

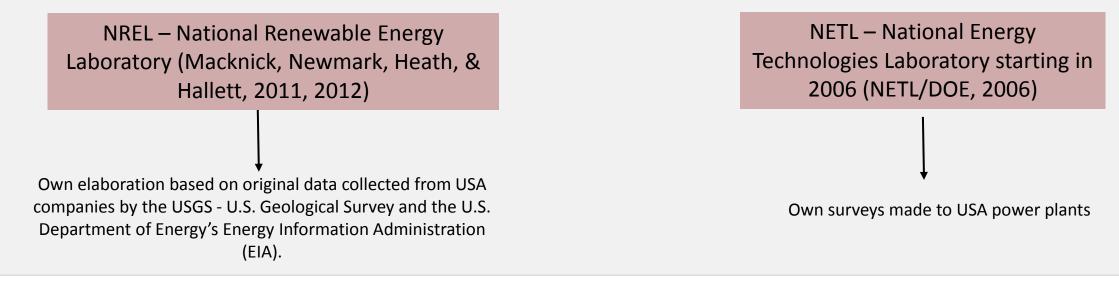
ENHANCEMENT OF THE ETSAP E-TECH DATABASE WITH WATER CONSUMPTION AND WITHDRAWAL DATA

Sofia Simoes, Matthew Halstead, Bob van der Zwaan, Sandrine Selosse, Edi Assoumou

ETSAP WORKSHOP ON MODELLING THE WATER ENERGY NEXUS

Zurich, 14.12.2017

OVERVIEW OF THE PROJECT


- > The ETSAP energy technology repository (ETechDS) had no information on the technologies' water consumption and withdrawal
- Objective: enhancing the ETechsDS with water consumption and withdrawal factors for different electricity generation technologies
- > Duration: June 2016 until March 2017
- > Deliverables:
 - Repository of water consumption and withdrawal data for electricity generation technologies (including characterisation by cooling technology)
 - > Report on methodology and data sources
 - > Updated ETechDS data sheets

LITERATURE REVIEW AND INFORMATION SOURCES

Scientific publications, technical and sustainability reports for several electricity companies

(including European based companies and sources, since most existing published studies refer to data from the USA)

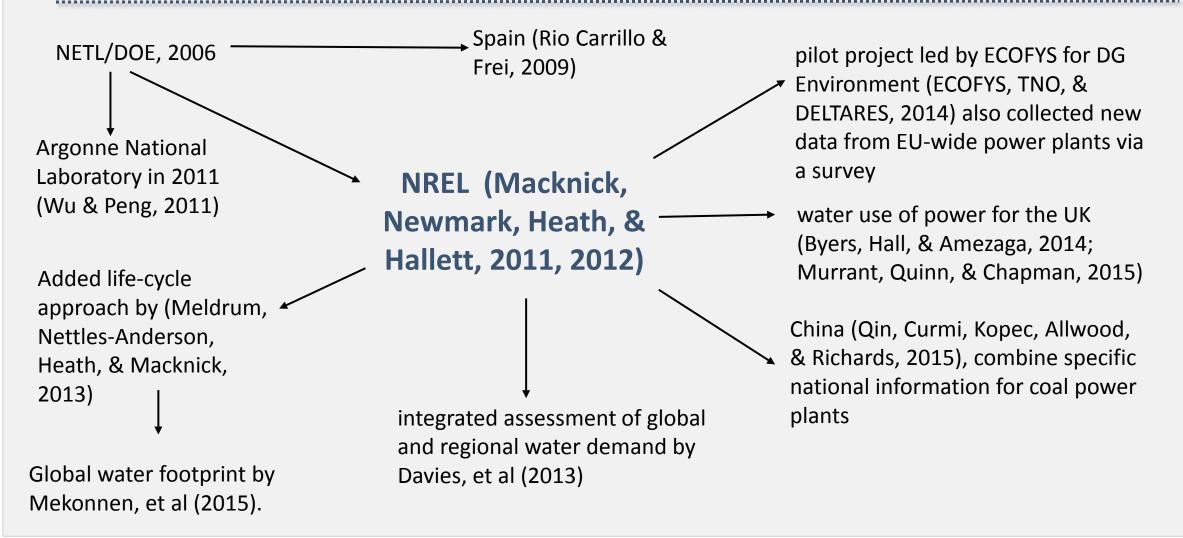
> many published sources cross-reference each other - most focus on work done by

OTHER SOURCES

IPTS - Joint Research Centre (2016). Best Available Techniques (BAT) Reference Document for Large Combustion Plants

WBCSD (2015). Global Water Tool for Power Utilities. World Business Council for Sustainable Development only indication on consumption for pollution abatement technologies (e.g. scrubbers)

very aggregated information for generic types of plants


JRC-IET (2014). ETRI 2014 - Energy Technology Reference Indicator projections for 2010-2050

not entirely clear what are data sources for all types of plants

UK Environment Agency (2013). Water use and electricity generation.

from study "Water demand for Carbon Capture and Storage (CCS), Parsons Brinkerhoff, November 2012"

All roads lead to Macknick

DIRECT INFORMATION REQUESTS

Organisation	Contact Person	Outcome
EDF power company, France	Mounir Mecheri, Charles Bourdil, Arnaud Pitard, Mathieu Gennevieve	No data was made available Information on water factors
EDP power company, Portugal	Patrícia Veloso	Data for Portuguese thermal power plants
EON power company, Germany	Volker Tuerk	No data was made available
VGB, Germany	Jean-François Lehougre	No data was made available
ENDESA power company, Spain	Nuno Ribeiro da Silva	No reply
ENEL power company, Italy	Generic e-mail	No reply
Vattenfall power company, Sweden	Frederik Engstrom	Highly detailed data for hydro power plants only
UK Environment Agency	Stuart Taylor	Supplied some of the support studies made by consultancy firm.
IET of the JRC-EC, EU	Johan Carlsson	No more updated information than the one available on- line (JRC-IET, 2014)
EURELECTRIC, EU	Marion Labatut	No data available Contact to VGB in Germany
NREL, USA	Jordan Macknik	No more updated information than the one available on- line (Meldrum et al., 2013)
IFP Energies Nouvelles, France	Patrick Duval	No reply
Fondazione Eni Enrico Mattei, Italy	Michela Bevione	Using (Macknick et al., 2012)

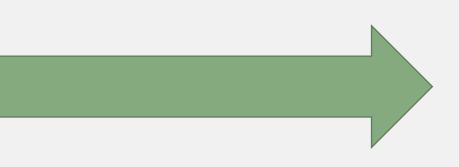
OTHER RELEVANT DATA SOURCES

• The EURELECTRIC Initiative - Blueprint for Europe's Waters: The Role of the Power Sector, that took place in 2012 bringing together experts from the power sector and the water policy fields. This resulted in some presentations but not on a systematisation of water consumption and withdrawal

http://www.eurelectric.org/events/blueprint-for-europes-waters-the-role-ofthe-power-sector/proceedings/

 Report of the UK Environment Agency from 2013 and updated in 2015 on "Water use and electricity generation". The 2015 report was withdrawn from the website on 5th January 2017. However, it made use of several UK-specific sources and studies. Nonetheless, these studies are not available to the general public.

eurelectric


Blueprint to Safeguard Europe's Waters EURELECTRIC Key Messages

E-TECH ENHANCEMENT

- Techno-economic parameters of the main cooling systems for power plants based on the thermodynamic Rankine cycle (steam-cycle-process):
 - > nuclear
 - > coal
 - > gas
 - > Oil (no)
 - > biomass
 - > concentrated solar power (CSP) systems (and wind and PV)

> Cooling systems

- Once-through cooling (O)
- Cooling-pond (P)
- Wet-cooling towers (T)
- > Dry cooling systems (D)

- 1. E01 Coal Fired Power Plants
- 2. E02 Gas Fired Power Plants
- 3. E03 Nuclear Power
- 4. E05 Biomass for Heat & Power
- 5. E10 Concentrating Solar Power

WATER CONSUMPTION & WITHDRAWAL

(Sources: Mel	coal-fired drum et al., 2	tion and withdraw power plants 012; Macknick et); Tzimas, 2011; E	al., 2011; Zhai
Plant type	Cooling	Water	Water
	system	consumption (gallons/MWh)	Withdrawal (gallons/MWh)
Supercritical (incl. SCPC)	Tower	458 – 594	582 - 669
	Once- through	64 – 124	22,551 – 22,611
	Pond	4 - 64	14,996 – 15,057
Subcritical	Tower	394 – 664	463 - 678
	Once-	71 – 138	27,046 -
	through		27,113
	Pond	737 - 804	17,859 – 17,927
IGCC	Tower	318 - 439	358 - 605

Table 4–Water consumption and withdrawalfactors for CSP plants (Sources: Meldrum et al., 2012; Macknick et al., 2011; Zhai et al., 2011; NETL, 2009; Tzimas, 2011; EPRI, 2011)

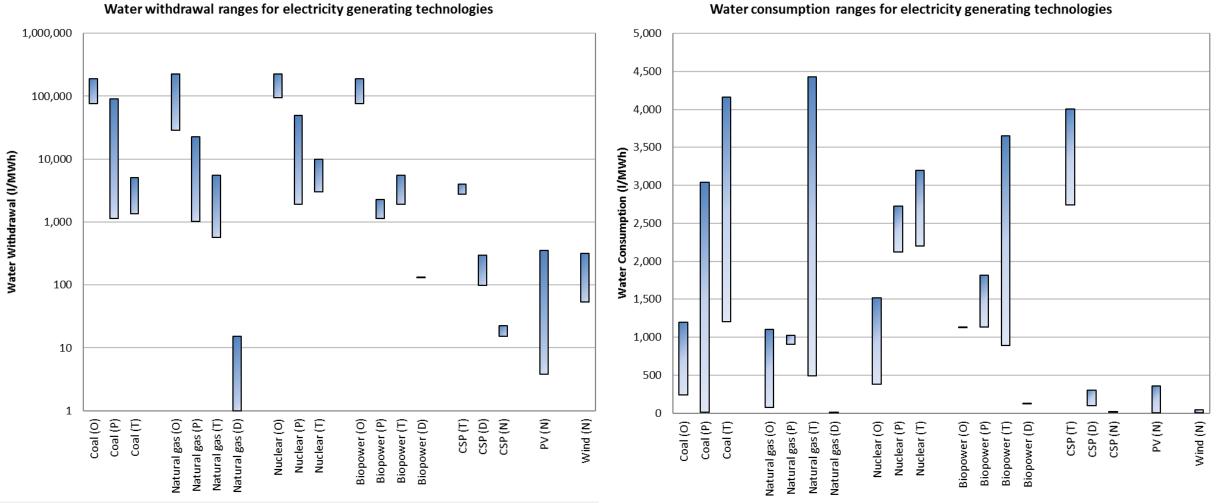
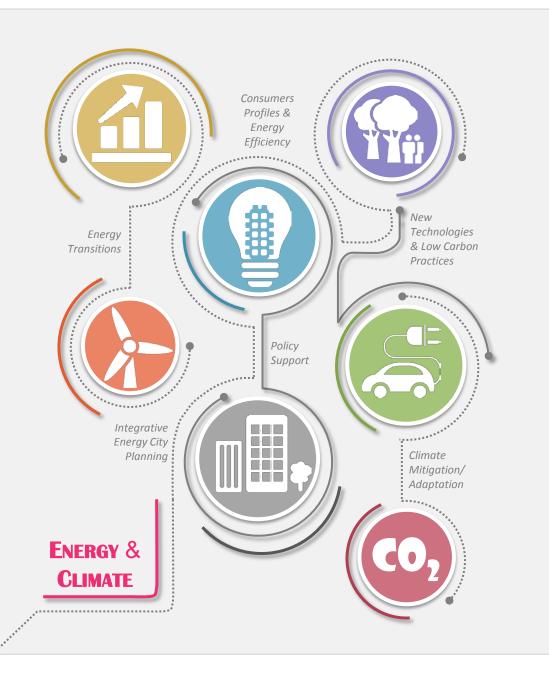

Plant type	Cooling	Water	Water
	system	consumption	Withdrawal
		(gallons/MWh)	(gallons/MWh)
CSP	Tower	725-1,057	725-1,057
	Dry	26-79	26-79
	None	4-6	4-6

Table 1 – Water consumption and withdrawal factors for nuclear power plants (Sources: Meldrum et al., 2012; Macknick et al., 2011; Zhai et al., 2011; NETL, 2009; Tzimas, 2011; EPRI, 2011)

Plant type	Cooling	Water	Water
	system	consumption	Withdrawal
		(gallons/MWh)	(gallons/MWh)
Nuclear	Tower	581-845	800-2,600
	Pond	560-720	500-13,000
	Once-	100-400	25,000-60,000
	through		


WATER CONSUMPTION & WITHDRAWAL (II)

Water consumption ranges for electricity generating technologies

LIMITATIONS

- > Limited data sources mainly from one source (Macknick, 2012)
- Different factors can influence water consumption, apart from the type of cooling technology
 - > local weather conditions (temperature of water, air, humidity in the air)
 - > imposed environmental constraints (limit to water temperature rise)
 - > seasonal constraints (limit to water extraction flow)
 - > network constraints (need to vary the load of the power plants)
- > Costs of cooling technologies not considered

Sofia Simões sgcs@fct.unl.pt

f in 🏏

www.cense.fct.unl.pt www.sites.fct.unl.pt/timespgcs@fct.unl.pt

WATER CONSUMPTION & WITHDRAWAL

powe Sources: <mark>Mel</mark>	r plants using Idrum et al., 2	tion and withdrav g biomass techno 2012; Macknick et ð; Tzimas, 2011; f	ologies <mark>t al., 2011; Zhai</mark>	(Sources: Mel	coal-fired drum et al., 2	tion and withdraw I power plants 2012; Macknick et 9; Tzimas, 2011; E	al., 2011; Zhai	plants (Sou	rces: Meldru t al., 2011; NB	n and withdrawalf m et al., 2012; Mac ETL, 2009; Tzimas 2011)	cknick et al.,
Plant type	Cooling system	Water consumption (gallons/MWh)	Water Withdrawal (gallons/MWh)	Plant type	Cooling system	Water consumption (gallons/MWh)	Water Withdrawal (gallons/MWh)	Plant type	Cooling system	Water consumption (gallons/MWh)	Water Withdrawal (gallons/MWh)
Biopower	Dry	35	-	Supercritical	Tower	458 – 594	582 - 669				
	Pond Once-	<u>300-480</u> 300	300-600 20,000-50,000	(incl. SCPC)	Once- through	64 – 124	22,551 – 22,611	CSP	Tower	725-1,057	725-1,057
	through Tower	235-965	500-1460		Pond	4 - 64	14,996 – 15,057		Dry	26-79	26-79
				Subcritical	Tower	394 - 664	463 - 678		None	4-6	4-6
	gas-fired	tion and withdrav	wal factors for		Once- through	71 – 138	27,046 – 27,113				
Sources: Mol					unougn		27,113				
		2012; Macknick et 9; Tzimas, 2011; I			Pond	737 - 804	17,859 – 17,927				
		9; Tzimas, 2011; I Water consumption	EPRI, 2011) Water Withdrawal	IGCC Table 1 – Wat	Pond Tower	318 - 439 ion and withdraw	17,859 – 17,927 358 - 605				
et al., 201	Cooling	9; Tzimas, 2011; I Water	EPRI, 2011) Water	Table 1 – Wat	Pond Tower ter consumpt nuclear drum et al., 2	318 - 439	17,859 – 17,927 358 - 605 al factors for al., 2011; Zhai				
et al., 201 Plant type OGCT	1; NETL, 2009 Cooling system Tower Once-	9; Tzimas, 2011; I Water consumption (gallons/MWh) 662 – 1,170	EPRI, 2011) Water Withdrawal (gallons/MWh) 950 – 1,460 10,000 –	Table 1 – Wat (Sources: Mele et al., 2011	Pond Tower er consumpt nuclear drum et al., 2 ; NETL, 2009	318 - 439 ion and withdraw oower plants 012; Macknick et	17,859 – 17,927 358 - 605 al factors for al., 2011; Zhai				
et al., 201 Plant type	1; NETL, 2009 Cooling system Tower Once- through Inlet Tower Once-	9; Tzimas, 2011; I Water consumption (gallons/MWh) 662 – 1,170 95 – 291	EPRI, 2011) Water Withdrawal (gallons/MWh) 950 – 1,460 10,000 – 60,000	Table 1 – Wat	Pond Tower ter consumpt nuclear drum et al., 2	318 - 439 ion and withdraw oower plants 012; Macknick et ; Tzimas, 2011; E	17,859 – 17,927 358 - 605 al factors for al., 2011; Zhai PRI, 2011)				
et al., 201 Plant type OGCT	1; NETL, 2009 Cooling system Tower Once- through Inlet Tower	9; Tzimas, 2011; 8 Water consumption (gallons/MWh) 662 – 1,170 95 – 291 80 – 600 130 – 300	EPRI, 2011) Water Withdrawal (gallons/MWh) 950 – 1,460 10,000 – 60,000 100 – 750 150 – 283	Table 1 – Wat (Sources: Mele et al., 2011	Pond Tower ter consumpt nuclear drum et al., 2 ; NETL, 2009 Cooling	318 - 439 ion and withdraw oower plants 012; Macknick et ; Tzimas, 2011; E Water consumption	17,859 – 17,927 358 - 605 al factors for al., 2011; Zhai PRI, 2011) Water Withdrawal				