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Abstract. We consider the classical problem of estimating the attitude
and gyro biases of a rigid body from at least two vector measurements
and a triaxial rate gyro. We propose a solution based on a dynamic
nonlinear estimator designed without respecting the geometry of SO(3),
which achieves uniform global exponential convergence. The convergence
is established thanks to a dynamically scaled Lyapunov function.

1 Introduction

Estimating the attitude of a rigid body from vector measurements (obtained
for instance from accelerometers, magnetometers, sun sensors, etc.) has been
for decades a problem of interest, because of its importance for a variety of
technological applications such as satellites or unmanned aerial vehicles. The
attitude of the body can be described by the rotation matrix R ∈ SO(3) from
body to inertial axes. On the other hand, the (time-varying) measurement vec-
tors u1, · · · , un ∈ R3 correspond to the expression in body axes of known and
not all collinear vectors U1, · · · , Un ∈ R3 which are constant in inertial axes,
i.e., uk(t) = RT (t)Uk. The goal then is to reconstruct the attitude at time t
using only the knowledge of the measurement vectors until t. The solution to
the problem would be very easy if the vector measurements were perfect and
two of them were linearly independent: indeed, using for instance only the two
vectors u1(t) and u2(t) and noticing that RT (x× y) = RTx×RT y since R is a
rotation matrix, we readily find

RT (t) = RT (t) ·
(
U1 U2 U1 × U2

)
·
(
U1 U2 U1 × U2

)−1

=
(
u1(t) u2(t) u1(t)× u2(t)

)
·
(
U1 U2 U1 × U2

)−1
.

But in real situations, the measurement vectors are always corrupted at least by
noise. Moreover, the Uk’s may possibly be not strictly constant: for instance a
triaxial magnetometer measures the (locally) constant Earth magnetic field, but
is easily perturbed by ferromagnetic masses and electromagnetic perturbations;
similarly, a triaxial accelerometer can be considered as measuring the direction
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of gravity provided it is not undergoing a substantial acceleration (see e.g. [13]
for a detailed discussion of this assumption and its consequences in the frame-
work of quadrotor UAVs). That is why, despite the additional cost, it may be
interesting to use a triaxial rate gyro to supplement the possibly deteriorated
vector measurements.

The current literature on attitude estimation from vector measurements can
be broadly divided into three categories: i) optimization-based methods; ii)
stochastic filtering; iii) nonlinear observers. Details on the various approaches
can be found e.g. in the surveys [6,17] and the references therein. The first cat-
egory sets the problem as the minimization of a cost function, and is usually
referred to as Wahba’s problem. The attitude is algebraically recovered at time t
using only the measurements at time t. No filtering is performed, and possibly
available velocity information from rate gyros is not exploited. The second cat-
egory mainly hinges on Kalman filtering and its variants. Despite their many
qualities, the drawback of those designs is that convergence cannot in general be
guaranteed except for mild trajectories. Moreover the tuning is not completely
obvious, and the computational cost may be too high for small embedded pro-
cessors. The third, and more recent, approach proposes nonlinear observers with
a large guaranteed domain of convergence and a rather simple tuning through a
few constant gains. These observers can be designed: a) directly on SO(3) (or the
unit quaternion space), see e.g. [7, 10, 12, 16]; b) or more recently, on R3×3, i.e.,
deliberately “forgetting” the underlying geometry [2,3,8,14]. Probably the best-
known design is the so-called nonlinear complementary filter of [10]; as noticed
in [11], it is a special case of so-called invariant observers [5].

In this paper, we propose a new observer of attitude and gyro biases from
gyro measurements and (at least) two measurement vectors. It also “forgets”
the geometry of SO(3), which allows for uniform global exponential convergence
(notice the observer of [10] is only quasi-globally convergent). This observer is an
extension of the observer of [14] (which is uniformly globally convergent), itself
a modification of the linear cascaded observer of [3] (which is uniformly globally
exponentially convergent). The idea of the proof is nevertheless completely dif-
ferent from the approach followed in [3]; it is much more direct, as it relies on a
strict, dynamically scaled, Lyapunov function, see [1, 9].

2 The design model

We consider a moving rigid body subjected to an angular velocity ω. Its orien-
tation matrix R ∈ SO(3) is related to the angular velocity by the differential
equation

Ṙ = Rω×, (1)

where the skew-symmetric matrix ω× is defined by ω×u := ω × u whatever the
vector u ∈ R3.

The rigid body is equipped with a triaxal rate gyro measuring the angu-
lar velocity ω, and two additional triaxial sensors (for example accelerometers,
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magnetometers or sun sensors) providing the measurements of two vectors α
and β. These vectors correspond to the expression in body axes of two known
independent vectors αi and βi which are constant in inertial axes. In other words,

α := RTαi

β := RTβi.

Since αi, βi are constant, we obviously have

α̇ = α× ω
β̇ = β × ω.

To take full advantage of the rate gyro, it is wise to take into account that it is
biased, hence rather provides the measurement

ωm := ω + b,

where b is a slowly-varying (for instance with temperature) unknown bias. Since
the effect of this bias on attitude estimation may be important, it is worth
determining this value. But being not exactly constant, it can not be calibrated
in advance and must be estimated online together with the attitude.

Our objective is to design an estimation scheme that can reconstruct online
the orientation matrix R(t) and the bias b(t), using i) the measurements of the
gyro and of the two vector sensors; ii) the knowledge of the constant vectors αi
and βi. The model on which the design will be based therefore consists of the
dynamics

α̇ = α× ω (2)
β̇ = β × ω (3)
ḃ = 0, (4)

together with the measurements

ωm := ω + b (5)
αm := α (6)
βm := β. (7)

3 The observer

We want to show that the state of (2)–(7) can be estimated by the observer

˙̂α = α̂× (ωm − b̂)− kα(α̂− αm) (8)
˙̂
β = β̂ × (ωm − b̂)− kβ(β̂ − βm) (9)

ξ̇ = lα(ωm − b̂)× (α̂× αm) + lβ(ωm − b̂)× (β̂ × βm) (10)

+ lαkαα̂× αm + lβkβ β̂ × βm (11)

ṙ = −2ψ1(r − 1) + 2
(
lα|αm||α̂− αm|+ lβ |βm||β̂ − βm|

)
r, (12)
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where

b̂ := ξ + lαα̂× αm + lβ β̂ × βm (13)

kα := k1 + r
( 1

2ε
+
l2α
ε1
r
)
|αm|2 (14)

kβ := k2 + r
( 1

2ε
+
l2β
ε1
r
)
|βm|2. (15)

α̂, β̂, b̂ ∈ R3 are the estimates of α, β, b; ξ ∈ R3 is the state of the bias observer,
and r ∈ R is a dynamic scaling variable; the (positive) constants lα, lβ , ψ1, k1, k2,
ε, ε1 are tuning gains. Defining the estimation errors as

eα := α̂− α
eβ := β̂ − β
eb := b̂− b,

the error system reads

ėα = eα × ω − (α+ eα)× eb − kα(r, α̂)eα (16)

ėβ = eβ × ω − (β + eβ)× eb − kβ(r, β̂)eβ (17)
ėb = (lαα

2
× + lββ

2
×)eb + lαeα × (α× eb) + lβeβ × (β × eb) (18)

ṙ = −2ψ1(r − 1) + 2
(
lα|α||eα|+ lβ |β||eβ |

)
r; (19)

(18) is obtained thanks to the Jacobi identity a× (b×c)+b× (c×a)+c× (a×b).
The main result is the global exponential convergence of the observer.

Theorem 1. Assume k1, k2, ε, ε1 > 0, ψ1 > ε1, and lα, lβ large enough so
that −(lαα

2
× + lββ

2
×) > (ψ1 + ε)I. Then the equilibrium point (ēα, ēβ , ēb, r̄) :=

(0, 0, 0, 1) of the error system (16)–(19) is uniformly globally exponentially stable.

Remark 1 (see [4,15]). Since α and β are linearly independent, −(lαα
2
×+ lββ

2
×)

is a (symmetric) positive definite matrix when lα, lβ > 0; moreover, sufficiently
large lα, lβ yield −(lαα

2
× + lββ

2
×) > µI whatever the given constant µ.

Proof. First consider the candidate Lyapunov function for the (eα, eβ)-subsystem

V (eα, eβ) :=
1

2
|eα|2 +

1

2
|eβ |2.

Its time derivative satisfies

V̇ = −〈eα, eα × ω〉 − kα|eα|2 − 〈eβ , eβ × ω〉 − kβ |eβ |2

≤ −kα|eα|2 − kβ |eβ |2 +
(√
r|α||eα|

) |eb|√
r

+
(√
r|β||eβ |

) |eb|√
r

≤ −
(
kα −

r|α|2

2ε

)
|eα|2 −

(
kβ −

r|β|2

2ε

)
|eβ |2 +

ε|eb|2

r
;
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where we have used 〈a, a× b〉 = 0 to obtain the first line, and Young’s inequality
ab ≤ a2

2ε + εb2

2 to obtain the second line.
Now, the obvious candidate Lyapunov function Vb(eb) := 1

2 |eb|
2 for the eb-

subsystem satisfies

V̇b = 〈eb, (lαα2
× + lββ

2
×)eb〉+ lα〈eb, eα × (α× eb)〉+ lβ〈eb, eβ × (β × eb)〉

≤ −µ|eb|2 +
(
lα|α||eα|+ lβ |β||eβ |)|eb|2,

where we have used Remark 1. The term
(
lα|α||eα|+ lβ |β||eβ |)|eb|2 happens to

be very difficult to dominate with a classical Lyapunov approach. To overcome
the problem, we use instead the candidate Lyapunov function

Ṽb(eb, r) :=
1

2r
|eb|2,

obtaining by dynamically scaling Vb with r defined by (19). Notice r(t) ≥ 1 for
all positive t as soon as r(0) ≥ 1. We then have

˙̃Vb :=
V̇b
r
− Ṽb

ṙ

r

≤ −µ |eb|
2

r
+
(
lα|α||eα|+ lβ |β||eβ |)

|eb|2

r
− |eb|

2

2r

ṙ

r

= −(µ− ψ1)
|eb|2

r
,

where we have used r−1
r ≤ 1.

We next consider the candidate Lyapunov function for the r-subsystem

Vr(r) :=
1

2
(r − 1)2.

Its time derivative satisfies

V̇r = −2ψ1(r − 1)2 +
√

2(r − 1)
√

2rlα|α||eα|+
√

2(r − 1)
√

2rlβ |β||eβ |

≤ −2(ψ1 − ε1)(r − 1)2 +
r2

ε1

(
l2α|α|2|eα||2 + l2β |β||eβ |2

)
,

where the second line is obtained by Young’s inequality.
Finally, consider the complete Lyapunov function

W (eα, eβ , eb, r) := V (eα, eβ) + Ṽb(eb, r) + Vr(r).

Collecting all the previous findings, its time derivative satisfies

Ẇ ≤ −
(
kα −

r|α|2

2ε

)
|eα|2 −

(
kβ −

r|β|2

2ε

)
|eβ |2 +

ε|eb|2

r

− (µ− ψ1)
|eb|2

r

−2 (ψ1 − ε1)(r − 1)2 +
r2

ε1

(
l2α|α|2|eα|2 + l2β |β||eβ |2

)
= −k1|eα|2 − k2|eβ |2 − (µ− ψ1 − ε)

|eb|2

r
− 2(ψ1 − ε1)(r − 1)2.
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Choosing k1, k2 > 0, ψ1 > ε1, and lα, lβ large enough so that µ > ψ1 + ε
clearly guarantees the uniform global exponential stability of the equilibrium
point (ēα, ēm,

ēb√
r̄
, r̄) := (0, 0, 0, 1), hence of (ēα, ēm, ēb, r̄) := (0, 0, 0, 1). ut

Remark 2. More than two vectors α and β can be used with a direct generaliza-
tion of the proposed structure.

Remark 3. The observer does not use the knowledge of the constant vectors αi
and βi. This may be an interesting feature in some applications when those
vectors for example are not precisely known and/or (slowly) vary.

We then have the following corollary, which gives an estimate of the true
orientation matrix R by using the knowledge of the inertial vectors αi and βi.
Notice it is considerably simpler than the approach of [3], where the estimated
orientation matrix is obtained through an additional observer of dimension 9.

Corollary 1. Under the assumptions of Theorem 1, the matrix R̃ defined by

R̃T :=
(

α̂
|αi|

α̂×β̂
|αi×βi|

α̂×(α̂×β̂)
|αi×(αi×βi)|

)
·RTi

Ri :=
(
αi

|αi|
αi×βi

|αi×βi|
αi×(αi×βi)
|αi×(αi×βi)|

)
uniformly globally exponentially converges to R.

Proof. By Theorem 1, eα(t) ≤ C|eα(0)|e−λt and eβ(t) ≤ C|eβ(0)|e−λt for some
C, λ > 0. Therefore,

|α̂× β̂ − α× β| = |α× eβ + eα × β + eα × eβ |
≤ |α||eβ |+ |β||eα|+ |eα||eβ |
≤ C|αi||eβ(0)|e−λt + C|βi||eα(0)|e−λt + C2|eα(0)||eβ(0)|e−λ2t;

a similar bound is readily obtained for |α̂×(α̂×β̂)−α×(α×β)|. As a consequence,
all the coefficients of the matrix

R̃T −
(

α
|αi|

α×β
|αi×βi|

α×(α×β)
|αi×(αi×βi)|

)
·RTi

globally exponentially converge to 0. The claim follows by noticing(
α
|αi|

α×β
|αi×βi|

α×(α×β)
|αi×(αi×βi)|

)
·RTi =

(
RTαi

|αi|
RTαi×RT βi

|αi×βi|
RTαi×(RTαi×RT βi)
|αi×(αi×βi)|

)
·RTi

= RTRiR
T
i

= RT ,

where we have used RT (u× v) = RTu×RT v since R is a rotation matrix. ut

Of course, R̃T has no reason to be a rotation matrix (it is only asymptotically
so); it is nevertheless the product of a matrix with orthogonal (possibly zero)
columns by a rotation matrix. If a bona fide rotation matrix is required at all
times, a natural idea is to project R̃ onto the “closest” rotation matrix R̂, thanks
to a polar decomposition.
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