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Abstract: A monolithic Lagrangian finite element method is explored to model crack propagation. This approach is based on
the level-set method coupled with anisotropic remeshing to define the crack faces and tip. Moreover, the Gθ method
is used for computing the strain energy release rate and the propagation direction. Furthermore, a new technique for
computing the convection velocity, which is a mixture between the propagation speed and the mechanical velocity, is
introduced.
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1. Introduction

Since the last century, a large number of theories and applications have been developed to deal with fracture me-
chanics and crack propagation [1–8]. The latter gives rise to many difficulties since it leads to an important displace-
ment discontinuity. The Finite Element Method (FEM) [4, 5, 9] has proved its efficiency in dealing with crack propa-
gation by modifying the mesh’s topology and performing automatic remeshing [4, 5, 10–14].

Nevertheless, several remeshing-free methods have been proposed: Belytschko has suggested the Element free
Galerkin method [3] where the discretisation is achieved by nodal and surface description of the model. The Strong
Discontinuity Approach (SDA) [15–17] in which displacement jumps due to the presence of the crack are embedded
locally in each cracked finite element without affecting neighbouring elements. The Extended Finite Element Method
(XFEM) [18–20] in which the displacement-based approximation is enriched near a crack by incorporating both dis-
continuous fields and the near tip asymptotic fields through a Partition of Unity method [21]. The arbitrary local mesh
replacement method [22] based on two distinct meshes: one that surrounds the propagating crack front and moves
with it, and the other one that fills the rest of the domain. However, these methods need improvement in order to
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properly deal with long crack propagation and crack coalescence such as the XFEM. Or also complex configurations
such as the Element free method, and multiple cracks such as the arbitrary local mesh replacement method. And
some of them, like the XFEM, would eventually need some type of remeshing.

Hence, remeshing techniques are important when dealing with crack propagation. Chiaruttini et al. [10] used
remeshing along with the Cohesive Zone Model (CZM) to simulate crack propagation in structures subjected to
mixed mode loadings. Furthermore, 3D remeshing techniques were used to model properly crack propagation us-
ing the computation of a damage indicator [11] or also based on mesh intersection algorithms [12]. Two and three-
dimensional remeshing, via the fracture numerical code FRANC [13, 14], were also used to simulate crack growth.
Remeshing, combined with nodal relaxation, was developed and used by Bouchard et al. [4, 5] and it has proven its
efficiency when dealing with complex and multiple crack propagations.

Furthermore, monolithic approaches, which consist in using a unique mesh for the different components, are
widely used in various domains. Notably in fluid-structure interaction [23], heat transfer [24], incompressible fluid
flows [25], microstructures’ behaviour [26, 27]. In all the above-cited applications, the monolithic approach proved its
efficiency. Hence, studying its feasibility in crack propagation is proposed in this paper. In this context, two frame-
works, the Eulerian and Lagrangian can be compared. The Eulerian framework consists in describing the crack im-
plicity using a level-set function and thus the air inside the crack is taken into account in the governing equations. Also
this level-set function must be convected at each time step in order to simulate its propagation. On the other hand, in
the Lagrangian framework the crack is explicitly described by nodes of the mesh and its propagation is performed by
moving these nodes, and remeshing.

In this paper, a method for modelling quasi-static crack propagation using level-set functions, anisotropic remesh-
ing and a novel method for choosing the convection velocity is introduced. In the second section, the level-set method
and the anisotropic remeshing technique are explained. Also the Gθ method used for computing the energy release
rate along with the kinking angle is detailed. Section 3 introduces our method for computing the convection velocity
of the crack. A comparison between results in an Eulerian and a Lagrangian framework is performed. Then the better
one is compared with Bouchard et al.’s [5] technique. The fourth section concludes this paper.

All numerical calculations mentioned in this paper were performed with CimLib, a finite element C++ library [28].

2. Numerical modelling

2.1. Level-set and mesh adaptation

In the perspective of modelling crack propagation, a monolithic approach is used. The monolithic method consists
of using a unique mesh in which the different domains are considered using a level-set function. Moreover a level-set
function is a signed distance function α, defined over the domain Ω, that gives at any node X of coordinates x of the
FE mesh the signed distance to the boundary Γ. In turn, the interface Γ is given by the level 0 of the function α:

{
α(x) =±d(x,Γ),x ∈Ω
Γ= {x ∈Ω,α(x) = 0}

(1)

Fig. 1 illustrates the level-set function of a crack.

Fig. 1. The level-set function describing a crack
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Consequently, different structures are immersed in a larger domain of different material properties so that bound-
ary conditions at the interface can be replaced naturally. Furthermore, the level-set function, defining the interface, is
used to mix the different material properties using appropriate mixing laws [26, 29]. Moreover, this function is used for
meshing and remeshing operations in order to describe properly the considered interface and also to account for the
discontinuities of the physical properties. Mesh adaptation is also needed at the crack tip to insure the computational
accuracy of the singular fields. It has to be noted that, contrary to XFEM, these singular fields are not imposed in the
shape functions of the elements containing the crack tip.

To this end, it is crucial to pre-adapt anisotropically the mesh at the materials’ interface, the crack faces and tip. By
doing so, the mesh becomes locally refined, elements are stretched, which enables to sharply define the interface and
to save a great number of elements compared to classical local isotropic refinement. This anisotropic adaptation is
performed by constructing a metric map. This map is controlled by a directional error estimator based on local inter-
polation error of the wanted fields which are in this case the level-set functions defining the interface, the crack faces
and the pressure field. Furthermore, in our case, different metrics are obtained, one for each field. The intersection of
these metrics [30] leads to the one used for mesh adaptation.

In the aim of constructing these metrics, an a posteriori error estimator [31] is used. This error estimator uses the
eigenvalues and eigenvectors of the recovered Hessian matrix of a given function and a wanted number of elements
in order to construct the metric field. In practice, the mesh is generated in several steps using the MTC mesher and
remesher developed in [32]. The proposed mesh generation algorithm works well for 2D or 3D complex shapes. It
allows the creation of meshes with extremely anisotropic elements stretched along the interfaces. The mesh size is
then only refined in the direction of the high physical and mechanical properties gradients. This allows conserving a
high accuracy for describing properly mechanical fields and geometry description. During propagation, the mesh is
only modified in the vicinity of the interface and near the crack tip which keeps the computational work devoted to
the mesh generation low.

Since we will begin by comparing our method in Eulerian and Lagrangian frameworks and the better approach with
the one in [5], Fig. 2 shows the result of the mesh adaptation technique on the construction of the initial mesh of the
comparison case, which is a pre-cracked rectangular region with an off-center inclusion. Here anisotropic remeshing
was applied using the level-set functions of the crack and the disc along with the pressure which is maximal at the
crack tip.

2.2. Computing the strain energy release rate

The strain energy release rate G represents the energy required for a unitary crack increase. The criterion states
that among all virtual and kinematically admissible crack propagation directions, the real increase is the one which
maximizes the strain energy release rate. The kinking angle, θ0, is then determined by:


(

dG
dθ

)
θ=θ0

= 0(
d 2G
dθ2

)
θ=θ0

≤ 0
(2)

Numerous numerical techniques can be used to compute G [5]. In this study, the Gθ method [33] is used. It consists
in defining two contours C1 and C2 around the crack tip. These contours divide the domain near the crack tip into
three sub-domains: Cext , Cr i ng and Ci nt (see Fig. 3).

Afterwards, the strain energy release rate computation is performed by solving:

G =
∫

Cr i ng

[
Tr (σ∇u∇Θ)− 1

2
Tr (σ∇u)∇.Θ

]
dCr i ng . (3)

where Tr (.) is the trace operator, σ is the stress tensor, u is the displacement field, and Θ(θ1,θ2) is a virtual unit
displacement field that may be expressed as:

 θ1 = (1− I M
I J )cos(θ)

θ2 = (1− I M
I J )si n(θ)

(4)

Therefore, this virtual field Θ modifies only the shape of elements belonging to Cr i ng . The computation of G is
performed in the Cr i ng area and a strain energy release rate G can be computed for each possible direction of crack
propagation, θ. The real direction of propagation θ0 is the one maximizing G during propagation.
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Fig. 2. Anisotropic meshing adaptation based on an a posteriori error estimation: a) in the Lagrangian framework, b) in the
Eulerian framework and c) zoom at the crack tip

Fig. 3. Contours and domains used to compute G with the Gθ method [5]

2.2.1. Comparison with analytical values

The Gθ method has been implemented in CimLib [28]. At each crack increment, G is computed for θ varying from
−70o to 70o with 1o steps. G’s curve is increasing and then decreasing (see Fig. 4) so that the determination of the
angle θ0 corresponding to the maximum strain energy release rate is straightforward.

In order to validate our implementation and use the Gθ method for computing strain energy release rates, two
comparisons with known analytical results were performed. The first with a single edge crack (see Fig. 5 for details
and dimensions) and the second for a slant crack (see Fig. 6 for details and dimensions)

In the case of the single edge crack ( Fig. 5), the strain energy release rate is G = K 2
I /E where E is the Young modulus

and K I , the stress intensity factor in mode I, is given by [34]:

K I =σnF
p
πa (5)
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Fig. 4. Curve of G as a function of θ in case of a single edge crack

Fig. 5. Domain and dimensions used in the single edge crack case

Fig. 6. Domain and dimensions used in the slant crack case

with F = 1.0174/λ3/2 where λ= 1−aW and σn , the normal stress, taken to be 50MPa.
Analytically, G = 5.31×10−3N /m and the obtained numerical result was G = 5.4×10−3N /m

In the case of the slant crack, G = (K 2
I +K 2

I I )
E where K I and K I I (the stress intensity factor in mode II) are given by [34]:

K I ,I I =σnFI ,I I
p
πc (6)

with

FI ' 0.5474+0.5738cos(1.3225φ) (7)
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FI I ' 0.4741si n(1.4675φ) (8)

where φ= 45o and σn also taken to be 50MPa.
Analytically, G = 6.6×10−3N /m and the obtained numerical result was 6.45×10−3N /m
These results validate our implementation and use of the Gθ method for computing strain energy release rate and

hence the kinking angle.

3. Convection velocity

3.1. Mechanical equations

After mixing the different material properties, the incompressible Stokes equations modelling the mechanical
problem are solved using a stabilized mixed FE method and a P1+/P1 interpolation. These equations can be writ-
ten:



µ∆v−∇p =−g on Ω

∆.v = 0

v = vimp on Γu

v =−vimp on Γl

(9)

where v is the velocity, p the pressure, g the gravity, Ω is the computational domain, and µ = E
1+ν is the first Lamé

coefficient where E is Young’s Modulus and ν is Poisson’s ratio. Also vimp is the imposed velocity on Γu and Γl which
are the upper and lower boundaries of the domain respectively.

3.2. Computation of the convection velocity

After obtaining the velocity and the pressure fields from the mechanical problem, the computation of G infers the
calculations of the propagation direction, θ0 and hence the speed at the crack tip, ȧ which can be written [35]:

ȧ =
{

0 i f G <Gc

cR

√
1− KIc

KI
other wi se

(10)

This speed is greater than zero only if G ≥Gc which is the fracture energy in function of K Ic , the fracture toughness;
cR is the Rayleigh wave speed. Hence, a velocity around the crack tip, vct , can be given by:

vct = ȧ(cosθ0, si nθ0). (11)

This velocity insures the proper propagation of the crack but not the crack opening. The latter can be insured by
the mechanical velocity, v. These facts lead us to use a Lagrangian convection velocity which is the combination of vct

and v. This convection velocity, denoted vconvec , is given by:

vconvec =
{

v i f ȧ = 0 ⇐⇒G <Gc

vct (H(β))+v(1−H(β)) i f ȧ 6= 0 ⇐⇒G ≥Gc

(12)

where β is the level-set function of a small circle centered at the crack tip and H(β) a smoothed Heaviside function
used for mixing the different velocities on a certain predefined thickness.

3.3. Results

In all the below-studied cases, anisotropic mesh adaptation is performed, at each time step, to maintain proper
propagation and computation of the singular fields at the crack tip. Hence each time step can be illustrated by the
scheme in Fig. 7.

Moreover, a rectangular domain with an off-center circular inclusion described in Fig. 8 will be used in all the
comparative cases.
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Fig. 7. The scheme of a time step

Fig. 8. The domain of the comparative case

3.3.1. Comparison between Eulerian and Lagrangian

Before comparing our method with another one, a choice between the Eulerian and Lagrangian frameworks has
to be maid. Hence, two crack propagation cases (one in each framework) in which the circular inclusion in the pre-
described domain is less rigid than the matrix, were performed. Fig. 9 shows the comparison between the two frame-
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Fig. 9. Comparison between the Lagrangian and Eulerian framework during crack propagation: a) the Lagrangian one and b) the
Eulerian one

works at different time steps.
In this case, according to Bouchard et al. [5], the crack has to be drawn by the inclusion but not to the point

of intersection. It can be seen that using a Lagrangian framework, the crack moves away from the inclusion before
hitting it which is not the case in the Eulerian framework. This is due to the fact that in an Eulerian framework a
level-set function defines the crack and this function needs to be convected or transported at each time step in order
to simulate the propagation.

This type of convection is very delicate because it is largely affected by the mesh size and the time step and since
the level-set function would, in general, loose its characteristic as a distance function and has to be reinitialized. This
is problematic when the remeshing technique depending on the distance property is used at the interface. Further
details can be found in [36]. A solution to this problem might lie in the use of the direct reinitialization technique [37].
It consists in discretizing the interface (isozero of the level-set function) into a collection of simple elements and, for
every node, computing the distance to all elements of the collection and storing the smallest one which becomes the
updated value of the distance function. This method was considered very time consuming [38] but efficient parallel
implementation and computation reduced drastically its computational times [37].

Also capturing accurately the crack tip via a level-set function is very hard since it may lie inside an element of
the mesh (see Fig. 10) unless extreme refinement near the tip which, on the other hand, would lead to expensive
computational times.

Body-fitted meshing [39] used for analysis of void growth and coalescence could be a solution if used near the crack
tip. It consists on defining the interface (the isozero of the level-set) by nodes of the mesh and redefining this interface
after convection using body-fitted remeshing. In our case, this might solve the problem of capturing the crack tip
since it would be a node of the finite element mesh.

Furthermore, in our case, in addition to the level-set defining the crack, a level-set function defining the circle used
for mixing the velocities near the crack tip is used. This circle needs also to be displaced along with the crack tip
which make things more complicated because any small difference in the velocity at neighboring nodes might lead
to misplacement of this circle. Fig. 11 shows the case where the circle is convected faster than the crack leading to an
unusual propagation of the crack.
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Fig. 10. (a) The fine mesh near the tip (b) the inaccurate definition of the level-set function defining the crack at the tip

Fig. 11. Convection of the crack and the circle near its tip.
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Since working in a Lagrangian framework was less complicated and lead to better results than an Eulerian one, the
following case will be based on the Lagrangian one. It is important to mention that working in the Eulerian framework
could eventually give good results if explored furthermore but surely needs extreme remeshing especially near the
crack tip or needs the use of one of the above-mentioned possible solutions. On the other hand, working in the
Eulerian framework might be necessary for some applications notably the hydraulic fracking [40, 41] where a fluid is
present inside the crack and its pressure on the crack’s faces needs to be computed.

3.3.2. Comparison with Bouchard et al. [5]

Our method, in the Lagrangian framework, is compared with a case presented in [5] (see Fig. 8). The influence
of this inclusion on the crack path is studied. The rectangular domain was submitted to a tensile test. The circular
inclusion may be more or less rigid than the matrix. R is defined as the ratio of the matrix and inclusion’s Young
modulus: R = Ematr i x /Ei ncl .

Figs. 12 and 13 illustrate the comparison between our method and Bouchard et al.’s [5]. Fig. 12 shows that for an
inclusion less rigid than the matrix (R = 10), the crack is attracted to the inclusion. Conversely, if the inclusion is more
rigid than the matrix (R = 0.1, Fig. 13), the crack is moving away from the inclusion.

Fig. 12. Comparison between our method and the one in [5] for R = 10: a) Results of [5] and b) our results
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Fig. 13. Comparison between our method and the one in [5] for R = 0.1: a) Results of [5] and b) our results

Both figures show a very good agreement between the two methods. This validates that our technique computes
the strain energy release rate and the kinking angle in a proper manner. Furthermore, our choice of Lagrangian con-
vection velocity models correctly crack propagation.

4. Conclusion

A monolithic method was introduced to model crack propagation. This process is based on the use of level-set
functions for interface description, on anisotropic mesh adaptation and on the choice of an appropriate convection
velocity. The latter is a combination between the mechanical velocity and the speed at the crack tip. This speed is
linked to the strain energy release rate which was computed by the Gθ method along with the kinking angle.

Furthermore, in the monolithic method, two frameworks, the Eulerian and Lagrangian, were compared. In our
case, working in the Lagrangian framework was less complicated since it needed less remeshing and since the crack
was convected naturally with the mesh. Also since in the Eulerian framework, extremely fine meshes are needed to
properly describe the crack faces and tip. And the crack, described implicitly by a level-set function, is hard to convect.

Moreover, our monolithic Lagrangian method proved its efficiency in correctly modelling the propagation of the
crack after comparing it with the method in [5]. Nevertheless, the Eulerian framework might be essential in some
applications like the the hydraulic fracking in order to take the fluid inside the crack into consideration. A solution to
the weak points of the Eulerian framework could be in using a body-fitted immersed volume method at the crack tip
as described in [39] or also in use of direct reinitialization [37] to solve the problem of level-set convection.
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