. Then the following result holds.
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Proposition 2.1. — (i) v ∈W 1,1(0, 1) and 0 < v(x) ≤ 1 for all x ∈ [0, 1];
(ii) y : [0, 1]→ [0, 1] is an increasing bijection with y, y−1 ∈W 1,1(0, 1);

(iii) ρ̂(y) > 0 for a.e. y ∈ (0, 1), and ρ̂ ∈ Lp(0, 1);
(iv) û solves the system

ûyy − ρ̂ût = 0, y ∈ (0, 1), t ∈ (0, T ),(2.5)

α̂0û(0, t) + β̂0ûy(0, t) = 0, t ∈ (0, T ),(2.6)

α̂1û(1, t) + β̂1ûy(1, t) = ĥ(t) := e−Kth(t), t ∈ (0, T ),(2.7)

û(y(x), 0) =
u0(x)

v(x)
, x ∈ (0, 1),(2.8)

for some (α̂0, β̂0), (α̂1, β̂1) ∈ R2 \ {(0, 0)}.

Proof: (i) Let l :=
∫ 1

0
ds/ã(s) and z(x) := l−1

∫ x
0
ds/ã(s). Then, one can see that z is an increasing

continuous bijection from [0, 1] to [0, 1], and (using a result due to Zareckii, see e.g. [3]) that z−1 ∈
W 1,1(0, 1). Introduce w(z) := v(x(z)), which solves the boundary value problem

−d
2w

dz2
+ (l2ãc̃)(x(z))w = 0, z ∈ (0, 1),

w(0) = w(1) = 1.

It can be seen that 0 < w ≤ 1 on [0, 1]. The other properties (ii), (iii), and (iv) follow by direct
calculations. See [27] for more details.

2.2. Null controllability of the control problem (1.11)-(1.14). — Assume given p ∈ (1,∞], ρ ∈
Lp(0, 1) with ρ(x) > 0 for a.e. x ∈ (0, 1), and (α0, β0), (α1, β1) ∈ R2 \ {(0, 0)}. Let ′ = d/dx, and let

L2
ρ :=

{
f : (0, 1)→ R; ||f ||2L2

ρ
:=

∫ 1

0

|f(x)|2ρ(x)dx <∞
}
.

Then the following result holds.

Proposition 2.2. — Let p, ρ, α0, β0, α1, and β1 be as above. Then there are a sequence (en)n≥0 in L2
ρ

and a sequence (λn)n≥0 in R such that

(i) (en)n≥0 is an orthonormal basis in L2
ρ;

(ii) For all n ≥ 0, en ∈W 2,p(0, 1) and en solves

−e′′n = λnρen in (0, 1),(2.9)

α0en(0) + β0e
′
n(0) = 0,(2.10)

α1en(1) + β1e
′
n(1) = 0.(2.11)

(iii) The sequence (λn)n≥0 is strictly increasing, and for some constant C > 0

(2.12) λn ≥ Cn for n� 1.

Proof: Introduce for λ∗ � 1 the boundary-value problem

−u′′ + λ∗ρu = ρf in (0, 1),(2.13)

α0u(0) + β0u
′(0) = 0,(2.14)

α1u(1) + β1u
′(1) = 0.(2.15)
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Then, introducing a variational formulation and applying Lax-Milgram theorem, we obtain the existence
and uniqueness of a solution u ∈ W 2,1(0, 1) of (2.13)-(2.15) for any f ∈ L2

ρ. The results in (i)-(ii) follow
from an application of the spectral theorem. Finally, (iii) is established by using Prüfer substitution. We
refer the reader to [27] for more details.

We now turn our attention to the generating functions gi (i ≥ 0) defined along (1.20)-(1.25).

Proposition 2.3. —

(i) g0(x) = (α2
0 + β2

0)−1(β0 − α0x)

(ii) There are some constants C,R > 0 such that

(2.16) ||gi||W 2,p(0,1) ≤
C

Ri(i!)2−
1
p

∀i ≥ 0·

Proof: (i) is obvious, and (ii) is obtained inductively from the formula

gi(x) =

∫ x

0

(∫ s

0

ρ(σ)gi−1(σ)dσ

)
ds.

See [27] for more details.

The fact that we can expand the eigenfunctions in terms of the generating functions is detailed in the
following

Proposition 2.4. — There is some sequence (ζn)n≥0 of real numbers such that for all n ≥ 0

(2.17) en = ζn
∑
i≥0

(−λn)igi in W 2,p(0, 1).

Furthermore, for some constant C > 0, we have

(2.18) |ζn| ≤ C(1 + |λn|
3
2 ) ∀n ≥ 0.

Proof: Let ẽ := ζn
∑
i≥0(−λn)igi, where ζn ∈ R. Then we infer from (1.20)-(1.25) that ẽ′′ = −λnρẽ and

that
α0ẽ(0) + β0ẽ

′(0) = 0.

If we pick ζn := β0en(0) − α0e
′
n(0), then we easily see that en = ẽ. The estimate (2.18) is proved by

direct calculations. We refer the reader to [27] for more details.

Since p > 1, for any s ∈ (1, 2 − 1
p ) and any 0 < τ < T , one may pick a function ϕ ∈ Gs([0, 2T ]) such

that

ϕ(t) =

{
1 if t ≤ τ,
0 if t ≥ T.

We are in a position to derive the null controllability of (1.11)-(1.14). Let u0 ∈ L2
ρ. Since (en)n≥0 is an

orthonormal basis in L2
ρ, we can write

(2.19) u0 =
∑
n≥0

cn en in L2
ρ

with
∑
n≥0 |cn|2 <∞. Let

(2.20) y(t) := ϕ(t)
∑
n≥0

cnζne
−λnt for t ∈ [τ, T ]
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and

(2.21) u(x, t) =

{ ∑
n≥0 cne

−λnten(x) if 0 ≤ t ≤ τ,∑
i≥0 y

(i)(t)gi(x) if τ < t ≤ T.

The main result in this section is the following

Theorem 2.5. — Let p ∈ (1,∞], ρ ∈ Lp(0, 1) with ρ(x) > 0 for a.e. x ∈ (0, 1), T > 0, τ ∈ (0, T ), and
(α0, β0), (α1, β1) ∈ R2 \ {(0, 0)}. Let u0 ∈ L2

ρ be decomposed as in (2.19), and let y be as in (2.20). Then
y ∈ Gs([τ, T ]), and the control

(2.22) h(t) =

{
0 if 0 ≤ t ≤ τ,∑
i≥0 y

(i)(t)(α1gi(1) + β1g
′
i(1)) if τ < t ≤ T.

is such that the solution u of (1.11)-(1.14) satisfies u(., T ) = 0. Moreover u is given by (2.21), h ∈
Gs([0, T ]), and u ∈ C([0, T ], L2

ρ) ∩Gs([ε, T ],W 2,p(0, 1)) for all 0 < ε ≤ T .

Proof: It is clear that the function u solves formally (1.11)-(1.14) on (0, τ) and on (τ, T ), together with
u(., T ) = 0. The main concern is thus the convergence of the two series in (2.21) and the fact that they
coincide at t = τ . See [27] for the details.

Theorem 1.1 follows from Theorem 2.5. Modifying slightly the first step in the proof of Theorem 1.1,
we can reduce (1.32)-(1.35) to the canonical form (1.11)-(1.14), so that the conclusion of Theorem 1.2
follows from Theorem 2.5.

As a possible application, we consider the boundary control by the flatness approach of radial solutions
of the heat equation in the ball B(0, 1) ⊂ RN (2 ≤ N ≤ 3). Using the radial coordinate r = |x|, we thus
consider the system

urr +
N − 1

r
ur − ut = 0, r ∈ (0, 1), t ∈ (0, T ),(2.23)

ur(0, t) = 0, t ∈ (0, T ),(2.24)

α1u(1, t) + β1ur(1, t) = h(t), t ∈ (0, T )(2.25)

u(r, 0) = u0(r), r ∈ (0, 1).(2.26)

Note that Theorem 1.1 cannot be applied directly to (2.23)-(2.26), for (1.7) fails. (Note that, in sharp
contrast, the control on a ring-shaped domain {r0 < |x| < r1} with r1 > r0 > 0 is fully covered by
Theorem 1.1, the coefficients in (2.23) being then smooth and bounded.)

We use the following change of variables from [9] which allows to remove the term with the first order
derivative in r in (2.23):

(2.27) u(r, t) = ũ(r, t) exp(−1

2

∫ r

0

N − 1

s
ds) =

ũ(r, t)

r
N−1

2

·

Then (2.23) becomes

(2.28) ũrr +
(N − 1)(3−N)

4

ũ

r2
− ũt = 0.

This equation has to be supplemented with the boundary/initial conditions

ũ(0, t) = 0, t ∈ (0, T ),(2.29)

(α1 −
N − 1

2
β1)ũ(1, t) + β1ũr(1, t) = h(t), t ∈ (0, T ),(2.30)

ũ(r, 0) = r
N−1

2 u0(r), r ∈ (0, R).(2.31)
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For N = 3, (2.28) reduces to the simple heat equation ũrr − ũt = 0 to which Theorem 1.1 can be
applied.

For N = 2, (2.28)-(2.31) is of the form (1.32)-(1.35) with µ = 1/4. Therefore Theorem 1.2 can be
applied.

3. Numerical control of the 1-D heat equation with discontinuous coefficients

We consider the heat conduction in a one-dimensional rod made of two sections with constant thermal
properties. Without restriction, we can assume the rod has length 1, with one section of length X and
the other of length 1−X. The evolution of the temperature u is given by the heat equation

ρθt(x, t) = (aθx)x(x, t).

a and ρ are the piecewise constant functions on (0, 1):

(a(x), ρ(x)) :=

{
(a0, ρ0), 0 < x < X,
(a1, ρ1), X < x < 1

where a0, a1, ρ0 and ρ1 are strictly positive constants.
At the 0-end, the rod is submitted to the constant ambient temperature θ0, and at the 1−end to a

time-varying heat source (the control input) of temperature θ1(t). The heat flux −aθx at the ends obeys
the convection conditions

−(aθx)(0, t) = h0(θ0 − θ(0, t)),
−(aθx)(1, t) = h1(θ(1, t)− θ1(t))

with h0, h1 some positive constants. Setting u(x, t) := θ(x, t)− θ0 and taking as input h(t) := θ1(t)− θ0
results in the boundary value problem

(a(x)ux)x − ρ(x)ut = 0, x ∈ (0, 1), t ∈ (0, T ),(3.1)

α0u(0, t) + β0(aux)(0, t) = 0, t ∈ (0, T ),(3.2)

α1u(1, t) + β1(aux)(1, t) = h(t), t ∈ (0, T ),(3.3)

u(x, 0) = u0(x), x ∈ (0, 1),(3.4)

where the constants α0, β0, α1, β1 satisfy α2
0 + β2

0 > 0, α2
1 + β2

1 > 0, α0β0 ≤ 0 and α1β1 ≥ 0. Notice
the two limiting cases: βi = 0 (Dirichlet conditions), obtained when taking hi → ∞; αi = 0 (Neumann
conditions), obtained when taking as control input h(t) := h1(θ1(t)− θ(1, t)) and letting h0 = 0.

Included in the formulation of the system is the fact that a solution u and its quasi-derivative aux are
continuous on [0, 1], and in particular at x = X (whereas ux will in general be discontinuous at X). We
could thus rewrite (3.1) more explicitly as the piecewise constant heat equation{

ut(x, t) = a0
ρ0
uxx(x, t), 0 < x < X,

ut(x, t) = a1
ρ1
uxx(x, t), X < x < 1

together with the so-called interface conditions

u(X−, t) = u(X+, t),

a0ux(X−, t) = a1ux(X+, t).

From the flatness approach developed in the previous sections, we know that the trajectory u of
(3.1)-(3.4) is given explicitly in (1.15)-(1.16), the eigenfunctions en’s being as in (1.17)-(1.19), and the
generating functions gi’s being as in (1.20)-(1.25).

We refer the reader to [25] for the details concerning the numerical computation of the en’s and the
gi’s.
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The control input in the time interval (τ, T ) reads

(3.5) h(t) :=
∑
i≥0

(α1gi(1) + β1g
′
i(1))y(i)(t)

where

(3.6) y(t) := φs(
t− τ
T − τ

)
∑
n≥0

cnζne
−λnt

and the cn’s denote the Fourier coefficients of the initial state decomposed along the en’s:

u0(x) :=
∑
n≥0

cnen(x).

The function φs in (3.6) is the Gevrey “step function”

φs(t) :=


1 if t ≤ 0,
0 if t ≥ 1,

1−
∫ t
0
ϕs(z)dz∫ 1

0
ϕs(z)dz

if t ∈ (0, 1)

where the “bump function” ϕs is defined as

ϕs(t) =

{
0 if t 6∈ (0, 1),
exp( −1

Mtk(1−t)k ) if t ∈ (0, 1)

with k = (s− 1)−1 > 1 and M > 0 some constants. It is well known that both ϕs and φs are Gevrey of
order s, with s ∈ (1, 2).

A practical problem when implementing the control (3.6) is to evaluate sufficiently many derivatives
of φs, i.e. of ϕs. Numerical computations (with e.g. finite differences) or symbolic computations cannot
be used in practice to evaluate more than 20 derivatives. Nevertheless, much more derivatives can be
computed with accuracy by proceeding inductively. We first note that

(3.7) pk+1ϕ̇s = kṗϕs

where p(t) := M
1
k t(1 − t) is a polynomial function of degree 2 (hence its derivatives of order > 2 are

zero).
Derivating i times in (3.7) and using Leibniz’ rule results in

pk+1ϕ(i+1)
s +

i∑
j=1

(
i
j

)
(pk+1)(j)ϕ(i+1−j)

s = k(ṗϕ(i)
s + ip̈ϕ(i−1)

s )

This formula gives ϕ
(i+1)
s in terms of ϕ

(0)
s , ..., ϕ

(i)
s , and the derivatives of P := pk+1 that can be obtained

similarly, by applying Leibniz’ rule to both sides of

pṖ = (k + 1)ṗP.

Note that, in order to avoid computing ratios of very large numbers, it is better in practice to use recursion

formulas for ϕ̃
(i)
s := ϕ

(i)
s /(2i)! and for P̃ (i) := P (i)/i! (see [25].)

Using this procedure, about 140 derivatives can be efficiently determined with Matlab double-precision
arithmetics.

We conclude this note with some numerical simulation. We use as parameters: X = 1/2, a0 = 10/19,
ρ0 = 15/8, a1 = 10, ρ1 = 1/8, α0 = cos(π/3), β0 = − sin(π/3), α1 = cos(π/4), β1 = sin(π/4). We take
as initial condition u0(x) := 1

21(1/2,1)(x)− 1
21(0,1/2)(x), and as control times: τ = 0.05 and T = 0.35. We

pick also s = 1.65 and M = 2. The series for h and y in (3.5)-(3.6) were truncated at a “large enough”
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order for a good accuracy, namely ī = 130 and n̄ = 60; a fairly large ī is needed here because (T −τ)a0/ρ0
is rather small. Figure 1 shows the resulting temperature u; the discontinuity of ux at x = X is clearly
visible. We refer the interested reader to [25] for more details about the numerical investigation of the

Figure 1. Evolution of the temperature u(x, t)

control problem (3.1)-(3.4).

4. Numerical control of a degenerate 1-D heat equation

We now apply the approach of the previous section to the degenerate heat equation

θt(x, t)−
(
xγθx(x, t)

)
x

= 0, (x, t) ∈ (0, 1)× (0, T )(4.1)

α0θ(0, t) + β0
(
xγθx(x, t)

)∣∣
x=0

= u(t),(4.2)

α1θ(1, t) + β1θx(1, t) = 0,(4.3)

with 0 ≤ γ < 1. The controllability properties of this system (with Dirichlet boundary conditions) are
studied in [7]; in particular, it is shown in [7] that the cost in terms of the H1(0, T )-norm of the control
achieving null controllability blows up as γ tends to 1−.
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Figure 2. a) Evolution of θ (γ = 1/2); b) corresponding initial, intermediate, and final states.

The assumptions (1.7)–(1.8) are clearly satisfied, with K = 0 and p = ∞. The system is put into its

canonical form by setting x̃ := x1−γ and θ̃(x̃, t) := θ(x, t), which immediately yields

(1− γ)−2 x̃
γ

1−γ θ̃t(x̃, t)− θ̃x̃x̃(x̃, t) = 0, (x̃, t) ∈ (0, 1)× (0, T )

α0θ̃(0, t) + (1− γ)β0θ̃x̃(0, t) = u(t),

α1θ̃(1, t) + (1− γ)β1θ̃x̃(1, t) = 0.

For the actual scenario (γ = 0.5, T = 0.35, τ = T/10, s = 1.7), Neumann boundary conditions are used
(α0 = α1 = 0, β0 = β1 = 1). The initial condition is the piecewise linear function θ0(x) := 1 − 5x, x ∈
(0, 0.45), θ0(x) := 5.5, x ∈ (0.45, 0.55), and θ0(x) := 2x− 0.5, x ∈ (0.55, 1).

We refer the interested reader to [26] for the details about the numerical scheme.



CONTROLLABILITY OF PARABOLIC EQUATIONS 13

References

[1] G. Alessandrini and L. Escauriaza. Null-controllability of one-dimensional parabolic equations. ESAIM Con-
trol Optim. Calc. Var., 14(2):284–293, 2008.

[2] A. Benabdallah, Y. Dermenjian, and J. Le Rousseau. Carleman estimates for the one-dimensional heat
equation with a discontinuous coefficient and applications to controllability and an inverse problem. J. Math.
Anal. Appl., 336(2):865–887, 2007.

[3] V. I. Bogachev. Measure Theory. Springer-Verlag, Berlin, 2007.

[4] P. Cannarsa, P. Martinez, and J. Vancostenoble. Persistent regional null controllability for a class of degen-
erate parabolic equations. Commun. Pure Appl. Anal., 3(4):607–635, 2004.

[5] P. Cannarsa, P. Martinez, and J. Vancostenoble. Carleman estimates for a class of degenerate parabolic
operators. SIAM J. Control Optim., 47(1):1–19, 2008.

[6] P. Cannarsa, P. Martinez, and J. Vancostenoble. Carleman estimates and null controllability for boundary-
degenerate parabolic operators. C. R. Math. Acad. Sci. Paris, 347(3-4):147–152, 2009.

[7] P. Cannarsa, P. Martinez, and J. Vancostenoble. The cost of controlling degenerate parabolic equations by
boundary controls. ArXiv e-prints, arXiv:1511.06857, 2015.

[8] C. Cazacu. Controllability of the heat equation with an inverse-square potential localized on the boundary.
SIAM J. Control Optim., to appear.

[9] D. Colton. Integral operators and reflection principles for parabolic equations in one space variable. J. Dif-
ferential Equations, 15:551–559, 1974.

[10] S. Ervedoza. Control and stabilization properties for a singular heat equation with an inverse-square potential.
Comm. Partial Differential Equations, 33(10-12):1996–2019, 2008.

[11] H. Fattorini and D. Russell. Exact controllability theorems for linear parabolic equations in one space di-
mension. Arch. Rational Mech. Anal., 43(4):272–292, 1971.

[12] C. Flores and L. de Teresa. Carleman estimates for degenerate parabolic equations with first order terms
and applications. C. R. Math. Acad. Sci. Paris, 348(7-8):391–396, 2010.

[13] A. V. Fursikov and O. Y. Imanuvilov. Controllability of evolution equations, volume 34 of Lecture Notes
Series. Seoul National University Research Institute of Mathematics Global Analysis Research Center, 1996.

[14] O. Y. Imanuvilov. Controllability of parabolic equations. Mat. Sb., 186(6):109–132, 1995.

[15] B. Jones Jr. A fundamental solution for the heat equation which is supported in a strip. J. Math. Anal.
Appl., 60(2):314–324, 1977.

[16] B. Laroche. Extension de la notion de platitude à des systèmes décrits par des équations aux dérivées partielles
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