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Abstract

This paper proposes a new approach for mean field modeling of dynamic recrystal-

lization. The main advantage of the presented model compared to the state of the art

is based on a more precise description of the immediate vicinity and of the shape of

each grain to describe microstructural evolution all along the hot deformation process.

Results provided by the new model are compared to those of a former mean field formu-

lation and those of a full field model with an explicit description of the microstructure.

The predictions of the new model in terms of recrystallization kinetics and grain size

distributions are satisfactory and the progress when compared to former mean field

models is obvious. Furthermore, the limitation of mean field models concerning the

non-realistic shape of grain size distributions has been solved in this new formulation.

Keywords: microstructure, mean field modeling, topology, recrystallization.

1. Introduction

During hot deformation of metal alloys, the mechanisms of strain hardening and

recovery tend to increase and reduce the energy stored in the material respectively.

When the stored energy level is high enough locally, new grains nucleate. In parallel,

grain boundaries migrate as a result of stored energy gradients across interfaces and5

capillary effects. The combination of those mechanisms leads to so-called dynamic
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recrystallization (DRX) [1, 2, 3, 4, 5].

Over the past decades, much attention has been paid to microstructure evolutions of

metal alloys by DRX. These works have lead to different phenomenological models10

such as those based on the well-known Johnson-Mehl-Avrami-Kolmogorov (JMAK)

equations [6, 7, 8], aiming to predict the recrystallized fraction during hot deformation.

Considerable progress in terms of numerical resources coupled with new experimen-

tal investigation techniques have lead to more sophisticated models able to explicitly

reproduce microstructural evolutions: so-called full field methods. The main numeri-15

cal frameworks for full field modeling of these phenomena are multi phase-field [9],

level-set [10], Monte Carlo [11] and cellular automata [12] approaches. These methods

have proven to accurately model DRX thanks to an explicit representation of the mi-

crostructure. However, a major limitation of these models is their computational cost,

especially when crystal plasticity is implemented or when aiming at a direct coupling20

with macroscale computations.

Mean field models can be proposed as a compromise between the phenomenologi-

cal laws and full field models. Mean field models for DRX are based on an implicit

description of the microstructure by considering grains as spherical entities with an25

equivalent grain radius and an average dislocation density. Each grain is considered

in a homogeneous equivalent medium (HEM) and its evolution is governed by its in-

teraction with the HEM. Hillert [13] proposed the first model of this kind for grain

growth. Then, Montheillet et al. [14] proposed a semi-analytical mean field model

for DRX. The latter considers a HEM composed of all other grains in the microstruc-30

ture. Another DRX mean field model was also proposed by Cram et al. [15] where the

HEM is still composed of all other grains in the microstructure. A first particularity of

this model is that each grain is defined by a Taylor/orientation factor aiming to model

the influence of the grain orientation on its stress response. Furthermore, mean field

models for DRX are generally based on the Taylor assumption, each grain undergoing35

the same strain. However in the model of Cram et al. [15], each grain undergoes the

same mechanical work meaning that softer grains deform more than harder grains. Two
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years after, Bernard et al. [16] proposed a physically-based mean field model whose

main novelty lies in a HEM that is subdivided into two different HEMs composed of

recrystallized and non-recrystallized grains respectively. Each grain evolves with re-40

spect to each of these two HEMs. The main difficulty in this model lies in the fact that

the surface fraction between a grain and each of these two HEMs must be estimated

at every instant of the simulation. Beltran et al. [17] proposed a model based on that

of Bernard [16] where a new nucleation criterion taking dynamic recrystallization into

account is implemented. More recently, Piot et al. [18] proposed a new approach in45

which each grain interacts with a particular HEM composed of one random grain. This

model has proven to accurately describe recrystallized fractions and mean grain sizes.

Furthermore the predicted grain size distributions are improved as compared to former

mean field models [14, 15, 16, 17] even if their are still quite far from experimental

ones.50

A common advantage to all mean field models is their computational cost that is con-

siderably reduced as compared to full field models. The computational cost of a mean

field simulation is generally a few seconds while that of a full field simulations is

generally several hours. Furthermore, mean field models generally provide accept-55

able predictions in terms of recrystallization kinetics and mean grain size evolution.

However, grain size distributions sourced from mean field simulations are not correctly

described. This limitation is due to the fact that all grains which have nucleated at a

given time have the same evolution (in size and dislocation density) in mean field mod-

els [14, 15, 16, 17] whereas in a real microstructure, each grain evolves depending on60

its own neighborhood. Therefore, in this work a new topological approach for the mean

field modeling of DRX is proposed. Hereafter, this new model will be called ”Neigh-

borHood Model (NHM)”. The NHM is based on the same constitutive equations used

in the mean field model of Beltran et al. [17] for modeling strain hardening, recovery

and nucleation. These laws are introduced in section 2. The major novelty presented65

in section 3 is based on the consideration of a particular neighborhood for each grain

instead of considering the whole average microstructure as HEM. In addition, the evo-

lution of principal lengths of the grains (in the sense of idealized ellipsoid shapes) are
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modeled during deformation in the NHM, as explained in section 4. Finally, the results

of simulations related to hot forging of a 304L austenitic steel provided by the NHM,70

the mean field model of Beltran [17] and a full field level-set model [19] are presented

in section 5.

2. Constitutive laws for mean field modeling of DRX

Initial microstructures in mean field models are represented by spherical grains,75

each having a dislocation density ρi and a grain size Ri. In several existing models

[20, 17], the concept of grain classes is used to reduce computational cost. This con-

sists in gathering several similar grains in one single entity called ”class”, that is defined

by a grain radius Ri, a dislocation density ρi and a number of grains Ni in the considered

class. The main drawback to this reduction is that all the grains belonging to the same80

class follow the same behaviour during the simulation. This concept of classes is used

in the NHM to reduce computational cost. However, in this paper, it will be referred to

grains instead of classes in order to facilitate the understanding of the NHM principle.

Thereafter, a recrystallized grain (RX) denotes a grain appeared during the simula-85

tion and a non-recrystallized grain (NR) denotes a grain present from the first stage of

simulation. Furthermore, a RX grain having just appeared is called nucleus. The con-

stitutive laws used in the NHM are identical to those used in the model of Beltran et al.

[17], except for boundary migration. Grain boundary migration is generally described

in mean field models [16, 17, 21] by the following equation :90

∆Vi =

(
K3(ρ

∗−ρi)+βKr

(
1

R∗
− 1

Ri

))
Si∆t, (1)

where ∆Vi is the volume variation of the ith grain, Ri and ρi are the radius and the dis-

location density of the ith grain respectively, R∗ and ρ∗ are related to the average grain

size 〈R〉 and volume-weighted average dislocation density 〈ρvol〉 of the HEM respec-

tively. Writing the volume conservation equation ∑∆Vi = 0 leads to R∗ = 〈R2〉/〈R〉 and

ρ∗ = 〈ρvol〉. Si is the boundary area of the ith grain, K3 is a model parameter defined95
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by K3 = Mbτ , Kr is a model parameter defined by Kr = Mbγb, Mb is the grain boundary

mobility, γb is the grain boundary energy, τ is the dislocation line energy and β is a

geometrical dimensionless constant referring to assumptions on mean field modeling

of capillary effects [13], taken equal to 1 in these models [16, 17, 21]. A recent paper

has shown that a value of β equal to 1.4 leads to more accurate results [22]. Mb and γb100

are assumed to be isotropic (i.e. identical for all grain boundaries) in the following. To

correctly describe experimental results, it has been shown that K3 must be considered

dependant on both plastic strain rate ε̇ and temperature T in these models [16, 17, 21].

However, since K3 = Mbτ and there is no clear physical explanation to consider Mb or

τ dependant on the strain rate, an additional term noted δ (ε̇) is added in K3, so that105

K3 = Mbτδ (ε̇). Therefore, Eq. 2 can be rewritten as :

∆Vi = Mb

(
δ (ε̇)τ(ρ∗−ρi)+βγb

(
1

R∗
− 1

Ri

))
Si∆t. (2)

The evolution of the average dislocation density ρi in each ith grain during deformation

is modeled by the Yoshie-Lasraoui-Jonas law [23]:

∂ρi

∂ε
= K1−K2ρi, (3)

where ε denotes the plastic strain, K1 and K2 are the strain hardening and dynamic

recovery terms, respectively, and depend on thermomechanical conditions (K1 depends110

on T and K2 depends on both T and ε̇).

When a critical dislocation density is locally reached, nucleation, i.e. appearance of

new grains with a very low dislocation density, can occur. To compute the critical

dislocation density ρcr, the method used in [17] is reproduced: a first value of ρcr is115

estimated thanks to Eq. 4 and an iterative calculation is performed according to Eq. 5.

ρcr =

(
20K1γbε̇

3K3τ

)1/3

. (4)
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ρcr =

 −2γbε̇
K2

K3τ

ln
(

1− K2

K1
ρcr

)


1/2

. (5)

The critical radius of a nucleus noted r∗ is calculated according to the modified Bailey-

Hirsch criterion [24]:

r∗ = ω
2γb

ρcrτ
, (6)

where ω > 1 is a safety factor ensuring that the nucleus has the required driving force120

for growth. We consider ω = 1.5 in this paper as in [19].

The nucleation rate V̇ representing a volume of nuclei per unit of time, is calculated

according to a variant of the proportional nucleation model of Peczak and Luton [25]:

V̇ = KgΦ∆t, (7)

where Kg is a probability coefficient related to the thermomechanical conditions (T125

and ε̇) and Φ represents the total boundary area (in a necklace type nucleation) or total

volume (in a bulk-type nucleation) of grains having their average dislocation densities

higher than ρcr.

As it can be observed in Eq. 2, the grain boundary migration of a specific grain depends130

on the average microstructure through the values R∗ and ρ∗, which means that no

realistic topology is considered in pre-existing mean field models [14, 15, 16, 17]. An

attempt to take a realistic topology into account is presented in section 3.

3. Neighborhood of individual grains

In a real microstructure, each grain is surrounded by a number of neighbors (see Fig.135

1(a)). This microstructure is described in mean field models by spherical grains in

order to model equiaxed grains (see Fig. 1(b)), each grain having a radius Ri and
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a dislocation density ρi. However a strong assumption made in mean field models

[14, 15, 17] is that each grain has no neighbors but is surrounded by a HEM (see Fig.

1(c)). To be more realistic, the new proposed approach tackles this first limitation by140

considering a particular neighborhood for each grain, composed of a certain number of

grains that are appropriately chosen (see Fig. 1(d)).

(a) (b) 

(d) (c) 

Ri, ρi 

HEM 
<R> 
<ρ> 
 Ri, ρi 

Figure 1: Representation of the microstructure in mean field models. (a) EBSD picture of an austenitic

steel 304L microstructure, (b) representation of a microstructure in mean field models as a set of spherical

grains, (c) standard mean field approach : each grain is surrounded by a homogeneous equivalent medium

(HEM) composed of all grains in the microstructure and (d) new mean field approach NHM : each grain is

surrounded by a certain number of grains that compose its neighborhood.

3.1. Representation of a grain’s neighborhood in the NHM

In the present approach, necklace nucleation is considered since this is the kind of

nucleation observed in 304L during DRX [26, 27]. Thereafter, the quantities θ (i) and145
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(1-θ)(i) denote the surface fraction of the ith grain in contact with RX and NR grains

respectively. The description of a grain with its neighborhood in the NHM is described

in 2D on Fig. 2. To enrich this description, the quantity θ (i) is subdivided into two

other quantities noted θa(i) and θb(i) which represent the surface fraction of any ith

grain in contact with nuclei and with other RX grains respectively.150

Grain i 

1 – θ(i) 

θ(i)  

θa(i)  

θb(i)  

Figure 2: Representation of a grain in the NHM. Each grain i has a surface fraction θ (i) in contact with

recrystallized (RX) grains represented in red colour and a surface fraction (1− θ )(i) in contact with non-

recrystallized (NR) grains represented in blue colour. θ (i) is also subdivided into two quantities θa(i) and

θb(i) which represent the surface fraction occupied by nuclei in dashed line and other RX grains in full line,

respectively.

The 2D schematic surface of a grain i having RX grains appeared on its boundary is

represented on Fig. 3(a). The quantity S1(i) represents the boundary surface between

the grain i and RX grains while S2(i) represents the boundary surface of the grain i that

is not in contact with RX grains. In this case, the boundary surface Si of the grain i
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should be defined by Si = S1(i) + S2(i) and the surface fraction θ should be defined by155

θ = S1(i)/(S1(i) + S2(i)) on Fig. 3(a). However, in mean field models [14, 15, 17] a

surface such as the one presented on Fig. 3(a) is hard to consider, thus it is common to

keep working with the assumption of spherical grains as represented on Fig. 3(b). In

the NHM, the assumption of spherical grains presented on Fig. 3(b) is also considered.

The quantity S3(i) is defined as the total intersection surface between the considered160

grain i and RX grains on its boundary (see Fig. 3(b)). Therefore the surface fraction θ

is estimated in the NHM by :

θ(i)'
(

S3(i)
S2(i)+S3(i)

)
, (8)

9



S1(i) S2(i) S3(i) 

Grain i θ 
Grain i 

θ 

(a) (b) 

(c) 

Figure 3: Schematic representation of (a) the surface of the grain i with RX grains on its boundary (b) the

surface of the grain i as it is considered in the NHM (c) a 3D portion of a grain boundary with three nuclei

as neighbors. The intersections are approximated by several circles in green colour. S1(i) represents the

boundary surface between the grain i and RX grains, S2(i) the boundary surface of the grain i that is not in

contact with RX grains, S3(i) the total intersection surface between the grain i and RX grains, estimated by

a sum of circles in the NHM.

By doing the assumption that the grain i is large as compared to RX grains, every sur-

face of intersection between one RX grain and the grain i are approximated by circles

in the NHM as represented on Fig. 3(c). Furthermore by doing the assumption that165

every recrystallized grain size is approximated by the recrystallized mean grain size

〈Rrx〉 with their center belonging to the boundary of i, each intersection can be finally

defined by a circle of radius 〈Rrx〉 having a surface equal to π〈Rrx〉2. If Nrx(i) denotes

the number of RX grains appeared in the considered grain i, S3(i) can be estimated by
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πNrx(i)〈Rrx〉2, and θ can be finally approximated by :170

θ(i)'
(

πNrx(i)〈Rrx〉2
Si

)
, (9)

The number of RX grain Nrx(i) appeared in the grain i increases during the simula-

tion while the recrystallized mean grain size 〈Rrx〉 and the grain surface Si are quasi-

constant. To avoid values of θ(i) higher than 1, the final equation for θ(i) is defined

as:

θ(i)'min
(

πNrx(i)〈Rrx〉2
Si

,1
)
, (10)

3.2. Number of neighbors per grain175

The numbers of neighbors occupying the θa(i), θb(i) and (1 - θ)(i) surface fractions of

any ith grain are noted Nθa (i), Nθb (i) and N(1−θ)(i) respectively.

The number Nθa (i), representing the number of nuclei in the ith grain at the latest time

increment, is directly known at any instant of the simulation from Eq. 7. The reasoning180

leading to Eq. 10 can also be considered for the nuclei and leads to:

θa(i)'min
(

πNθa (i)r2
cr

Si
,1
)
. (11)

As such, θb(i) is deduced using the following relationship:

θb(i) = θ (i)−θa(i) (12)

Assuming that Eq. 11 is also available for θb, the number of RX neighbors Nθb (i) of

any ith grain can be estimated by the following relation :185

Nθb (i)'
(

θb(i)Si

π〈Rrx〉2
)
. (13)

The number of NR neighbors N(1−θ)(i) must also be estimated. As an approxima-

tion, the number of grains on the surface fraction (1− θ)(i) can be estimated using

a law from literature for describing steady state or quasi steady state microstructures.

Several kinds of laws have been proposed in the literature to estimate the number of
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neighbors of grains in steady state or quasi steady state 3D microstructures. DeHoff190

and Liu [28] have proposed a linear relationship between the number of neighbors and

the mean tangent diameter of grains in 3D microstructures, validated experimentally

by Liu et al. [29]. Abbruzese and Campopiano [30] proposed a quadratic relation-

ship between the number of neighbors and the normalized equivalent sphere radius of

a grain in 3D microstructures. This relationship has been validated by experimental195

investigations [29, 31] and numerical studies [32, 33, 34]. All the resulting curves are

presented on Fig. 4(b). The curves are globally close to each other. To reinforce this re-

lationship, an additional grain growth numerical simulation has been performed in 3D

using a full field method based on a level-set framework (DIGIMU R© software pack-

age) [35, 19]. An equiaxed microstructure with an average grain size of 100µm has200

been generated using a Laguerre-Voronoı̈ algorithm [36] and a the simulation of a heat

treatment at 1373K for 30min was performed using model parameters for a 304L steel.

Grain boundary mobility and energy are considered isotropic in the microstructure.

The resulting microstructure is composed of 2000 grains and the number of neighbors

of each individual grain is plotted as a function of its normalized equivalent sphere205

radius on Fig. 4(a) while the average number of neighbors is plotted as a function of

the normalized equivalent sphere radius on Fig. 4(b). The curve on Fig. 4(b) result-

ing from the full field simulation (DIGIMU R© software package) is close to the other

experimental and numerical curves of the literature, which reinforces the idea that a

general polynomial equation can correctly estimate the number of neighbors of grains210

as a function of their normalized equivalent sphere radius in steady state or quasi steady

state 3D microstructures. This polynomial dependence is used in the NHM to estimate

the number of neighbors N(1−θ)(i) at a given stage of the deformation process. This

relationship is given in Eq. 14.

N(1−θ)(i) =
(
4.06×ω

2
i +4.22×ωi +4.71

)
× (1−θ (i)), (14)

where ωi is the normalized grain radius defined by Ri/〈RNR〉.215
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Figure 4: Number of neighbors as a function of the normalized equivalent sphere radius. All investigations

were done on steady or quasi-steady state microstructures. a) Each blue dot represents a grain coming from

a full field simulation (DIGIMU R© software package) (b) Different curves issued from the literature and

from the DIGIMU approach. Those are obtained by least-square regression or by an average per topological

classes.

Thus the total number of neighbors of any ith grain noted Ntot(i) is given by :

Ntot(i) = Nθa (i)+Nθb (i)+N(1−θ)(i). (15)

3.3. Criteria for choosing neighbors

As soon as the quantities Nθb (i) and N(1−θ)(i) have been estimated for any ith grain

thanks to Eqs. 13, 14 respectively, the neighbors are chosen according to the following

criteria:220

• the neighbors in Nθa (i) are the nuclei appeared on the grain boundary of the ith

grain during the last time step.

• The neighbors in Nθb (i) are chosen randomly among all the other RX grains of

the microstructure.225

• The neighbors in N(1−θ)(i) are chosen randomly among the NR grains of the

microstructure.
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The choice of the neighbors in Nθb(i) and N(1−θ)(i) is made randomly but each grain

is weighted by its volume in order to be representative of real microstructures.

230

A bijectivity is imposed between a grain and its neighbors, meaning that if the ith grain

has the jth grain as neighbor, the jth grain has also the ith grain as neighbor. Thus when

the ith grain grows of a quantity dV(i,j) with respect to the jth grain, the jth grain shrinks

of a quantity -dV(i,j) with respect to the ith grain in order to ensure the bijectivity as

well as volume conservation.235

It is also worth noticing that the surface fractions θ (i) and (1−θ)(i) are only used to

identify the respective number of neighbors Nθb (i) and N(1−θ)(i). Even so, after the

random selection of the neighbors in Nθ (i) and N(1−θ)(i), it can exist a small error on

the fractions θ (i) and (1−θ)(i). However, this is not a strong assumption since a grain240

boundary surface is never exactly spherical in reality.

3.4. Reformulation of boundary migration equation

Since this new approach considers a particular neighborhood for each grain, Eq. 2 of

grain boundary migration presented in the first section has to be reformulated. First,

the volume change of the ith grain is computed according to the following equation in245

the NHM:

∆Vi =
Ntot(i)

∑
j=1

∆V(i,j), (16)

where ∆V(i,j) is the volume variation between the ith grain and its jth neighbors, defined

by the equation :

∆V(i,j) = Mb

(
δ (ε̇)τ(ρj−ρi)+βγb

(
1
Rj
− 1

Ri

))
SiΨ(i,j)∆t, (17)

where ρj and Rj denote the dislocation density and grain radius of a neighbor j of the

ith grain. Ψ(i,j) is the radius fraction of a grain j with respect to neighbors of i, aiming250

to redistribute the volume variation of the ith grain on its neighbors depending on their
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size. This quantity is estimated by the following relation:

Ψ(i,j) = Rj/
Ntot(i)

∑
k=1

Rk. (18)

Two flow charts summarizing the main algorithm of NHM as well as the implementa-255

tion performing boundary migration are presented for a single time step on Fig. 5(a)

and (b) respectively.
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(a) (b)

Figure 5: Flow charts representing (a) one time step of the main algorithm and (b) the way to perform

boundary migration in the NHM.
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4. Modeling of grain elongation

To our knowledge, mean field models of the literature [16, 17, 14] assume that the

grains remain spherical all along the deformation process. However, it is well-known260

that the grain shape evolves during deformation. In the case of necklace type nucle-

ation, the assumption of grains remaining spherical all along the deformation process is

a strong assumption that can effect the nucleation rate. Indeed, the nucleation rate V̇ de-

pends on the grain surface (Eq. 7) which can be underestimated when elongated grains

are supposed spherical. Full field models have the advantage of explicitly describing265

the grain shape evolution during deformation. To investigate the effect of grain shape

evolution on the recrystallization kinetics, several full field simulations of DRX have

been performed at different strain rates (0.01s−1 and 0.1s−1), with and without consid-

ering the topological deformation of the representative volume element (RVE) seeing

that the dislocation density evolution as well as the nucleation and grain growth mech-270

anisms were still modelled. Two snapshots of the simulations performed at a strain rate

of 0.01s−1 with and without considering the topological deformation of the RVE are

presented on Fig. 6. It is worth noting that the simulation presented on Fig. 6(c) makes

no physical sense but is only used here to illustrate the potential effect of grain shape

evolution on the recrystallization kinetics during DRX with a necklace nucleation. Re-275

crystallized fraction, mean grain size and mean dislocation density are presented as a

function of strain on Fig. 7 for the studied strain rates.
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 ε = 0 ε = 1 

ε = 1 

(a) (b) 

(c) 

Figure 6: Microstructural evolution during a full field simulation of DRX performed at a strain rate of

0.01s−1 (a) at the initial stage of the simulations (b) at ε = 1 with representing the topological deformation

of the RVE (c) at ε = 1 without representing the topological deformation of the RVE.
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Figure 7: Comparisons of the results obtained with the full field model described in [19], with and without

representing the topological deformation of the RVE. The conditions of deformation are a temperature of

1273K and two different strain rates of 0.01s−1 and 0.1s−1. The model parameters are those of a 304L steel.

The consideration of the topological deformation of the RVE has a clear influence on

recrystallization kinetics, mean grain size evolution and mean dislocation density evo-

lution. This can be explained by the fact that when the topological deformation of the280

RVE is modeled, the grain shape evolves from equiaxed to elongated, which increases

the grain boundary surface and thus the nucleation rate (Eq. 7). The following section

aims to enrich the NHM by modeling the evolution of principal lengths of the grains

(in the sense of idealized ellipsoid shapes) during a dynamic process.

285

In standard mean field modeling of DRX [14, 15, 17], each grain is defined by an equiv-
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alent sphere radius Ri and an average dislocation density ρi. In this section, grains are

assumed to evolve toward an ellipsoidal shape during the deformation process. Thus,

for each ellipsoidal grain i, a local coordinate system (~ei
1,
~ei

2,
~ei

3) that is aligned in the

three main directions of the ellipsoid is considered. Three values (a(i),b(i),c(i)) rep-290

resent the three principal semi-axis lengths of the ellipsoidal grain i in its local co-

ordinate system (~ei
1,
~ei

2,
~ei

3). Furthermore each grain is associated with an orientation

matrix Mi to express the canonical coordinate system (~x,~y,~z) in the local coordinate

system (~ei
1,
~ei

2,
~ei

3). Therefore, each grain i is now defined in the NHM by three semi-

axis (a(i),b(i),c(i)), a dislocation density ρi and a rotation matrix Mi. Thus its vol-295

ume can be deduced by Vi = (4/3)πa(i)b(i)c(i) and its equivalent sphere radius by

Ri = [(3Vi)/(4π)]1/3.

Considering any kind of solicitation, the macroscopic strain tensor E applied on the

material in the canonical coordinate system (~x,~y,~z) can be written as follows :300

E =




Exx Exy Exz

Eyx Eyy Eyz

Ezx Ezy Ezz

Therefore the local strain tensor Li in the coordinate system of a given ellipsoidal grain

i can be obtained by the following relation :

Li = MiEMt
i , (19)

The obtained local strain tensor Li can be written :

Li =




ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

This local strain tensor can be used in the considered ellipsoidal grain to update its three305

semi-axis (a(i),b(i),c(i)). However the obtained strain tensor Li is not necessarily
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diagonal and shear strain can be observed. In order to keep the grains ellipsoidal, only

the terms in Li that are in the diagonal are considered. This assumption means that

if only shear strain components are observed in the local strain tensor Li of a grain i,

its three semi-axis (a(i),b(i),c(i)) will not change. If ε is small enough at each time310

increment, the evolution of (a(i),b(i),c(i)) can be expressed as follows:

a(i)(t+∆t) = a(i)t(1+ ε11),

b(i)(t+∆t) = b(i)t(1+ ε22),

c(i)(t+∆t) = c(i)t(1+ ε33).

(20)

When a grain grows due to boundary migration (Eq. 2), its three semi-axis (a(i),b(i),c(i))

must also be updated. In this model, growth of a grain is assumed isotropic, thus the

three semi-axis (a(i),b(i),c(i)) of a grain i having undergone a variation volume are

updated following the relations :315

a(i)(t+∆t) = a(i)t×3

√
V (t+∆t)

i
V t

i
,

b(i)(t+∆t) = b(i)t×3

√
V (t+∆t)

i
V t

i
,

c(i)(t+∆t) = c(i)t×3

√
V (t+∆t)

i
V t

i
.

(21)

where V t
i and V (t+∆t)

i are the volume of the grain i at the instants t and (t +∆t) respec-

tively.

The evolution of principal lengths of a grain i during deformation leads to an increase

of its boundary surface. The grain boundary surface of any ellipsoidal grain can be320

calculated using incomplete elliptic integral of the first and second kind. However

to make it simpler and to decrease the computational cost, the surface of a grain i is

estimated using the relation [37] :

Si ' 2π(a(i)pb(i)p +a(i)pc(i)p +b(i)pc(i)p)1/p, (22)

where p =ln(3)/ln(2). This equation gives the surface of a general ellipsoid with a

relative error < 1.42%. With this approach, the grain boundary area of all grains will325
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increase during deformation and the constitutive equation of nucleation rate Eq. 7 will

be affected. This leads to an acceleration of the nucleation kinetics. In standard mean

field models in the literature [14, 15, 17], the initial microstructures are composed

of spherical grains. Thanks to this new formulation, it is now possible to perform a

DRX simulation on an initial microstructure composed of elongated grains, by defining330

particular initial values of (a(i),b(i),c(i)) for each grain i.

5. Comparison with full field results

In the present section, a recent published full field model of DRX [19] is used to

discuss the NHM results. This full field model [19] is based on the same constitutive

laws that are used in the present work for strain hardening, recovery and nucleation.335

The only difference between the full field model [19] and the present NHM is that the

microstructure is explicitly described in the full field methodology which means that

the comparison between both will indicate if the new microstructure description pro-

posed in the NHM is accurate. An illustrated case of a DRX simulation using the full

field model is presented on Fig. 8. The simulated process is a channel-die compression340

on a 304L steel at a temperature of 1273K and a strain rate of 0.01s−1.
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ε = 0 ε = 0.5 

ε = 1 ε = 1.5 

Figure 8: Illustrated case of a DRX simulation using the full field model [19]. The simulated process is a

channel-die compression on a 304L steel at a temperature of 1273K and a strain rate of 0.01s−1.
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Figure 9: Comparison of the results obtained by three different models: the full field model [19], the mean

field model of Beltran et al. [17] and the NHM proposed in this paper. Compared results are: (a) recrystal-

lized fraction (b) mean grain size, (c) mean grain size weighted by grain volume and (d) mean dislocation

density weighted by grain volume. The simulated process is a channel-die compression at 1273K, at two

different strain rates of 0.01s−1 and 0.1s−1.
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The results in terms of recrystallized fraction, mean grain radius and mean disloca-

tion density obtained from the mean field model of Beltran [17], the NHM and full

field simulations are compared on Fig. 9. The evolution of the recrystallized fraction345

and mean grain size weighted by volume obtained with the model of Beltran [17] are

quasi-linear for the two considered strain rates (see Figs. 9(a) and (c)). With the present

NHM, the recrystallized fraction follows an Avrami evolution (i.e. with a ”S” shape,

see Fig. 9(a)), which is commonly observed in experimental investigations of DRX

[38, 39]. Furthermore, evolutions of recrystallized fraction, mean grain size weighted350

by volume and dislocation density weighted by volume described with the NHM are

quite close to those described by the full field model. Finally, the evolution of the mean

grain size (see Fig. 9(b)) is correctly described with both the NHM and mean field

model of Beltran [17]. It is also observed that the recrystallization kinetics are always

faster in the full field case. This observation can be due to the fact that the surface S1(i)355

is approximated by the surface S3(i) in the NHM and model of Beltran [17] with S3(i)

< S1(i) (see Fig. 3), whereas S1(i) is explicitly taken into account in the full field case.

Thus the total boundary surface Φ considered in the nucleation rate (Eq. 7) is always

underestimated in the NHM and model of Beltran [17], leading to slower kinetics of

recrystallization.360

As already mentioned, a known drawback of pre-existing mean field models if that

they provide grain size distributions which do not match with experimental ones. The

grain size distributions obtained with the full field model, the NHM and the model

of Beltran [17] are compared on Fig. 10. These distributions are compared at four365

strain levels ε = 0.5, ε = 1, ε = 1.5 and ε = 2. The grain size distributions described

by the NHM are globally close to grain size distributions obtained with the full field

model. Furthermore, the grain size distributions obtained with the NHM are quite

wide and spread, which is characteristic of experimental distributions observed during

DRX [40]. The grain size distributions obtained with the model of Beltran [17] are370

more tight, which is the characteristic shape observed in the grain size distributions

predicted by standard mean field models [14, 15, 17]. This issue has already been

discussed in the state of the art [40] and is due to the particularity of Eq. 2. In fact,
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when nuclei appear during the simulation, they growth in the microstructure while

increasing their dislocation density by strain hardening. When they reach a given size375

and dislocation density, they decrease with respect to other nuclei recently appeared.

Therefore, the grains cannot growth more than a given size characterized by a high

peak on distributions provided by the model of Beltran [17] (see Fig. 10).
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Figure 10: Comparison of the grain radius distributions obtained with the full field model [19], the mean field

model of Beltran et al. [17] and the NHM. The simulated process is a channel-die compression at 1273K

during 200s at two strain rates 0.01s−1 and 0.1s−1 and interrupted at different strain levels ((a) to (d)).

As already mentioned, the great advantage of mean field models is their computational

cost. This gives them the possibility to be coupled with macroscopic finite element380

simulations to predict microstructural evolutions throughout the processed product. To

27



perform such coupling, many sensors must be placed onto or into the forged part (at

each integration points for example) to follow the thermomechanical path (tempera-

ture and strain rate as a function of time) at any point of the part during the finite

element simulation. Then, a mean field simulation is performed at each sensor using385

the recorded thermochemical path as input in order to predict the microstructure evo-

lutions. Since a mean field simulation is performed at each sensor, the computational

cost of a single simulation is very important to be able to perform a large number of

simulations on a relatively short time. The computational cost of a NHM simulation

mainly depends on the total number of classes, which is affected by the initial number390

of classes, the deformation step and the strain level. Therefore, several simulations us-

ing the NHM have been performed with three different initial number of classes (8, 16

and 24 classes) considering the same initial mean grain size. Resulting recrystallized

fraction, computational cost, mean grain radius as well as mean dislocation density

evolutions are presented on Fig. 11. The obtained results are not really dependant on395

the initial number of classes (see Fig. 11(a), (c) and (d)). However, the computational

cost seems to increase quite linearly with the initial number of classes (see Fig. 11(b)).

Thus, a number of 8 initial grain classes is a good compromise between low computa-

tional cost and converged results. It is worth mentioning that for this case, the number

of classes at the end of the simulation is around 90.400
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Figure 11: Sensitivity study of the initial number of grain classes on results obtained with the NHM : (a)

recrystallized fraction (b) computational cost (c) mean grain radius weighted by grain volume (d) mean

dislocation density weighted by grain volume.

Then several simulations using the NHM have been performed with an initial number

of 8 grain classes and by considering different deformation steps (∆ε = 0.01, ∆ε =

0.025 and ∆ε = 0.05). Results in terms of recrystallized fraction, computational cost,

mean grain radius as well as mean dislocation density are presented on Fig. 12. The

recrystallized fraction evolution obtained with the NHM with the three different defor-405

mation steps are quite similar (see Fig. 12(a)). However, the final value of the mean

dislocation density and mean grain size obtained with the NHM with a deformation

step of 0.05 is a bit different from those obtained with a deformation step of 0.01 or

0.025, the latter being close to each other. It is also observed that the computational
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cost is very dependant on the deformation step (see Fig. 12(c)). A simulation using a410

deformation step of 0.025 leads to computational cost significantly lower than using a

deformation step of 0.01. The influence of the deformation step on the computational

cost comes from the fact that the deformation step has a strong influence on the appari-

tion of new classes during the simulation. During nucleation, a new class is created

at each deformation step, thus the smaller the deformation step, the more new classes415

will be created during the simulation. A deformation step of 0.025 is retained as a good

compromise between converged results and low computational cost.
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Figure 12: Sensitivity study of the deformation step on results obtained with the NHM : (a) recrystallized

fraction (b) computational cost (c) mean grain radius weighted by grain volume (d) mean dislocation density

weighted by grain volume.

Finally, since the computational cost also depends on the strain level, the Fig. 13
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presents the evolution of the number of increments as well as the cumulated compu-

tational cost as a function of the true strain during a simulation using the NHM. A420

number of 8 initial classes as well as a deformation step of 0.025 were considered in

the simulation. First the evolution of the number of increments is linear up to a strain

level of 1.2 and then evolves faster. This increase is due to the strategy adopted in the

model of Beltran [17] and used in the NHM. The latter consists in adapting the defor-

mation step in order to avoid grains with a negative volume, which can appear with425

Eq. 2 or 17. This adaptation means that each deformation step can be discretized in

several increment during the simulation. The cumulated computational cost also in-

creases as a function of the true strain during the simulation. This evolution is slow up

to a strain level of 1.2 since the number of classes is still low at the beginning of the

simulation. Then the evolution of the computation cost increases faster up to the end430

of the simulation. This increases is due to the fact that the number of increments as

well as the number of classes are constantly increasing all along the simulation. The

global computational cost of the NHM simulation is still very low even at high level of

strain. Therefore if a finite element simulation of hot forging is composed of 50.000

integration, reaching a homogeneous strain level of 2, it is possible to simulate the mi-435

crostructural evolutions on the entire forged part in less than one week using the NHM,

which would have taken almost few years using a full field model.
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Figure 13: Number of increment and cumulated computation cost as a function of the true strain obtained

during a simulation using the NHM at a strain rate of 0.01s−1 and a temperature of 1273K. A number of 8

initial grain classes and a deformation step of 0.025 were considered.

6. Conclusion

A new topological approach called ”NHM” for NeighborHood Model is proposed

for the mean field modeling of dynamic recrystallization. The latter is based on two440

main improvements as compared to the state of art : (i) the consideration of a particular

neighborhood for each grain and (ii) the modeling of principal lengths of grains. The

results obtained by NHM are compared to those obtained by a former mean field model

[17] and non-negligible improvements are observed in terms of average quantities as

well as grain size distributions. A sensitivity study showed that the NHM is interesting445

in terms of numerical cost, which gives the opportunity to simulate the microstructural

evolutions on an entire forged part issued from a finite element calculation in less than
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one week. Despite large advances in terms of predictions as compared to former mean

field formulations, some improvements concerning neighbors choices can still be done

based on experimental investigations. Furthermore, an extension of NHM for post-450

dynamic and static evolutions is required to simulate multi-pass deformations.
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