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Abstract—In this paper, we propose an up to date
mapping methodology for Graphics Processing Unit
(GPU) architectures. The first objective is to analyse
and transform the application in order to highlight
the minimum parallelism necessary to fit the GPU
characteristics. The second is to optimize the mapping
of the application onto the GPU by taking into account
all its powerful components.
Index Terms—Parallel programming, Parallel

processing, High Performance Computing (HPC),
GPGPU, image processing.

I. Introduction
A lot of work has been done by the compiler community

on GPU mapping over the last decade. This valuable
legacy can be divided in four categories: Domain Specific
Language (DSL), transformation directives, skeletons and
automated transformation compilers.
The DSL approach is a solution which hides complex

architectural constraints behind a high-level specialised
language. This approach implies rewriting the concerned
code in its entirety to map it on GPU. The transformation
directives are annotated directly inside the source code
by using pragmas as for OpenACC [1] or written in a
script file as for CUDA-CHiLL [8]. In a way, this approach
can be considered as an extension from the DSL one by
using a specific language but here in order to characterise
the desired code transformations. Skeletons are regular
code patterns whose implementation has been optimised
for a given architecture. The hardest point with this
approach is to select the best representative pattern for
each part of code involved. Finally, automated transfor-
mation compilers analyse a source code and automatically
apply transformations to it. Concerned parts of code are
eventually mapped on the GPU.
Our objective is to manage sequential algorithm trans-

formations to best fit on today’s GPU with minimal
human involvement. In a consequence, this one belongs to
the automated transformation compilers category. As far
as we know, the main representative solutions are: C-to-
CUDA [4], PPCG [10], R-Stream [7] or PIPS/Par4All [2],
[3].
Our methodology offers the opportunity to consider

the latest GPU architectural refinements such as: Texture
and Surface memory usage, asynchronous communications
or kernel concurrency. It also considers state of the art
optimisations like reducing memory transfers between the
host processor and the accelerator(s) or using on-chip

high-speed memory. Our approach has been evaluated
with NVIDIA GPUs but it can be easily extended to other
GPUs as the AMD’s one.
Our methodology is built on five stages. The first per-

forms static and dynamic program analyses. Data depen-
dencies are identified and the global application is repre-
sented by an Abstract Syntaxic Tree (AST) using interpro-
cedural analysis. The second stage performs code and loop
transformations to improve the code affinity with the GPU
architectural constraints. Appropriate application criteria
for the transformations have been defined. The third stage
is kernel optimisation. GPU kernels are modified by tuning
loop granularity to improve runtime performance. The
fourth stage applies some code specialisations by using the
GPU specific refinements described above. Finally, in the
fifth stage, GPU codes are generated for the host processor
and the accelerator(s).
We evaluated this methodology on an industrial ap-

plication case. In this way, the simpleflow algorithm [9]
has been used to evaluate the quality of the mapping
generated by our methodology. This algorithm is available
in the contribution repository of the well-known image
processing library, OpenCV. A global speed-up of 13 is
obtained during the second step by mapping the sequential
program from an ARM Cortex A57 quad-cores Central
Processing Unit (CPU) to an Nvidia Maxwell GM20B 256
cores GPU architecture.

II. Mapping methodology

The global mapping methodology is illustrated in fig-
ure 1. Five main steps are represented to efficiently map a
sequential algorithm on heterogeneous architecture com-
posed of a main CPU processor1 and one or many GPUs.
Firstly, the original source code is analysed by using static
and dynamic approaches. This point is developped in
section II-A. Secondly, loop nests identified during the
previous step are categorised in section II-B by separating
GPU compatible ones from those which will remain on
CPU. The next step concerns mapping optimisations.
Because this step remains optional in the methodology,
its details are omitted here. The fourth step considers
architecture specialisations in the dedicated section III.
Finally, the methodology comes to an end in section II-C
with the code generation process.

1Usually called the host processor
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Figure 1. Global GPU mapping methodology

A. Code analyses

The code analysis in our methodology is composed of
two parallel analyses. On one hand, the static code analysis
is used to extract the code specifications. On the other
hand, a dynamic code analysis is used to extract algorithm
metrics.
The static code analysis illustrated in figure 2, starts

with the detection of four elements inside the source
code: loops, function calls, array accesses and branches.
All remaining parts of code not concerned by the pre-
vious elements are considered as basic blocks. The loops
represent a potential source of parallelism and might be
mapped on GPU by using internal schedulers. Due to
the interprocedural approach of our methodology, function
calls are tracked inside the original code. Moreover, the
mono-procedural operation of GPU kernels requires to
remove all nested function calls. Array accesses represent
possible space memory communications and are consid-
ered as potential source of data parallelism. Finally, the
branches can have a major impact on dependencies and
so in parallelism. Moreover, at the finest grain paral-
lelism, branches can lead to a degradation of streaming
multiprocessor performances, explained by their vectorial
conception. That is why we pay particular attention to
branches.
After this first collecting step, we use the dependance

analysis to determine loop parallelism. In this way, flow
dependences, anti-dependances, output and input depen-
dences are computed for scalar and array type variables.
Scalar privatization will be applied on parallel loops. Array
elements are addressed by analysing the image of the loop
iteration domains under the array access functions and the
convex array regions [5].
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Figure 2. Static code analysis phase

During the loop mining step, loops are finally cate-
gorised. The ones concerned by embedded dependencies
are considered sequential and the others parallel.

At the end of this static analysis, we have all the re-
quired elements to generate an intermediate representation
of the original code. Our intermediate representation is
based on an AST coupled with a dataflow representation.

The dynamic code analysis from figure 3 is used to
determine runtime metrics. Here, we consider the global
application runtime, loop and function runtimes. Those
metrics are used later in the methodology to validate the
loop nest mappings on GPU. Loop runtimes are used to
validate GPU kernels while function runtimes are used to
validate communications between the CPU and the GPU.
The global application runtime is used to appreciate the
whole GPU mappings speedup. By using these metrics,
we prevent any accidental devaluation of the application
runtime.

B. Loop mapping methodology
During the previous static code analysis, we have distin-

guished parallel loops from sequential ones. Now, we need
to identify loop nests that match with GPU architecture
constraints. This verification task is done by the GPU
loop identification process. It is composed of three
criteria visible in figure 5. Each loop nest compatible with
those three criteria can be mapped on GPU.
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Figure 3. Dynamic code analysis phase

The loop nest pattern is the first of these criteria. It
verifies the shape of each loop nest and extracts the GPU
compatible parts as described for Nvidia architectures
in figure 4. Up to six nested loops can be managed by
the GPU. These nested loops have to be divided in two
sets of three loops maximum each corresponding to block
loops and thread loops. The former has the specificity
to be imperatively parallel but the latter can embed a
dependance and thereby be sequential or parallel. This seg-
mentation is relative to the two–level computing hierarchy
of the GPUs which is made up of cuda cores encapsulated
in streaming multiprocessors. In consequence, the block
loops will be mapped on streaming multiprocessors and
the thread ones on cuda cores. The block loops mapping
criterion is described in the formula 1 and the thread loops
in formula 2.

bn ⇒ ∃n ∈ N, 0 < n 6 3 (1)

tp ⇒ ∃p ∈ N, 0 6 p 6 3 (2)

The loop nest iteration size is the second criterion.
GPUs can generate a limited amount of iterations for
each mapped loop. In consequence, the purpose of this
criterion is to make sure that the potential GPU loop
iterations remain lower than the architectural limitations.
An example for Nvidia architecture is given in the for-
mula 3. All the parameters are strict constraints except for
the ones written in orange which correspond to mapping

←
outter

←
loops

inner →
loops→

b0 : //

b1 : //

b2 : //

t0 : //or ↓

t1 : //or ↓

t2 : //or ↓

blocks

blocks

threads

threads

Figure 4. Criterion 1: GPU loop nest pattern

optimisation parameters.


b = b0 × b1 × b2

b0 < 2147483647
b1 < 65535
b2 < 65535
b � t



t = t0 × t1 × t2
t < 1024

t0 < 1024
t1 < 1024
t2 < 64

t%32 = 0
t > 4× 32

(3)
The loop nest memory size is the latest of these

criteria. The memory footprint of the selected loop nest
is computed by using the memory accesses and the loop
iterations. Both of them have been determined during the
static or dynamic analysis phase. If the memory footprint
is bigger than the available GPU global memory, the loop
nest could not be mapped on GPU. This criterion is
described in the formula 4.

Global memoryfootprint < GPUmemory (4)

The loop transformation process is an important
part of the mapping methodology. Previously described
criteria represent strict constraints. In consequence some
loop nests are rejected whereas they could become GPU
candidates after some legal code transformations driven
by the dependance analysis. So, we have selected a set of
loop transformations to be applied in order to increase the
quantity of potential loop mapping on GPU. This set is
summarized on the right side of the figure 5. Ticked loop
transformation patterns match the ones improving GPU
mapping for the corresponding criterion.
For the loop pattern criterion, loop fusion and fission

are used to transform imperfect nested loops to perfect
ones as represented in the figure 2. In other words, they
transform loop nest composed of multiple loops with same
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depth to one2 or many loop nests3 with a single loop per
depth level. The rest of the perfecting loop nest work
is done later in the methodology during the inter loops
block motion phase. The loop coalescing and tiling have an
impact on the depth of the loop nest. The former increases
the number of loops mapped on GPU by compacting the
loop nest depth. The latter has an opposite effect. These
two transformations also have an impact on the number of
iterations for concerned loops. In consequence, they have
to be used in correlation with the loop size criterion. The
parallel loop reduction and the tiling can transform some
sequential loops into parallel ones by reordering embedded
dependances. Finally, the loop inter change also called loop
swapping modifies loop positions inside the loop nest. This
last transformation is particularly useful to shift sequential
loops inside thread loops or outside the GPU mapped
loops.
Concerning the loop size criterion, loop tiling, strip

mining, and splitting commonly modify the quantity of
loop iterations. This quantity has to be lowered to fit in
criteria established in the formula 3.
Finally, thememory size criterion is managed by using

loop fission, tiling or strip mining. They all can have an
impact on reducing the memory footprint.

C. Code generation
Code generation steps are represented in the figure 6.

The inter GPU loops block motion transforms each
imperfect nested loop in a perfect one. This process is
complementary to the loop fusion/fission transformations
presented in the previous section. Here, the purpose of this
task is to move remaining blocks of code located between
the consecutive GPU qualified loops.
Next, a space iteration densification is used. GPU

generates thread and block identifiers starting from zero to
n with an unit stride. In consequence, unnormalized loops
have to be transformed to fit with GPU iterations.

Because Cuda kernel cannot invoke function calls except
for dynamic parallelism, function inlining is used to
generate a mono–procedural GPU function.

Then, kernel function outlining is applied on GPU
loop nests to generate kernel function headers and neces-
sary communication between host and accelerator.

The final step of the methodology is about code gen-
eration. During this process, the intermediate represen-
tation of GPU loop nests is transformed in Cuda source
code. Moreover, communication instructions between the
host and the accelerator are generated on the host side
at the same time. Finally, rejected loops are maintained
on CPU. In consequence, the corresponding source code
remains unchanged.

III. Specialisation methodology
This section focuses on the memory specialisation

branch of the methodology. It only concerns the left part of
2In case of loop fusion
3In case of loop fission

the figure 7. The two other parts concern the concurrency
specialisation and the communication specialisation. In
the first, we consider multi-GPUs mapping as well as the
usage of the height cuda instructions pipelines running in
concurrency on Nvidia architectures. In the second, we
identify and generate communications between the host
processor and the accelerator. Moreover, a communication
optimisation step has been added to remove redundant
communications between kernels. Finally the communica-
tion placement can manage synchonous and asynchronous
memory communications.
The GPU architecture is a multi–level memory space.

This conception almost explains4 the faster memory
throughput of GPUs. The memory hierarchy is composed
of a global memory available for all threads and a local
memory. This latter is in reality part of the global mem-
ory except that it has the same lifetime as its referring
threads. Local and global memories are the slowest inside
the GPU. This hierarchy is mono–dimensional. That is
why we have added an array access linearisation step
in the methodology. On the opposite, registers are the
fastest memory as for most of architectures. In return, the
register space is small and limited for each multi-processor.
Last, the register lifetime is marked out by its referring
thread existence. Between them are the texture and surface
memories , the constant memory and the shared memory
addressed in the respective sections III-A, III-B and III-C.

A. Texture/Surface memory usage
Texture and surface memories are part of the global

memory and in consequence inherit all its characteristics.
However, they use a dedicated texture cache optimized for
data locality in the case of two dimensional array accesses.
Moreover, hardware elements for those memories are dedi-
cated to manage image boundaries and linear interpolation
for adjacent elements in the array. These functionalities
are particularly useful for image processing applications
and more specifically for convolution applications.
The distinction between texture and surface memories

usage is guided by the array region analysis [5]. In the case
where all accesses are read type, the texture memory could
be used. On the contrary, if they are some write accesses
on the array, the surface memory has to be used.
Finally, to determine if the texture and surface memory

usage could lead to a speedup is not trivial. In concrete
terms, we have to recognize an interpolation access form,
a memory boundary management pattern or a two di-
mensional locality access. Analysing image of the loop
iteration domains under the array access functions is the
key element.

B. Constant memory usage
As for texture and surface memories, constant memory

is also part of the global memory. Again, it uses a spe-
cialized constant cache. But this one does not consider

4Memory coalescing inside blocks is another main reason
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any cache coherency. This behaviour can be explained
by the usage of read-only memory space. So, the array
accesses analysis is used here to determine the kind of

memory accesses. If all accesses are read type, the con-
stant memory could be used. However, the size of the
constant memory is globally very limited. In consequence
the memory footprint criterion will be used additionally
on the corresponding loops to determine if the usage of
this memory is possible. Last, lifetime of this memory is
correlated to the GPU context existence.

C. Shared memory usage
The shared memory is located inside each multi-

processor. It has the same lifetime as its referring block of
threads. In consequence, this memory can be shared by all
the threads included inside the same block. The usefulness
of the shared memory utilisation is defined by using jointly
on the thread loops, the array access and the loop iteration
analyses along with the computed dependances. If the
array accesses and the loop thread iterations reveal any
array element reuse, the shared memory usage presents an
assured advantage on the loop runtime. If the computed
dependences show embedded dependencies linked to the
array accesses, the shared memory can be legally used by
employing Cuda synchronisation instructions.
Shared memory presents throughput performances close

to register ones. But as for the latter, this memory suffers
from a very limited size. Again, the memory footprint
criterion is used here to demonstrate the usage feasibility.

IV. Results
As a bench case, we have applied this methodology on

the simpleflow algorithm [9]. We have used a Nvidia Tegra
X1 platform which is an embedded GPU architecture, to
establish the benchmarks.
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Runtime benchmarks are compiled in a circular dia-
gram. The execution time progresses in anti–clockwise.
Grey parts of the diagram are runtimes of functions, blue
ones of CPU mapped loop nests and green ones of GPU
mapped loop nests. Algorithm depth is numbered from
zero to five: zero being the root function and five the
innermost function or loop nest.
Runtimes of the original algorithm are represented in

the figure 8. This algorithm is a sequential one which
uses a single core of the four available on the ARM CPU.
In the figure 9 we can observe the impact on runtimes
after having applied the presented parts of our mapping
methodology on the original algorithm. As a result, the
global application is affected by a speedup of thirteen.
Moreover, we can notice that most of the loops have been
mapped on GPU.

V. Further work
The methodology covered in this article refers to a

loop mapping methodology added by an architectural
specialisation phase. The mapping optimisation part is

addressed in detailed in the report [6]. This one increases
the speedup presented in this article. We are currently
working on an innovative dynamic approach to improve
the initial mapping on GPU. This work would come out
as a better usage of GPU architecture capacities.

Finally incorporating our methodology in an automated
transformation compiler will be the ultimate step.

VI. Conclusion

We have described in this article some of the most
important parts of our GPU mapping methodology. The
loop mapping methodology part enables to map a sequen-
tial algorithm on GPU whereas the specialisation part
improves the usage of the GPU architecture capacities.
In its current state, our methdology achieves an average
speedup of thirteen on a complex image processing bench
application. This speedup has been obtained by using a
Nvidia Jetson TX1 which is a low power integrated CPU
and GPU platform.
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