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ABSTRACT
In boundary element method (BEM), one encounters linear system with a dense and non-symmetric 
square matrix which might be so large that inverting the linear system is too prohibitive in terms of cpu 
time and/or memory. Each usual powerful treatment (Fast Multipole Method, H-matrices) developed to 
deal with this issue is optimized to efficiently perform matrix vector products. This work presents a new 
technique to adequately and quickly handle such products: the Sparse Cardinal Sine Decomposition. 
This approach, recently pioneered for the Laplace and Helmholtz equations, rests on the decomposition 
of each encountered kernel as series of radial Cardinal Sine functions. Here, we achieve this decompo-
sition for the Stokes problem and implement it in MyBEM, a new fast solver for multi-physical BEM. 
The reported computational examples permit us to compare the advocated method against a usual BEM 
in terms of both accuracy and convergence.
Keywords: boundary element method, fast convolution, Stokes equations.

1  INTRODUCTION
We consider a flow around a body Ω of a Newtonian and unbounded liquid with uniform 
viscosity μ. Adopting henceforth the usual tensor summation notation, the Newtonian liquid 
has pressure p, velocity u = uiei and stress tensor σ = σijei ƒ ej such that, in the entire liquid 
domain D = 3 \ Ω,
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with δ the usual Kronecker delta. Neglecting inertial effects, the creeping flow (u, p) satisfies 
the following Stokes equations and far-field behavior

	 m∆ = ∇ =u up D and div( )  in 0 ,	 (2)

	 ( , ) ( , )u 0p → 0  far from Ω	 (3)

One has to supplement eqns (2) and (3) with conditions on the smooth surface ∂Ω having 
unit normal n directed into the liquid. Those conditions depend on the nature of ∂Ω: no-slip 
or slipping solid surface, flexible surface,...

Each component uj = u.ej admits [1] in D a key integral representation involving the 
Oseen velocity tensor G = Gij (X)ei ƒ ej and stress tensor T = Tijk(X)ei ƒ ej ƒ ek defined, for 
X = Xiei ≠ 0, as

	 G X X T X X Xij i j i j ijk i j k( ) / | | / | | , ( ) / | |X X X X X= + = −d 3 56 	 (4)
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Noting dS = dS(y), a possible regularized form of this representation is
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Inspecting eqn (5) shows that when looking at u in the entire liquid domain D it is sufficient 
to gain on the body boundary ∂Ω the velocity u and the surface traction σ.n. In practice, those 
two key surface quantities are obtained by injecting the boundary conditions prescribed on 
∂Ω either in eqn (5) for x on ∂Ω or in the following equivalent relation
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where the superscript PV indicates the principal value of the integral.
In practice, the discretization of eqn (5) on ∂Ω or eqn (6) is done by a collocation or 

Galerkin BEM (boundary element method) which approximates ∂Ω with boundary elements. 
On those elements one locates N nodal points at which three Cartesian components amongst 
ui and ei.s.n are unknown. Denoting by Nd = 3N, the number of degrees of freedom, one 
arrives at a linear system A.v = b with Nd–unknown vector v and dense and non-symmetric 
square Nd × Nd matrix A. For Nd typically less than 10000 one can use a LU factorization. 
For Nd larger one resorts to a generalized minimal iterative residual method (such as GMRS), 
which reduces the task to the evaluation of products A.q for many vectors q. This can be 
efficiently done by storing only a relevant approximation of A by so-called Fast Multipole 
Method [2, 3] or H-matrices approach [4, 5]. Employing those methods each matrix-vector 
product A.q is approximated in only O(Nd log Nd) operations.

Recently, a new accelerating technique has been proposed in Alouges and Aussal [6] for 
the boundary-integral equations encountered in potential and Helmholtz problems. This 
method appeals to a suitable sparse integration grid in the Fourier space, and a back and forth 
non-uniform Fast Fourier transform [7, 8]. This work extends the procedure to the boundary-
integral eqn (6) obtained for the Stokes problem and investigates its abilities in terms of both 
error and cpu time.

2  THE SPARSE CARDINAL SINE DECOMPOSITION (SCSD)

2.1  Principle for a radial kernel

For the cardinal sine function sinc defined by sinc(t) = sin(t)/t, we look at evaluating the con-
volution operator g with radial kernel sinc defined as

	 g r f dS r( ) sin ( ) ( ) , | |x y y x= = −
∂Ω∫ c 	 (7)

This can be done calculating the usual three-dimensional Fourier transform F(g) of g and 
then operating the inverse Fourier transform with

	 g e F( )
( )
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Actually, noticing that F(sinc) = 2π2δS2, with δS2 the Dirac mass on the unit sphere S2 of 3, 
it turns out that F(g) is a radial function given by F(g)(ξ) = 2π2F(f)(ξ)δS2(x) where ξ = |ξ|. 
Accordingly, eqn (8) becomes
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In eqn (9), the integration over S2 (or ∂Ω) is evaluated by a numerical quadrature with Nξ 
(or Ny) points ξl (or ym) with associated weight wl

xx (or wm
y). Thus, at point xk on ∂Ω one finally 

gets the approximation
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Once f has been computed at points (ym)m of ∂Ω, we then successively calculate the following 
discrete Fourier and inverse Fourier transforms

	 	 (11)

a task which is efficiently achieved using the non-uniform FFT of type 3 [8]. Accordingly, the 
algorithm global complexity to evaluate g(xk) is O((Nξ + Ny) log(Nξ + Ny)).

As shown in Alouges and Aussal [6], it is possible to extend the procedure to the approxi-
mation of the convolution integral

	 g K f SK ( ) (| |) ( )d ,x X y X y x= = −
∂Ω∫ 	 (12)

when the kernel K admits a sparse cardinal sine decomposition of the form

	 K r r rp p
p

P

( ) ~ sin ( ) forb c λ    large enough.
=

∑
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	 (13)

The selected accuracy level of the approximation (9) dictates the values of P and coefficients 
βp and λp. In addition, it is also possible to get

	 sin ( | |) ~ exp( ) for | | large enoughc λ p X X XW ipl pl
l
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⋅
=
∑ xx

1

	 (14)

with points ξpl on S2 and relevant weights Wpl. More precisely, using eqns (13) and (14) one 
can actually obtain |K(|X|) — Ka(|X|)| ≤ ε with ε a prescribed small tolerance and |X| in the 
range [Rmin, Rmax]. The approximating kernel Ka is readily defined as

	 K W ia p pl
l

N
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==
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xx 	 (15)

The trick then consists in using the decomposition

	 g K K f dS K f dSa aK ( ) [ (| |) (| |)] ( ) (| |) ( ) .x X X y X y= − +
∂Ω∂Ω ∫∫ 	 (16)
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In getting the operator gK, the first integral in eqn (16) is calculated by only keeping into 
account the part of ∂Ω for which |X| ≤ Rmin (local interactions which then add to the discre-
tized operator gK a sparse matrix contribution), whereas the second integral is calculated over 
the entire surface ∂Ω using eqn (15) and the definition X = y – x. Consequently, the convo-
lution operator gK obeys the same algorithm as the previous one for K = sinc except for the 
Fourier grid on S2 which resorts to more points ξpl.

For a given tolerance ε the associated values of P, λp, βp, Wpl, ξpl and (Rmin, Rmax) have been 
obtained in Alouges and Aussal [6] for the Laplace kernel K(r) = 1/(4πr) and the Helmholtz 
kernel K(r) = exp(ikr)/(4πr).

2.2  Application to Stokes kernels

Unfortunately, the Stokes kernels G and T, with Cartesian components defined by eqns (4), 
are clearly not radial ones. In a first attempt recently proposed in Alouges et al. [9] to gene-
ralize the approach to those kernels too many computations are still needed and this results 
in a pretty slow algorithm. Therefore, we propose and test in this paper another formulation 
which was found to improve the performances of the underlying algorithm.

Denoting by Id = ej ⊗ ej the identity tensor, we write G = G1 + G2 with the following 
definitions
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Actually, the above decomposition presents two basic merits:
(i) First, G1 is a radial kernel for which we apply the technique described in Alouges and 

Aussal [6]. This provides us with a set of integration weights and points ( , ),w j j j N
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which is valid1 for all x such that |x| is in the range [Rmin, Rmax].
(ii) Second, the kernel G2 is the Hessian matrix of the radial function g2: X X→ − | |. 

Achieving the SCSD of g2 leads to a new quadrature ( , ),w j j j N
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Differentiating eqn (19) twice immediately yields the approximation
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The eqns (18) and (20) finally permit us to apply the method.
In a similar fashion, for the Cartesian components of the Green stress tensor T we use this 

time the identity
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1 The choice of Rmin and Rmax is explained in Alouges et al. [6].
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At that stage, the third derivative of |x| is computed as before (see how to deduce eqn (20) 
for eqn (19)) while the other terms are essentially coordinates of the gradient of |x|-1 (use this 
time eqn (18)). As before, all those terms are computed using the SCSD.

3  NUMERICAL VALIDATION
Henceforth, we benchmark the proposed strategy for a solid ellipsoid with surface ∂Ω defined 
by
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As illustrated in Fig. 1, the surface ∂Ω is approximated as ∂Ωh using flat P1 triangular bound-
ary elements with typical size h which is the average length of the sides of the boundary 
elements. The normal to ∂Ωh is approximated by the normal to the surface ∂Ωh on which we 
put N nodes (recall that Nd = 3N). The computations are run for a Galerkin approach using 
a GMRS iterative solver and a parallel Matlab code. For each test, the SCSD method con-
vergence error (versus h) and CPU time (versus N) are compared against the ones obtained 
by a full BEM method and termed BEM. Computations are run for N between 200 and 5000 
for BEM and for N between 200 and 50000 for SCSD. Moreover, different accuracy level 
(tolerance) ε for the SCSD are taken while the prescribed residual for the GMRS solver is 
taken to be in getting the operator ε.

3.1  The stresslet

We first test the stresslet contribution, i.e. the second integral appearing in eqn (6). This is 
done taking on ∂Ω a rotation with velocity w = e1 ˄ x = wiei. Hence, we introduce on ∂Ω the 
vector field Q = Qjej by

	 Q n T dSj i k

PV

ijk( ) [ ]( ) ( ) .x y y x= −
∂Ω∫

1

8p
w 	 (23)

From Pozrikidis [1] one has the analytical result

	 Q x w x x( ) = − ∂Ω( )/2 for  on 	 (24)

and we accordingly define the error Err as the following quantity

	 Err dS= +
∂Ω∫[ | ( ) ( ) | ] .Q x w x / /2 2 1 2 	 (25)

The computations give Err = O(ε) for SCSD and Err ∼ 10–14 for BEM. Moreover, as shown 
in Fig. 1, the cpu time CPU behaves as N2 for BEM and as N log (N) for SCSD.

3.2  The Stokeslet

We now test a term similar to the last integral occurring in eqn (6). To do so, we this time 
define on ∂Ω the vector field Q by

	 Q G n dSj ij i( ) ( ) ( ) .x y x y x= − ∂Ω
∂Ω∫  for  on 	 (26)
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As it is well known [1], one has in theory Q(x) = 0 whatever x located on the boundary ∂Ω. 
Thus, we now define the error Err as

	 Err dS=
∂Ω∫[ | ( ) | ] .Q x 2 1 2/ 	 (27)

Both Err and the CPU time are plotted in Fig. 2. Note that Err = O(h2) for BEM while, not 
surprisingly, Err = O(ε) for SCSD. As ε decreases from ε = 10–2 to ε = 10–4 the SCSD con-
verges to BEM. As regard the CPU time, is appears that BEM and SCSD behave as N2 and 
N log(N), respectively.

Figure 1: �Surface mesh ∂Ωh for the ellipsoid. CPU time versus N for the Stresslet test: BEM 
(×) and SCSD for ε = 10–3() or ε = 10–4(o). Functions N log(N) (dashed line) and 
N2 (solid line) are also plotted.

Figure 2: �Error and CPU for the Stokeslet test. BEM (+) and SCSD for ε = 10–2(◊), ε = 10–3() 
and ε = 10–4(o). Functions N log(N) (dashed line) and either h2 or N2 (solid lines) 
are also plotted.
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3.3  Integral representation

We test the whole relation (6) for the Stokes flow (u0, p0), obeying eqns (2) and (3) and thus 
also eqn (6), produced by a force point with unit strength e1 located inside the ellipsoid at 
point x0 = (1, 2, 0.5). Clearly, for this flow and associated stress tensor σ0 we have

	 u
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j
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j

jk k

0 0
1 0

0
1 0

8 8, ( )
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The error Err is the L2(∂Ω) norm between u0 and its integral representation given by eqn 
(6). Both the computed error Err and cpu time CPU are plotted in Fig. 3. It appears that 
Err = O(h) for BEM and SCSD with tolerance ε = 10–4. In addition, the cpu time is order N2 
or N log(N) for BEM or SCSD, respectively.

Figure 3: �Error and CPU for the integral representation. BEM (+) and SCSD for ε = 10–2(◊), 
ε = 10–3() and ε = 10–4(ο). Functions N log(N) (dashed line) and N (solid line for 
error) or N2 (solid line for CPU) are also plotted.

Figure 4: �Error and CPU for the Dirichlet to Neumann problem. BEM with ε = 10–3(+) or 
ε = 10–4(×) and SCSD for ε = 10–3(D) and ε = 10-4(o). Functions N log(N) (dashed 
line) and N (solid line for error) or N2 (solid line for CPU) are also plotted.
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3.4  The Dirichlet to Neumann problem

Finally, this last test concerns the Dirichlet to Neumann problem, i.e. we provide the velocity 
u0 on the ellipsoid boundary ∂Ω and compute the resulting traction (s0⋅ n)num there from the 
boundary-integral eqn (6). This traction [1] is defined up to a constant multiple of n. Denot-
ing by (s0⋅ n)num the computed traction, we first calculate the constant λ which minimizes the 
L2(∂Ω) norm of s0⋅ n – (s0 ⋅ n)num – ln. Then, the numerical error Err is defined as

	 Err dSnum= ⋅ − ⋅ −{ }∂Ω∫ | ( ) ( ) | .ss ss0 0
2

1 2

n n nl
/

	 (29)

The resulting Err and cpu time CPU, given in Fig. 4, exhibit the same trends as the ones 
observed for the previous integral representation test.

4  CONCLUSION
A new sparse cardinal sine decomposition for 3D Stokes flow has been proposed, imple-
mented and also compared, both in terms of accuracy and cpu time, against a classical BEM 
solver. It is different from and more efficient than the one recently proposed and tested in 
Alouges et al. [9]. We aim in future at implementing this technique also to the regularized 
boundary-integral eqn (5).
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