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Abstract. Downward-facing shadow cameras might play a major role in future energy meteorology. Shadow
cameras directly image shadows on the ground from an elevated position. They are used to validate other sys-
tems (e.g. all-sky imager based nowcasting systems, cloud speed sensors or satellite forecasts) and can potentially
provide short term forecasts for solar power plants. Such forecasts are needed for electricity grids with high pen-
etrations of renewable energy and can help to optimize plant operations. In this publication, two key applications

of shadow cameras are briefly presented.

1 Introduction

The variable nature of the solar resource challenges the sta-
bility of electricity grids with high solar penetrations. Be-
sides storage, irradiance forecasts are means to cope with
these fluctuations and the combination of both technologies
will most likely ensure future grid stability. Intra-hour vari-
ations of the solar resource are mainly caused by transient
clouds. Due to limitations of spatial and temporal resolu-
tions, shading events on industrial solar power plants are
hard to predict using satellite based forecasts. Very short term
forecasts, e.g. for the next 15 min, can be provided by cam-
era based nowcasting systems (Chow et al., 2011; Kuhn et
al., 2017b).

To the best of our knowledge, all camera based nowcast-
ing systems so far are based on upward-facing all-sky im-
agers, taking images of the sky above the camera. In these
all-sky images, clouds are detected. From a series of im-
ages from multiple all-sky imagers, several attributes (cloud
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height, cloud speed, cloud movement direction, cloud trans-
mittance, cloud dynamics, etc.) are assigned to the clouds
(see e.g. Chow et al., 2011; Yang et al., 2014). With these
attributes and considering a ground model, shadows are pro-
jected and spatially resolved irradiance maps are generated
(see e.g. Nouri et al., 2017).

In this paper, a novel approach for camera based now-
casting systems is presented. This approach is based on
downward-facing cameras (‘“‘shadow cameras”) that take im-
ages of the ground from an elevated position. In these images,
the brightness of the ground as influenced by cloud shadows
can be seen and converted to cloud shadow and irradiance
maps (Kuhn et al., 2017a). Furthermore, the application of
a shadow camera system for the validation of all-sky imager
based nowcasting systems is discussed.

/102 ABojorewn pue ABojoloalay paliddy Joj 8duaisjuon) ueadoing :Bunes|y [enuuy SINT YiLL



12 P. Kuhn et al.: Applications of a shadow camera system for energy meteorology

Radiometers |
1000 DNI-Map Irradiance [ W m2] 1000 ShadowMap
. -
e e R 5
g £
s 500 800 & 500 ’, o] Probably cloud
c " c
ﬁ ‘. 500 ﬁ bR
§ 0 -y y g 0 L - NaN
2, 2, - 4
> 400 *»
= £
c -500 c -500 — Thin cloud Sunny +
> . 200 > . Shaded
-1000 0 -1000 Thick cloud Reference
-500 0 500 1000 -500 0 500 1000
x inm [west to east] x inm [west to east] Image

Figure 1. Working principle of the shadow camera system. Downward-facing cameras are used to generate spatially resolved irradiance

(DNI, GHI, GTI) maps.
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Figure 2. Absolute and relative mean absolute error of the WobaS-4cam system for GHI and DNI for various lead times and field sizes.

2 The shadow camera system

2.1 Working principle and methodology

At the Plataforma Solar de Almeria, a novel shadow cam-
era system is installed. Figure 1 visualizes the working prin-
ciple of the shadow camera system: The system uses the
inputs of six downward facing cameras placed on an 87 m
high tower (CIEMAT CESA-I, Fig. 1, top left). The cam-
eras take images of the ground every 15s, which are then
combined into an undistorted orthoimage (Fig. 1, top mid-
dle and right). The orthoimages have a spatial resolution of
5m x 5m and image an area of 4km?. By comparing the
current orthoimage with two reference orthoimages, taken
when no shadow fell on the imaged area (“sunny reference’)
and taken when the whole area was shaded (“shaded refer-
ence”), shadows are segmented. For unshaded areas in the
current orthoimage, clear sky irradiance values are taken as
modelled from ground measurements. The irradiances (DNI
— Direct Normal Irradiance, GHI — Global Horizontal Irradi-
ance, GTI - Global Tilted Irradiance) for the shaded areas are
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derived from pixel intensities of the current orthoimage rela-
tive to normalized pixel intensities of the reference orthoim-
ages. The shadow camera system is presented and validated
in Kuhn et al. (2017a). Comparing pixels of the irradiance
maps to corresponding ground measurements for one-minute
temporal averages, the shadow camera system shows devia-
tions of RMSE (DNI) between 4.2 and 16.7 % and RMSE
(GHI) deviations below 10 %.

2.2 Studying spatial aggregation effects on nowcasted
irradiance maps

Using the spatially resolved irradiance maps provided by the
shadow camera system, nowcasted irradiance maps gener-
ated by all-sky imager based nowcasting systems can be val-
idated with special focus on spatial aggregation effects. Fig-
ure 2 depicts the mean absolute error (MAE) for GHI and
DNI of the WobaS-4cam nowcasting system. The WobaS-
4cam system uses the inputs of four all-sky imagers and is
described in (Nouri et al., 2017). The irradiance maps pro-
duced by WobaS-4cam for lead times between 0 and 15 min

www.adv-sci-res.net/15/11/2018/
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Figure 3. Case study of a potential shadow camera based nowcasting system for the Andasol solar power plants in Spain. (a) Red lines mark
10km distances around the plants’ centre. (Google Earth) (b) Geometry and distances. The cameras’ hypothetical position (37°7/27.15" N,

3°15'6.72" W) is marked with a star.

are compared to the reference irradiance maps of the shadow
camera system for field sizes between S m x 5 m (one pixel)
and 4 km?. Unsurprisingly, longer lead times lead to larger
deviations (Kuhn et al., 2017c). However, these deviations
shrink significantly if spatial aggregation effects are consid-
ered. Industrial photovoltaic (PV) plants cover areas of sev-
eral km? and the single most important parameter to predict
is the average irradiance over the whole plant. Thus, these
spatial aggregation effects are inherently present and play a
major role for the validation of nowcasting systems (Kuhn et
al., 2017d).

2.3 Case study of a potential shadow camera based
nowcasting system

As shown in Sect. 2.1, shadow camera systems generate
highly spatially resolved shadow and irradiance maps. By
tracking cloud shadows, e.g. with the differential approach
introduced in Kuhn et al. (2017, f), future shadow positions
can be estimated. The shadow camera system used for the
validation presented in the previous section is located on an
87 m high tower and can thus only image a relatively small
area of 4km?. In this section, the potential application of
such a system for the Andasol solar power plants (Andasol 1—
3, 50 MW, each) is discussed.

If nowcasts with lead times up to 10 min are required and
if cloud speeds up to 60kmh~! (16.7ms™') are consid-
ered, the required imaged area around the plants must be
at least 10km in every direction. A maximum considered
speed of 16.7 ms™! is reasonable as the mean cloud speed in
this region is 7.36 ms~! and the median speed is 6.67 ms™!
(Kuhn et al., 2017e). Under otherwise unchanged conditions,
greater lead times can be achieved by using more and dis-
tributed cameras.

In Fig. 3, the topographical situation for the Andasol plants
is outlined: Two shadow cameras could potentially be lo-
cated on a mountain approximately 20 km away from and
2 km above the plants. The maximum required range of vi-
sion is thus 30 km, which is realistic in this region (Hanrieder
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et al., 2015). We consider using 6 MegaPixel cameras with
a viewing angle of 30°. This results in an area element of
8m x 17 m for the pixel the farthest away. If higher spatial
resolutions are needed, cameras with higher resolutions or
more cameras with a smaller field of view could be used.

3 Conclusion

In this publication, a short overview of the applications of
shadow cameras is given. Shadow cameras provide refer-
ences for all-sky imager based nowcasting systems, helping
to understand spatial aggregation effects inherently present in
industrial PV plants. Moreover, a case study of a hypothetical
shadow camera based nowcasting system for the three Anda-
sol solar power plants is performed, revealing very promising
potentials.
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