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Abstract 11 

The transport of solid crystals in the liquid pool during solidification of large ingots is known 12 

to have a significant effect on their final grain structure and macrosegregation. Numerical 13 

modeling of the associated physics is challenging since complex and strong interactions 14 

between heat and mass transfer at the microscopic and macroscopic scales must be taken into 15 

account. The paper presents a finite element multi-scale solidification model coupling 16 

nucleation, growth and solute diffusion at the microscopic scale, represented by a single 17 

unique grain, while also including transport of the liquid and solid phases at the macroscopic 18 

scale of the ingots. The numerical resolution is based on a splitting method which sequentially 19 

describes the evolution and interaction of quantities into a transport and a growth stage. This 20 

splitting method reduces the nonlinear complexity of the set of equations and is, for the first 21 

time, implemented using the finite element method. This is possible due to the introduction of 22 

an artificial diffusion in all conservation equations solved by the finite element method. 23 

Simulations with and without grain transport are compared to demonstrate the impact of solid 24 

phase transport on the solidification process as well as the formation of macrosegregation in a 25 

binary alloy (Sn-5wt%Pb). The model is also applied to the solidification of the binary alloy 26 

Fe-0.36wt%C in a domain representative of a 3.3-ton steel ingot. 27 
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1.  Introduction 34 

The casting industry commonly faces difficulties in the production of products free from 35 

macrosegregation [1]. Microsegregation naturally takes place during solidification as a 36 

redistribution of the chemical species at the solid-liquid interface occurs, the result of 37 

thermodynamic equilibrium. Various processes take place which enhance segregation far 38 

from its interfacial origin including long range diffusion, liquid flow due to shrinkage, melt 39 

convection, solid deformation and transport of solid grains/fragments in the casting. The later 40 

induce macrosegregation from both solid and liquid transport over long distances. While these 41 

phenomena are difficult to avoid during conventional casting of metallic alloys, their 42 

magnitude needs to be controlled. The local average composition defined in a small 43 

representative volume must not deviate from the nominal composition of the alloy by more 44 

than a few percent, otherwise the properties could vary significantly and subsequent 45 

thermomechanical heat treatments may not be able to restore the desired properties 46 

everywhere in the product. This is true for various classes of metallic alloys, including large 47 

steel products [2]. Recently, efforts have been made to provide detailed experimental 48 

characterizations of macrosegregation in large steel ingots [3, 4, 5]. 49 

Numerical modeling of solidification accounting for the transport of the equiaxed grains at the 50 

process scale remains limited. Work was first done by Ni and Beckermann who proposed a 51 

volume-averaged model that consistently coupled microscopic phenomena with macroscopic 52 

transport [6, 7]. Other solidification models, based on similar principles, have also been 53 

developed [8-17]. In volume-averaged models the transport of solid equiaxed grains is 54 

described by grain population balances along with mass and solute mass conservation 55 

equations for the solid phase. These equations consist of contributions from advection at the 56 

macroscopic (process) scale and grain growth governed by diffusion and phase change 57 

phenomena at the microscopic (grain) scale. These are strongly coupled with the transport of 58 

heat, mass, chemical species and momentum in the liquid and solid phases. Identifying the 59 

complexity in solving the set of coupled equations, Založnik and Combeau [8] proposed an 60 

operator splitting scheme as a flexible method for integration of the macroscopic transport 61 

terms and the local growth terms. This method was successfully implemented to simulate 62 

large ingot casting [18]. Modeling and simulation of steel ingots is particularly demanding 63 

due to the size of the castings and the complexity of the multiphase flow, however, models 64 

and applications have been improving in recent years [19-23]. These models are based on the 65 

finite volume method (FVM), while the finite element method (FEM) has not yet been 66 

considered for volume-averaged multiscale modelling of solidification with transport of 67 

equiaxed grains. An implementation using FEM may be attractive for multiple reasons. First, 68 

FEM generally offers more flexibility and versatility than FVM in describing the boundaries 69 

of the domain to be analyzed, and defining the boundary conditions which prevail there. This 70 

is particularly true when considering structured FVM where the "staircase" effect along the 71 

boundaries is detrimental. FEM also offers opportunities to more simply couple with 72 

stress/strain structural analyses, eg. to model the occurrence of thermomechanical defects in 73 

solidified regions, as such analyses are generally also conducted using FEM [24, 25].  74 
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In this paper, a numerical FEM solidification model is presented, accounting for microscopic 75 

phenomena as well as for the motion of solid and liquid phases. First, the macroscopic 76 

conservation equations and the constitutive relations describing interfacial interactions and 77 

exchanges are summarized. The resolution method and the numerical implementation for the 78 

set of non-linear equations is then detailed. This implies introducing an artificial diffusion 79 

which deals with the discontinuities at the packing front by FEM. Numerical simulation using 80 

the current model is then performed to validate the numerical implementation. Results 81 

demonstrate an efficient FEM resolution scheme implemented for the purely convective 82 

transport problem, which is difficult to solve numerically by FEM in the absence of diffusive 83 

effects. 84 

2.  Two-phase model of solidification 85 

This section summarizes the governing equations taken into consideration in this case when 86 

modeling solidification in the presence of solid transport. The full nomenclature and a 87 

complete set of notations can be found in Appendix A. Eqs. (1)-(4) represent the conservation 88 

of total mass, momentum, solute mass and energy, respectively, for each phase 𝛼 (𝛼 = 𝑠 for 89 

the solid or 𝛼 = 𝑙 for the liquid phase) [8]. These macroscopic conservation equations are 90 

obtained by averaging the microscopic equations over a representative elementary volume 91 

(REV). A detailed derivation of the governing equations can be found elsewhere [6, 26]. 92 

Mass 
𝜕

𝜕𝑡
(𝑔𝛼〈𝜌𝛼〉𝛼) + ∇ ∙ (𝑔𝛼〈𝜌𝛼〉𝛼〈𝐯𝛼〉𝛼) = 𝛤𝛼 + 𝛷𝛼 (1) 

   

Momentum 
𝜕

𝜕𝑡
(𝑔𝛼〈𝜌𝛼〉𝛼〈𝐯𝛼〉𝛼) + ∇ ∙ (𝑔𝛼〈𝜌𝛼〉𝛼〈𝐯𝛼〉𝛼⊗ 〈𝐯𝛼〉𝛼) (2) 

 = −𝑔𝛼∇〈𝑝𝛼〉𝛼 + ∇ ∙ (𝑔𝛼〈𝛕𝛼〉𝛼) + 𝑔𝛼〈𝐛𝛼〉𝛼 +𝐌 
𝛤,𝛼 +𝐌 

𝑑,𝛼 +𝐌 
𝛷,𝛼  

   

Species 
𝜕

𝜕𝑡
(𝑔𝛼〈𝜌𝛼〉𝛼〈𝑤𝛼〉𝛼) + ∇ ∙ (𝑔𝛼〈𝜌𝛼〉𝛼〈𝑤𝛼〉𝛼〈𝐯𝛼〉𝛼) (3) 

 = − ∇ ∙ (𝑔𝛼〈𝐣𝛼〉𝛼) + 𝐽 
𝛤,𝛼 + 𝐽 

𝑗,𝛼 + 𝐽 
𝛷,𝛼  

   

Energy 
𝜕

𝜕𝑡
(𝑔𝛼〈𝜌𝛼〉𝛼〈ℎ𝛼〉𝛼) + ∇ ∙ (𝑔𝛼〈𝜌𝛼〉𝛼〈ℎ𝛼〉𝛼〈𝐯𝛼〉𝛼) (4) 

 = − ∇ ∙ (𝑔𝛼〈𝐪𝛼〉𝛼) + 𝑄 
𝛤,𝛼 + 𝑄 

𝑞,𝛼 + 𝑄 
𝛷,𝛼  

In the above equations (1)-(4), the notation 〈 𝛼〉𝛼 indicates the intrinsic volume average in 93 

phase 𝛼, 𝑔 denotes the volume fraction, 𝜌 the density, 𝐯 the velocity, 𝑝 the pressure, 𝛕 the 94 

deviatoric part of the stress tensor, 𝐛 the body force per unit volume, 𝑤 the solute mass 95 

concentration, 𝐣 the solute flux vector, ℎ the specific enthalpy, 𝐪 the heat flux vector. The 96 

right-hand side of the above equations gathers the exchange terms rising from different 97 

microscopic processes:  𝛤 denotes the mass exchange rate due to phase change, 𝛷 the mass 98 

exchange rate due to grain nucleation, 𝐌 the vector for interfacial momentum exchange, 𝐽 the 99 

solute exchange rate, and 𝑄 the heat exchange rate. The contributions of nucleation (terms 100 
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with superscript 𝛷) can be neglected compared to other terms in theses equations. The 101 

microscopic exchange contributions are modeled as follows, more detail can be found in 102 

Appendix B. 103 

due to phase change due to interfacial stresses or diffusion 

  

 𝐌𝛤,𝛼 = �̅�𝛼∗𝛤𝛼  𝐌 
𝑑,𝛼 = 𝜌𝛼𝑅𝛼𝑆v(�̅�

𝛼∗ − 〈𝐯𝛼〉𝛼)  

    

 𝐽𝛤,𝛼 = �̅�𝛼∗𝛤𝛼  𝐽𝑗,𝛼 = 𝜌𝛼
𝐷𝛼

𝛿𝛼
𝑆v(�̅�

𝛼∗ − 〈𝑤𝛼〉𝛼) 

    

 𝑄𝛤,𝛼 = ℎ̅𝛼∗𝛤𝛼  𝑄𝑞,𝛼 =
ҡ𝛼

𝑙𝛼
𝑆v(�̅�

𝛼∗ − 〈𝑇𝛼〉𝛼) 

Here �̅�∗, �̅�∗, ℎ̅∗, �̅�∗ are the average values over the interface, R is the momentum resistance 104 

coefficient, D is the solute diffusion coefficient,  is the characteristic solute diffusion length, 105 

ҡ is the heat conductivity, l is the characteristic heat conduction length, 𝑆v = 𝐴 𝑉𝑒⁄  is the 106 

interfacial area concentration in the REV considered, of volume 𝑉𝑒. 107 

The model is closed by balances of mass, momentum, solute, and heat at the solid-liquid 108 

interface: 109 

∑ 𝛤𝛼 + 𝛷𝛼

𝛼=𝑠,𝑙

= 0 ∑ 𝐌 
𝛤,𝛼 +𝐌 

𝑑,𝛼 +𝐌 
𝛷,𝛼

𝛼=𝑠,𝑙

= 0 (5) 

∑ 𝐽 
𝛤,𝛼 + 𝐽 

𝑗,𝛼 + 𝐽 
𝛷,𝛼

𝛼=𝑠,𝑙

= 0 ∑ 𝑄 
𝛤,𝛼 + 𝑄 

𝑞,𝛼 + 𝑄 
𝛷,𝛼

𝛼=𝑠,𝑙

= 0 (6) 

The population of grains is described by an average density per unit volume, N. The 110 

population balance equation writes: 111 

𝜕𝑁

𝜕𝑡
+ ∇ ∙ (𝑁〈𝐯𝑠〉𝑠) = �̇�  (7) 

where the nucleation rate is defined as:  112 

�̇� = {

𝑁0
𝛿𝑡

if     (𝑇 ≤ 𝑇𝑛𝑢𝑐𝑙) and (𝑁 = 0  or ∫ �̇�𝑑𝑡 = 0
𝑡

0

 )

0 otherwise

  (8) 

𝑁0 is the nucleation density, 𝛿𝑡 the time step, and 𝑇𝑛𝑢𝑐𝑙 the nucleation temperature. In Eq. (8) 113 

nucleation occurs under two conditions: The first nucleation event occurs when the local 114 

temperature drops below the nucleation temperature for the first time. Further nucleation 115 

events follow if the local grain density drops to zero (due to grain transport or remelting) and 116 
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the local temperature is below the nucleation temperature. The latter criterion is a heuristic 117 

treatment used to prevent unphysical results [11].  118 

In order to resolve the coupled microscopic and macroscopic phenomena, the microscopic 119 

exchange terms can be considered as source terms in the governing equations. The equations 120 

can then be integrated directly in a coupled way. However, due to the stiffness of the 121 

microscopic terms, such a solution scheme requires very small time steps. This makes the 122 

computation time realistically too long to simulate industrial sized castings. In the present 123 

work, an operator splitting method is applied to solve the entire system of equations [8]. 124 

According to this method, the phase fractions and solute compositions are considered to 125 

evolve in two subsequent stages: the macroscopic transport stage and the microscopic growth 126 

stage. When using this assumption, each stage can be numerically integrated by operating on 127 

different scales of time and space. Therefore, such a splitting technique provides an efficient 128 

way to solve multi-scale problems. This splitting method is used for the solution of the mass 129 

conservation equation for the solid, the conservation equation for the grain population density 130 

and the solute conservation equations for both phases. The method is summarized as follows: 131 

first, in the macroscopic transport stage, only variation due to the macroscopic transport is 132 

integrated, which is determined by solving Eqs.(9)-(11) on the global finite element mesh 133 

using a macro time step. This gives an intermediate quantity with index tr: 134 

𝜕𝑔𝑡𝑟
𝑠

𝜕𝑡
+ ∇ ∙ (𝑔𝑡𝑟

𝑠 〈𝐯𝑠〉𝑠) = 0 (9) 

  

𝜕𝑁𝑡𝑟
𝜕𝑡

+ ∇ ∙ (𝑁𝑡𝑟〈𝐯
𝑠〉𝑠) = 0 (10) 

  

𝜕(𝑔𝑡𝑟
𝛼 〈𝑤𝛼〉𝑡𝑟

𝛼 )

𝜕𝑡
+ ∇ ∙ (𝑔𝑡𝑟

𝛼 〈𝑤𝛼〉𝑡𝑟
𝛼 〈𝐯𝛼〉𝛼) = 0 (11) 

Second, in the microscopic growth stage, the contribution of microscopic processes, 135 

nucleation and growth, are integrated through Eqs.(12)-(14). These equations are solved, 136 

locally, at each node of the finite element mesh, leading to quantity with index gr: 137 

𝜕𝑔𝑔𝑟
𝑠

𝜕𝑡
=
𝛤𝑠 + 𝛷𝑠

𝜌𝑠
 (12) 

  

𝜕𝑁𝑔𝑟
𝜕𝑡

= �̇� (13) 

  

𝜕(𝑔𝑔𝑟
𝛼 〈𝑤𝛼〉𝑔𝑟

𝛼 )

𝜕𝑡
=
𝐽 
𝛤,𝛼 + 𝐽 

𝑗,𝛼 + 𝐽 
𝛷,𝛼

𝜌𝛼
 (14) 

A smaller time step (micro time step) must be used for the microscopic growth stage. The 138 

solution of the macroscopic transport stage is the initial condition for the integration of the 139 

microscopic growth stage. The sequence of both integration steps thus gives the solution over 140 
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a macroscopic time step. The whole modeling algorithm, using this splitting approach, is 141 

shown schematically in Figure 1. 142 

Each iteration 𝜈 begins with an implicit finite element resolution for energy and transport 143 

conservation equations in the transport stage by using a macro time step. This gives the 144 

solutions denoted with superscript 𝜈 + 1 and subscript 𝑡𝑟 when they are associated with the 145 

transport stage. Then the nucleation-and-growth stage is solved locally (i.e., at each node), 146 

with variables initialized by values obtained from the transport stage at 𝜈 + 1. This local 147 

resolution proceeds through micro time steps, assuming that the average quantities for the 148 

solid plus liquid mixture, composition 〈𝑤〉 = 𝑔𝑙〈𝑤𝑙〉𝑙 + 𝑔𝑠〈𝑤𝑠〉𝑠 and enthalpy 〈ℎ〉 =149 

𝑔𝑙〈ℎ𝑙〉𝑙 + 𝑔𝑠〈ℎ𝑠〉𝑠, no longer evolve during the macro time step. Finally, the momentum 150 

equations are solved with a semi-implicit solver on the macro time step to compute the new 151 

estimation of velocity fields of the liquid and the solid phases at iteration 𝜈 + 1. A complete 152 

evolution of the different quantities over the time step is evaluated by the final results 153 

obtained from the growth stage, as these solutions already include the change from the 154 

transport stage. The splitting scheme is only used to solve the evolution of phase fractions, 155 

grain density and solute concentrations since it involves very different scales of time and 156 

space. The resolution of the energy and momentum conservation equations do not require 157 

operator splitting because the constitutive relations coupling the micro- and macroscopic 158 

scales are simpler. 159 

Regarding the transport stage, Eqs. (9)-(11) are of pure convective nature, and notoriously 160 

difficult to solve numerically in the absence of diffusive effects. Moreover, another numerical 161 

difficulty arises from the discontinuity of transport velocities due to the solid packing 162 

phenomenon. Indeed, when forming a packed solid layer, solid grains suddenly change from a 163 

moving state to a fixed state. Solving these issues in the framework of FEM for solidification 164 

simulations remains an open issue and will be addressed in the following sections. 165 

  166 
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Figure 1. Schematic of the resolution algorithm using the splitting method. 

  167 
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3.  Treatment of discontinuities at the packing front by the FEM 168 

The solution of convection-dominated equations by FEM can encounter problems of 169 

unphysical oscillations, especially in zones with steep gradients. Different resolution 170 

techniques have been developed to overcome such issues: e.g. discretizing by upwind 171 

methods [27-29], by stabilized methods such as Streamline Upwind Petrov-Galerkin [30], 172 

Galerkin Least-Squares [31, 32], Residual Free Bubbles [33], or by using a corrected flux 173 

approach [34]. A specific complexity in the resolution of Eqs. (9)-(11) arises from 174 

discontinuities due to the solid packing phenomenon taking place at the interface between the 175 

liquid pool and the packed bed of solid grains. On one side, small grains move freely in the 176 

liquid phase, the solid fraction being smaller than a characteristic packing fraction. On the 177 

other side, grains accumulate and grow to form a steady and fixed packed zone, the solid 178 

fraction being higher than the packing limit. Discontinuities are then related to abrupt changes 179 

in the velocity and fraction of the solid phase. Therefore, an adaptive artificial diffusion is 180 

introduced to stabilize the finite element resolutions without unreasonably smearing results. 181 

This added diffusion detects and reduces discontinuities at locations where the solid phase is 182 

being packed. The added diffusion is then not present everywhere, it is restricted to critical 183 

zones of packing. The diffusion coefficient, 𝐷𝑀, as expressed below, consists of the gradient 184 

of solid velocities, i.e. a combination of the divergence of the average solid velocity ∇ ∙ 〈𝐯𝑠〉 185 

and the divergence of the intrinsic average solid velocity ∇ ∙ (〈𝐯𝑠〉𝑠), which contain 186 

information about the variation of the related quantities: velocity and fraction of solid phase. 187 

𝐷𝑀 = (ℎ𝑒
𝐯𝑠)

2
(𝛼 |∇ ∙ 〈𝐯𝑠〉| + 𝛽|∇ ∙ 〈𝐯𝑠〉𝑠|) (15) 

  

In this expression, ℎ𝑒
𝐯𝑠 denotes the characteristic size of element 𝑒 in the direction of the solid 

velocity 𝐯𝑠, as proposed in [24]: 

ℎ𝑒
𝐯𝑠 =

2‖𝐯𝑐𝑒𝑛𝑡𝑒𝑟
𝑠 ‖

∑ |𝐯𝑐𝑒𝑛𝑡𝑒𝑟
𝑠 ∙ ∇𝜑𝑖|

𝑁𝑛
𝑖

 (16) 

where 𝜑𝑖 is the interpolation function associated with node 𝑖, 𝐯𝑐𝑒𝑛𝑡𝑒𝑟
𝑠  is the solid velocity at 188 

the center of the element, and 𝑁𝑛 is the number of nodes per element. The coefficients 𝛼 and 189 

𝛽 allow control over the amount of diffusion in a direct way, thus offering more flexibility 190 

than an implicit diffusion introduced by the upwind method. An alternative option would be 191 

to use the divergence of the intrinsic solid velocity, ∇ ∙ 〈𝐯𝑠〉𝑠, and the solid fraction gradient, 192 

∇𝑔𝑠. However, the former expression is preferred because it does not exist without solid 193 

transport. Hence the model is still valid in cases without solid motion. The formulation of the 194 

coefficient 𝐷𝑀 is inspired by the work of Cook and Cabot who developed an artificial non-195 

linear diffusion using the entropy gradient to treat issues associated with discontinuities of 196 

temperature and mass fraction in supersonic reacting flows [35]. For the aforementioned 197 

issues experienced when simulating solidification there has, as of yet, been no relevant 198 

investigations. 199 

 200 
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It should be noted that it is necessary to use the same artificial diffusion coefficient for all 201 

relevant transport equations in order to ensure consistency between the transport of related 202 

quantities and the conservation of mass and energy. Consequently, the transport equations for 203 

solid phase, grain density and solute, derived from Eqs. (9)-(11), are modeled by Eqs. (17)-204 

(19). These equations are solved in the finite element framework using an implicit scheme in 205 

time and a weighted residual approach with P1 linear elements (triangles in 2D, tetrahedra in 206 

3D) and SUPG stabilization method. 207 

  208 

𝜕𝑔𝑡𝑟
𝑠

𝜕𝑡
+ ∇ ∙ (𝑔𝑡𝑟

𝑠 〈𝐯𝑠〉𝑠) − ∇ ∙ (𝐷𝑀𝛻𝑔𝑡𝑟
𝑠 ) = 0 (17) 

  

𝜕𝑁𝑡𝑟
𝜕𝑡

+ ∇ ∙ (𝑁𝑡𝑟〈𝐯
𝑠〉𝑠) − ∇ ∙ (𝐷𝑀𝛻𝑁𝑡𝑟) = 0 (18) 

  

𝜕(𝑔𝑡𝑟
𝛼 〈𝑤𝛼〉𝑡𝑟

𝛼 )

𝜕𝑡
+ ∇ ∙ (𝑔𝑡𝑟

𝛼 〈𝑤𝛼〉𝑡𝑟
𝛼 〈𝐯𝛼〉𝛼) − ∇ ∙ (𝐷𝑀𝛻(𝑔𝑡𝑟

𝛼 〈𝑤𝛼〉𝑡𝑟
𝛼 )) = 0 (19) 

3.1.  Formulation of Energy Conservation 209 

Regarding heat transfer, the equation for energy conservation, Eq.(4), for the solid (𝛼 = 𝑠) 210 

and for the liquid (𝛼 = 𝑙) phases, assuming thermal equilibrium between both phases in the 211 

REV, and introducing the added diffusion, the following mixture energy equation can be 212 

established: 213 

 214 

𝜌 [
𝜕〈ℎ〉

𝜕𝑡
+ ∇ ∙ (𝑔𝑡𝑟

𝑠 〈ℎ𝑠〉𝑠〈𝐯𝑠〉𝑠 + 𝑔𝑡𝑟
𝑙 〈ℎ𝑙〉𝑙〈𝐯𝑙〉𝑙) − ∇ ∙ (𝐷𝑀∇(𝑔𝑡𝑟

𝑠 〈ℎ𝑠〉𝑠 + 𝑔𝑡𝑟
𝑙 〈ℎ𝑙〉𝑙))] 

−∇ ∙ (〈ҡ〉∇𝑇) = 0 

(20) 

  

where the average enthalpy and thermal conductivity are defined by 215 

 216 

〈ℎ〉 = 𝑔𝑠〈ℎ𝑠〉𝑠 + 𝑔𝑙〈ℎ𝑙〉𝑙    and   〈ҡ〉 = 𝑔𝑠〈ҡ𝑠〉𝑠 + 𝑔𝑙〈ҡ𝑙〉𝑙 (21) 

Additional it is assumed that the densities of phases are constant and equal and that  the heat 217 

diffusion follows the Fourier law. Using this method, the phase fractions in the advection 218 

terms should be taken as those calculated in the transport stage, so that mass conservation is 219 

maintained [8]. In the present work, the enthalpy formulation of the energy equation is used. 220 

Like the preceding transport equations, the energy equation is solved in the framework of the 221 

finite element formulation with an implicit scheme for time integration as well as a weighted 222 

residual approach with P1 linear elements and SUPG stabilization method. 223 

 224 

3.2.  Formulation of Momentum Conservation 225 

 226 

Several assumptions are made when solving the momentum equations, including: 227 
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i. The phase densities are constant and equal, except for the buoyancy forces for which 228 

the liquid and solid densities are modeled as follows, respectively. 229 

 230 

𝜌𝐵
𝑙 = 𝜌𝑟𝑒𝑓[1 − 𝛽𝑇(𝑇 − 𝑇𝑟𝑒𝑓) − 𝛽𝑤(〈𝑤

𝑙〉𝑙 − 𝑤𝑟𝑒𝑓)] (22) 

  

𝜌𝐵
𝑠 =

𝜌𝑟𝑒𝑓
1 − 𝛽𝑠ℎ𝑟

 (23) 

 231 

ii. The pressure is assumed to be identical in the solid and liquid phases. 232 

 233 

〈𝑝𝑙〉𝑙 = 〈𝑝𝑠〉𝑠 = 𝑝 (24) 

 234 

iii. The liquid behaves as a Newtonian fluid with a constant viscosity. Neglecting the 235 

interfacial momentum transfer due to phase change, the divergence of the average 236 

deviatoric stress tensor is modeled as: 237 

 238 

∇ ∙ 〈𝛕𝑙〉 = 𝜇𝑙  ∇ ∙ (∇(𝑔𝑙〈𝐯𝑙〉𝑙) + ∇(𝑔𝑙〈𝐯𝑙〉𝑙) 
𝑇 ) (25) 

 239 

iv. The momentum transfer due to nucleation and growth is considered negligible relative 240 

to other terms, the momentum balance at the solid-liquid interface is thus described as: 241 

 242 

𝐌 
𝑑,𝑙 +𝐌 

𝑑,𝑠 = 𝟎 (26) 

 243 

Using these assumptions, the liquid momentum equation is derived as Eq. (27) from the 244 

general formulation for phase 𝛼, Eq. (2). 245 

 246 

𝜌 [
𝜕

𝜕𝑡
(𝑔𝑙〈𝐯𝑙〉𝑙) + ∇ ∙ (𝑔𝑙〈𝐯𝑙〉𝑙⊗ 〈𝐯𝑙〉𝑙)] 

= −𝑔𝑙∇𝑝 + 𝜇𝑙 ∇ ∙ (∇(𝑔𝑙〈𝐯𝑙〉𝑙) + ∇(𝑔𝑙〈𝐯𝑙〉𝑙) 
𝑇 ) + 𝑔𝑙𝜌𝐵

𝑙 𝐠 −𝐌𝑟𝑒𝑔𝑖𝑚𝑒
𝑑,𝑠

 

(27) 

  

where the momentum transfer due to the drag force is described as  

𝐌𝑟𝑒𝑔𝑖𝑚𝑒
𝑑,𝑠 = ℳ𝑟𝑒𝑔𝑖𝑚𝑒(𝑔

𝑙)2(〈𝐯𝑙〉𝑙 − 〈𝐯𝑠〉𝑠) (28) 

 247 

in which 248 

ℳ𝑟𝑒𝑔𝑖𝑚𝑒 =

{
 
 

 
 ℳ𝑠𝑙𝑢𝑟𝑟𝑦 =

3𝑔𝑠𝜇𝑙𝐶𝑑𝑅𝑒

4(𝑑𝑔)
2
(𝑔𝑙)3

in the slurry regime    (𝑔𝑠 < 𝑔𝑐
𝑠)

ℳ𝑝𝑎𝑐𝑘𝑒𝑑 =
180(1 − 𝑔𝑙)2𝜇𝑙

𝜆2
2(𝑔𝑙)3

in the packed − bed regime  (𝑔𝑠 ≥ 𝑔𝑐
𝑠)

 (29) 

where the solid-liquid interaction follows the model of Agarwal and O'Neill [36].  249 
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In the finite element context, solving the above equation, Eq. (27), and distinguishing the two 250 

regimes on a single discretized domain may cause numerical difficulties because of the 251 

assembly of dissimilar and irregular terms (i.e. slurry regime contributions and packed-bed 252 

regime contributions). In order to overcome this issue, a smoothing procedure was developed, 253 

similar to the one introduced by Plotkowski and Krane [15]. It consists in using a transition 254 

function, 𝛼𝑡, to switch the momentum transfer, 𝐌𝑟𝑒𝑔𝑖𝑚𝑒
𝑑,𝑠

, between the two regimes. The 255 

following expression is proposed for this transition function, which provides a compromise 256 

between having a sufficiently sharp change of regimes while avoiding an abrupt switch 257 

between them: 258 

𝛼𝑡 = 1 − 0.5(1 − 𝑡𝑎𝑛ℎ[𝛼0(𝑔𝑐
𝑠 − 𝑔𝑠)])  (30) 

  

where the value 𝛼0 = 100 is chosen, as plotted in Figure 2. 

 259 

 
 

Figure 2. Transition function 𝛼𝑡 vs. solid fraction supposing a packing solid fraction 

𝑔𝑐
𝑠 = 0.3. 

 260 

The liquid momentum equation can then be expressed as 261 

𝜌 [
𝜕

𝜕𝑡
(𝑔𝑙〈𝐯𝑙〉𝑙) + ∇ ∙ (𝑔𝑙〈𝐯𝑙〉𝑙⊗ 〈𝐯𝑙〉𝑙)] (31) 

 
= −𝑔𝑙∇𝑝 + 𝜇𝑙 ∇ ∙ (∇(𝑔𝑙〈𝐯𝑙〉𝑙) + ∇(𝑔𝑙〈𝐯𝑙〉𝑙) 

𝑇 ) + 𝑔𝑙𝜌𝐵
𝑙 𝐠

− [𝛼𝑡ℳ𝑠𝑙𝑢𝑟𝑟𝑦 + (1 − 𝛼𝑡)ℳ𝑝𝑎𝑐𝑘𝑒𝑑](𝑔
𝑙)2(〈𝐯𝑙〉𝑙 − 〈𝐯𝑠〉𝑠) 

 

Which is solved by a semi-implicit time integration and a weighted residual method, precisely 262 

by the P1/P1 velocity-pressure formulation stabilized with the Variational Multi Scale method 263 

[37]. In the equation for the conservation of solid phase momentum, the inertial and viscous 264 

terms are neglected [8]. Therefore, the solid momentum equation, which is only considered in 265 

the slurry regime, reduces to: 266 



12 
 

−𝑔𝑠∇𝑝 + 𝑔𝑠𝜌𝐵
𝑠𝐠 +ℳ𝑠𝑙𝑢𝑟𝑟𝑦(𝑔

𝑙)2(〈𝐯𝑙〉𝑙 − 〈𝐯𝑠〉𝑠) = 0 (32) 

From this equation, the solid velocity can be calculated locally, at each node of the finite 267 

element mesh. In order to avoid a sudden change of the velocity when solid packing occurs, a 268 

gradual transition is applied, by using the same switching function 𝛼𝑡 introduced in Eq. (30). 269 

Therefore the solid velocity is calculated at each node by: 270 

〈𝐯𝑠〉𝑠 = 𝛼𝑡 (〈𝐯
𝑙〉𝑙 +

𝑔𝑠(𝜌𝐵
𝑠𝐠 − ∇𝑝)

ℳ𝑠𝑙𝑢𝑟𝑟𝑦(𝑔
𝑙)2
) (33) 

 271 

 

Figure 3. Adjustment strategy for the velocity of convected grains in the vicinity of the 

packed bed. 

Furthermore, it is necessary to ensure that moving solid grains do not penetrate the 272 

preexisting packed bed, to avoid the solid fraction at the packing front exceeding the packing 273 

fraction. The velocity of the grains is therefore adjusted so that they land smoothly on the 274 

packed bed, i.e. reaching 〈𝐯𝑠〉𝑠 = 0 at the packing limit. The algorithm for this adjustment is 275 

presented in Figure 3. It consists first of the calculation of the distance that the grains would 276 

travel in the direction of the solid fraction gradient, moving with their current velocity during 277 

the time step. This settling distance is 〈𝑣𝑠〉𝑝𝑟𝑜𝑗
𝑠 ∆𝑡, where 〈𝑣𝑠〉𝑝𝑟𝑜𝑗

𝑠  is the projected solid 278 

velocity and ∆𝑡 the time step. Then the settling distance is compared to the distance between 279 

the grains and the packing limit, 𝑑𝑃−𝐿𝑖𝑚𝑖𝑡
 , defined by the packing solid fraction, 𝑔𝑐

𝑠. If the 280 
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settling distance is higher, the velocity is corrected by the factor 𝛼 as shown in Figure 3. This 281 

correction prevents the grains from traveling beyond the packing limit. 282 

4.  Verification of the adaptive artificial diffusion method for particle packing 283 

The model described above is sophisticated as it involves artificial diffusive terms in 284 

conservation equations, a smoothing procedure for the transition from a slurry regime to a 285 

packed bed regime in the momentum conservation, as well as an adjustment strategy for the 286 

convection of solid in the vicinity of the packed bed. Several studies are then needed to 287 

evaluate the numerical parameters of the model. The first of which is presented below for a 288 

1D sedimentation configuration where a simple analytical solution can be derived. 289 

4.1.  Test Case Description  290 

In order to test these new parameters, the model is first applied to simulate a one-dimensional 291 

(1D) sedimentation process, considering only transport and neglecting nucleation and growth 292 

processes. It consists in the settling of a predefined number of globular grains with equal and 293 

constant size at uniform and constant velocity. A schematic of the test is presented in 294 

Figure 4 and the 1D analytical solution is derived in Appendix D. The computational domain 295 

is two-dimensional (2D), with a width and length of 1 mm × 100 mm. There is no heat 296 

exchange through the boundaries of the domain. The velocities at the top and bottom faces as 297 

well as the normal velocities along the vertical walls are set to zero and a perfect slip 298 

condition is applied to the tangential velocities on the vertical walls, i.e. returning to the 1D 299 

configuration described in Appendix D. Initial conditions are given in Figure 4. The binary 300 

alloy Sn-5wt%Pb is considered, its thermophysical properties can be found in Appendix C 301 

[8]. The enthalpy is evaluated according to the solid fraction and the temperature. The 302 

simulation parameters are given in Table 1. 303 

The present test case is defined to benefit from the simple analytical solution shown in 304 

Figure 5 and Figure 6 at several times with dashed lines. The downward velocity of the 305 

settling grains is arbitrarily imposed to be a constant value in the unpacked region, equal to 306 

1 mm s
-1

 and directed toward the –y-axis. The corresponding upward liquid velocity in the 307 

unpacked region was computed and found to be constant, equal to 0.111 mm s
-1

, in agreement 308 

with the total mass balance. When the fraction of solid reaches 0.3 in the packed bed the 309 

velocity of the phases falls to zero. As there is no solidification, the fraction of solid cannot 310 

increase further. Conservation of the initial mass of solid thus defines the height of the packed 311 

bed. It reaches 20 mm once settling is complete. Also considering the adiabatic boundary 312 

conditions for heat transfer as well as the absence of phase change by solidification/remelting, 313 

the temperature is expected to remain constant and uniform throughout the simulation 314 

domain, equal to its initial value 498 K (224°C) shown in Figure 5 and Figure 6. Due to the 315 

formation of a packed bed of grains with solid fraction 0.3 in a liquid with intrinsic 316 

composition 5 wt% Pb, the average composition reaches 3.609 wt% Pb. Consequently, total 317 

mass conservation leads to an average composition above the packed bed in the initially two-318 

phase region equal to 5.464 wt% Pb. 319 
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Figure 4. Schematic of the 1D sedimentation test showing the 

sample geometry and initial distribution of solid grains. Additional 

conditions and simulation parameters are given in Table 1. 

 320 

 
Table 1. Simulation parameters for the 1D test 

case presented in Figure 4. 

 321 

4.2.  Analysis of Simulation Results  322 

The initial solid velocity is set to 1 mm s
-1

 for the vertical component in the downward 323 

direction. The liquid velocity is then determined by solving the momentum equation, Eq. (31). 324 

The results are presented in Figure 5 and Figure 6. Those obtained from the numerical 325 

simulation are shown as solid lines while those calculated by the analytical solution are 326 

dashed lines. The sedimentation process is illustrated in Figure 5-a as profiles of solid 327 

volume fraction at t = 0 s, 10 s (before grains reach the bottom of the domain), 30 s 328 
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(accumulation below the packing limit), and 60 s (end of packing). From the initial state, the 329 

solid grains fall downward while the liquid moves upward in such a way that the continuity 330 

equation is respected, shown in Figure 5-b and -c. Since the solid fraction in the two-phase 331 

region is 0.1, the liquid velocity is ten times smaller than the solid velocity. The first grains 332 

reach the bottom after 20 s and begin to accumulate until the packing fraction (chosen as 0.3) 333 

is reached. During the process, the change of the solid phase from the moving to the packed 334 

state has an impact on the liquid movement, which is revealed by the peaks of liquid velocity 335 

at the packing front. The sedimentation is complete after 60 s, although the solid and liquid 336 

velocities remain non-zero within a small layer where the gravitational force is balanced with 337 

the diffusive effect. This phenomenon is maintained due to the persistent gradient of the solid 338 

fraction at the transition interface between the solid packed bed and the solid-free region. 339 

 340 

The analytical and numerical results show similar trends, however, there exist differences 341 

between the two solutions. The differences found within the transition zones are due to 342 

diffusive effects. The simulation results contain an inevitable numerical diffusion and in the 343 

current case, at the boundary of the packed bed, an additional artificial diffusion. Furthermore, 344 

it can be observed that the solid fraction in the packed zone exceeds the predefined packing 345 

value of 0.3. This over accumulation is related to purely numerical issues when packing the 346 

solid phase and it will be discussed further in the next section. 347 

 348 

As grain motion also involves the transport of solute and heat, it is important to verify the 349 

consistency of all transported quantities. The profiles of the average composition in Figure 5-350 

d present consistent evolution during the sedimentation process. When solid grains settle 351 

(Figure 5-b), the solute-rich liquid moves upward (Figure 5-c) and fills the region left by the 352 

grains, leading to an increase of the average composition in the upper zone. The average 353 

composition of 3.609 wt% Pb in the bottom zone corresponds to the final state where there is 354 

about 30% solid at 0.364 wt% Pb and 70% liquid at 5 wt% Pb. Furthermore, as expected for a 355 

pure transport phenomenon, the temperature does not change during this process. Only a 356 

slight deviation from the initial temperature, smaller than 1 K, can be seen at 60 s, as shown 357 

in Figure 5-e. A good overall conservation of all quantities is verified, the maximal relative 358 

errors for the global solute mass and energy being about 10
-6

 and 10
-5

, respectively. 359 

 360 

4.3.  Effects of Artificial Diffusion 361 

 362 

Two simulations were performed in order to study the impact of the artificial diffusion term, 363 

by separately assessing the effect of the constant parameters introduced with variable 𝐷𝑀. In 364 

the first case, the coefficients are 𝛼 = 1 and 𝛽 = 0 while in the second one, 𝛼 = 0 and 𝛽 = 1. 365 

Figure 6-a, -b and -c present respectively the vertical profiles of solid fraction, average 366 

composition and temperature along the sample height for Case 1. In this case, the solid 367 

accumulation cannot be simulated since numerical problems occur when solid grains reach 368 

the bottom boundary, consequently the temperature does not remain constant and uniform 369 

throughout the domain. 370 

 371 
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These problems are overcome in Case 2, the results of which are shown in Figure 6-d, -e and 372 

-f. This reveals that the term related to the variation of the intrinsic velocity has a more 373 

important role in solving numerical singularities than the average velocity. An over-packing 374 

relative to the predefined fraction is also stated with a higher excessive quantity than when 375 

𝛼 = 20; 𝛽 = 1. This observation further shows the role of artificial diffusion in treating 376 

numerical issues related to the packing of solid, since the higher the added diffusion the better 377 

the simulation respects the predefined packing critical solid fraction. However, using high 378 

values of 𝛼 and 𝛽 lead to an excess of diffusion and produce unphysical solutions.  379 

 380 

This set of simulations confirms that numerical concerns of finite element resolution in the 381 

presence of sharp discontinuities of the transport velocity field in an absence of diffusion in 382 

hyperbolic equations can be solved by adding a supplementary diffusive component. It is 383 

nevertheless important to adjust the amount of additional diffusion to avoid unreasonably 384 

diffusing quantities. It was found that 𝛽 = 1 and 𝛼 between 20 and 70 can provide a good 385 

compromise between diffusion and instabilities. Values of 𝛼 = 20 and 𝛽 = 1 were then 386 

chosen to be used in the following simulations, where the entire solidification model is 387 

performed.  388 
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(a) (b) (c) 

   

     

 
(d) (e) 

 

  

Figure 5. Vertical profiles at times 0 s, 10 s, 

30 s and 60 s for (a) solid fraction, (b) solid 

velocity, (c) liquid velocity, (d) average 

composition and (e) temperature with 

parameter 𝛼 = 20; 𝛽 = 1. The analytical 

solution (dashed curves) is derived in 

Appendix D. 



18 
 

389 (a) (b) (c) 

   

(d) (e) (f) 

   

Figure 6. Vertical profiles at times 0 s, 10 s, 30 s and 60 s for (a, d) the solid fraction, (b, e) the average composition and (c, f) the temperature with (a-c) 

𝛼 = 1; 𝛽 = 0 and (d-f) 𝛼 = 0; 𝛽 = 1. The analytical solution (dashed curves) is derived in Appendix D. 
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5.  Modeling Applications – Macrosegregation Simulations 390 

The following section presents test cases, first a two-dimensional (2D) and then 391 

three-dimensional (3D) applications for the solidification of a small Sn-Pb ingot. The 392 

objective is to further test the model while maintaining small geometries. Finally, the model 393 

being validated, a simulation for a 3D steel ingot on the scale of an industrial process will be 394 

given in order to discuss the application to a real casting geometry and to identify future 395 

possible improvements of the model.  396 

5.1.  Two-dimensional Test Case  397 

5.1.1.  Description  398 

The studied case, presented in Figure 7, is configured according to the Hebditch-Hunt 399 

benchmark study [38]. A 100 mm x 60 mm cavity contains the same Sn-5wt%Pb alloy as in 400 

the previous sections, initially in the liquid state at 499.15 K (226 °C). Cooling takes place 401 

from the left side, an environment at 25 K, with a heat transfer coefficient of 300 W m
-2 

K
-1

. 402 

The rest of the boundary is assumed adiabatic. The simulation is performed with the complete 403 

model, which accounts for nucleation and growth processes, and transport phenomena, shown 404 

schematically in Figure 1. Nucleation happens at sites where the liquid is cooled below the 405 

liquidus temperature and where there are no existing grains. A homogenous grain density of 406 

10
9
 grains m

-3
 is generated. The transport of heat, mass, and solute is due to the motion of the 407 

solid and liquid phases, which are controlled by both thermo-solutal convection and 408 

sedimentation. It is assumed that there is no phase movement on the sides of the cavity 409 

(sticking contact with the boundary). The two-dimensional computation is carried out on a 410 

non-structured triangular mesh with a mean mesh size of 1 mm (including 15 143 elements 411 

and 7 730 nodes) and 10 micro time steps per a constant macro time step of 0.01 s. 412 

 413 

 
 

Figure 7. Schematics of the 2D cavity test for Sn-5wt%Pb alloy 

solidification showing the geometry and initial values. Simulation 

parameters are given in Table 2. 

 414 
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Table 2. Simulation parameters for the 2D test 

case presented in Figure 7. 

 415 

 

 
Figure 8. Simulations for the 2D cavity test for Sn-5wt%Pb alloy solidification showing 

snapshots at time 10 s with the present finite element model (left column, FE) and with a 

reference finite volume model [8] (right column, FV): (a) solid fraction , 𝑔𝑠, and intrinsic solid 

velocity vectors, 〈𝐯𝑠〉𝑠, (b) temperature, 𝑇, and intrinsic liquid velocity vectors, 〈𝐯𝑙〉𝑙. Black 

curves are isolines of solid fraction (0.1; 0.2; 0.3). The simulation case is defined in Figure 7 and 

Table 2. 

 416 

5.1.2.  Results and discussion 417 

Figure 8 presents the results at t = 10 s, including (a) solid fraction map and solid velocity 418 

vectors; (b) temperature map and liquid velocity vectors. The three black isolines represent 419 

the solid fractions 0.1 (upper isoline), 0.2 (intermediate) and 0.3 (lower). It can be observed in 420 

Figure 8-a that after nucleation along the left cooled wall, solid grains settle to the bottom 421 

under the combined effect of gravity and downward solutal convection. Some of the grains 422 

that are still small are directly transported towards the right wall, they then continue to be 423 

carried by the liquid and move upward to about mid-height of the specimen. Due to the 424 

transport and settling of solid grains, a layer of packed grains begins building up along the 425 
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bottom of the specimen. Meanwhile, the coolest zone is observed on the left side of the 426 

cavity, as illustrated by the temperature map in Figure 8-b, clearly showing that the solid 427 

fraction distribution is not directly related to the temperature when accounting for solid 428 

transport. Moreover, the similarity between the solid and liquid velocities shows a strong 429 

interaction in the motion of the two phases. These results can be compared with those 430 

obtained by the finite volume model developed by Založnik and Combeau [8] and 431 

implemented in the finite volume code SOLID using the same average mesh size. The finite 432 

element simulation (FE, Figure 8-a and –b, left column) and the finite volume simulation 433 

(FV, Figure 8-a and –b, right column) produce very similar distributions for the different 434 

variables. However, differences between the FE and FV solutions can be observed and will be 435 

discussed further.  436 

 437 

Figure 9 displays the time evolution of the distribution of the average solute composition. As 438 

for Figure 8, the FE results are presented in the left column and the corresponding FV 439 

solutions in the right column. After 10 s of solidification, negative segregation forms at the 440 

bottom, while a large area of the cavity still remains at the initial composition of 5 wt%. The 441 

rejection of Pb from the solid phase during solidification enriches the liquid, increasing its 442 

density. However, the bottom area is occupied by the solid phase, composed of solute-443 

depleted grains, even denser than the solute-rich liquid. Accordingly, a negative segregation 444 

layer progressively builds up from the bottom side, observed from 10 to 20 s. Additionally, it 445 

can be observed that the transition between the slurry zone, which is at a solid fraction of 446 

~ 0.1, and the packed layer at a solid fraction of around 0.3, is rather thin. Such a narrow layer 447 

also indicates a prompt transition between the two flow regimes. While the solid velocity in 448 

the stationary packed bed is zero, an inter-granular liquid flow through the permeable packed 449 

bed persists. This flow creates a semicircular anti-clockwise circulation that brings solute 450 

from the upper to the lower regions of the packed bed in the left part of the domain, and from 451 

the lower to the upper regions in the right part. The resulting macrosegregation can be seen at 452 

time 200 s in Figure 9-c: the average composition map shows that a large area in the 453 

stationary mushy zone has a negative segregation which results from accumulation of solute-454 

depleted grains. However, the average composition is not uniform. At the very bottom of the 455 

cavity, there is an accumulation of solute which results from intergranular melt flow localized 456 

along the bottom wall and oriented in the direction of the temperature gradient. In the left part 457 

of the packed layer the negative segregation is amplified by the flow of intergranular liquid, 458 

which is oriented against the temperature gradient in this region. As the process advances, the 459 

channel continues to extend along the bottom side.  460 

 461 

When comparing FE and FV methods, the map produced at the end of solidification shows a 462 

similar tendency of segregation formation, including the negative segregation located in the 463 

left zone of the cavity and the positive channel formed at the bottom. However, the FE 464 

solution produces a less marked negative segregation, and a larger positive channel along the 465 

bottom wall. Additionally, in the upper zone of the cavity, the FE solution shows positive 466 

segregation near the upper-left corner and a slightly negative segregation nearby. In this 467 

region, the FV computation produces positively segregated channels with higher solute 468 

content, distributed horizontally and alternating with negatively segregated zones. Differences 469 
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between these two results can be partly explained by the influence of numerical factors. 470 

Because of the extremely high nonlinearity of the problem, any differences in the numerical 471 

solution methods can lead to noticeable differences between the solutions. The artificial 472 

diffusion used in the FE method inevitably leads to smoothing of the macroscopic fields and 473 

thus to a smaller degree of segregation than in the FV solution. In addition, many other 474 

factors, including discretization schemes, iteration procedures, etc., can be the cause of the 475 

differences between the FE and the FV results. The reader interested in such aspects can refer 476 

to literature in the context of simulations with a fixed solid phase [39, 40]. 477 

 478 

When considering the distribution of solid grains it is useful to look at the distribution of grain 479 

density in Figure 10 at different instants. At 10 s, 20 s, and 200 s, it can be first observed that 480 

a large number of grains are gathered in the packed layer. It can also be seen that the transport 481 

of crystals by liquid advection induces several zones of significant grain density in the slurry 482 

region. As solid grains are transported, such a heterogeneous distribution is expected. 483 

Although the results obtained from the FE and FV methods are still very similar at t = 10 s, 484 

larger differences between the two solutions are perceived later on. Compared to the FV 485 

results, a higher grain density in the right region is predicted by the FE simulation. It is known 486 

that the number of grains is governed and influenced by different coupled processes, 487 

consisting of nucleation, transport, re-melting and re-nucleation mechanisms. Although the 488 

physical parameters and the numerical procedure for nucleation are identical in both 489 

simulations, the larger quantity of grains in the FE solution might be caused by a higher 490 

frequency of nucleation events at nodes that were emptied of grains because of transport or 491 

remelting. Nevertheless, further investigations should be carried out, as the sources of those 492 

differences still remain unconfirmed. Despite these differences, clear similarities between 493 

both results can be observed, including a high grain density in the lower-right corner and a 494 

low grain density in the upper-left corner at the end of solidification.   495 
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Figure 9. Simulations for the 2D cavity test for Sn-5wt%Pb alloy solidification showing 

maps of average Pb composition (wt%) at (a) 10 s, (b) 20 s, (c) 200 s, and (d) the end of 

solidification for the finite element (FE) and the finite volume (FV) simulations. Black 

curves are isolines of solid fraction (0.1; 0.2; 0.3). The simulation case is defined in 

Figure 7 and Table 2. 

 496 

  497 
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Figure 10. Simulations for the 2D cavity test for Sn-5wt%Pb alloy solidification showing 

maps of grain density (m
-3

) at (a) 10 s, (b) 20 s, (c) 200 s, and (d) end of solidification for 

(FE) the finite element simulation and (FV) the finite volume simulation. The simulation 

case is defined in Figure 7 and Table 2.  

 498 

  499 
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5.2.  Three-dimensional Test Case 500 

5.2.1.  Description 501 

A case was developed to simulate macrosegregation in three dimensions. The case considered 502 

is an extension of the previous 2D case, giving the cavity a thickness of 10 mm in the third 503 

dimension. Due to symmetry, the computational domain occupies one half of the thickness of 504 

the specimen, as shown in Figure 11-a. The two largest surfaces are the median plane with 505 

symmetry conditions (numbered 6 in the figure, further denoted P6), and the front wall with a 506 

no-slip condition (plane numbered 3 in the figure, further denoted P3). Heat is extracted from 507 

the left wall, others being assumed adiabatic. The calculation is performed on a non-508 

structured mesh with a uniform mesh size of 1 mm, (294 935 elements and 57 626 nodes) and 509 

using a constant macro time step of 0.01 s and five micro increments per macro time step. 510 

 511 

 

Figure 11. Schematics of the 3D cavity test for Sn-5wt%Pb alloy 

solidification showing the geometry and initial values. Simulation 

parameters are given in Table 3. 

 512 

 
Table 3. Simulation parameters for the 3D test case 

presented in Figure 11. 

 513 

5.2.2.  Results and discussion 514 

Figure 12 presents the different fields along three horizontal planes and the vertical median 515 

plane at time 10 s. Comparison is possible with 2D simulations presented in Figure 8-a 516 
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(Figure 12-a and -f), Figure 8-b (Figure 12-c and -e), Figure 9-a (Figure 12-b) and 517 

Figure 10-a (Figure 12-d). Results show very similar trends. However, it can be observed 518 

that the distributions of variables are non-uniform within the thickness of the 3D geometry. In 519 

the solid fraction maps (Figure 12-a), across the horizontal planes, it can be seen that the 520 

solid zone advances further along the specimen walls (plane P3) than in the interior. Thus the 521 

iso-surface of solid fraction exhibits a concave shape in the central zone of the cavity. This 522 

phenomenon can be explained by considering the distributions of other quantities since all 523 

relevant variables are closely related. First, as seen on the maps of velocities (Figure 12-e and 524 

f), there is no motion of neither solid nor liquid along the walls due to the no-slip boundary 525 

conditions. Because the grains remain attached to the cavity walls and do not settle, the solid 526 

fraction is higher than in the interior of the cavity (plane P6). The solid and liquid phases are 527 

not constrained in the immediate vicinity of the external surfaces. With a high quantity of 528 

mobile solid grains, the settling velocity is thus stronger there than that in the central zone as 529 

observed on the solid velocity map (Figure 12-f). This solid motion then enhances the 530 

downward movement of the solute-enriched liquid phase. Comparison of the maximum 531 

velocities at 10 s is possible, showing (2D, solid phase) 40.4 mm s
-1

 versus (3D, solid phase) 532 

41.0 mm s
-1

 and (2D, liquid phase) 39.6 mm s
-1

 versus (3D, solid phase) 31.5 mm s
-1

. In both 533 

cases, the location of the highest velocities for the solid and liquid phases are very close. The 534 

solid velocity being directly computed from eq. (33) by neglecting the inertial and viscous 535 

terms, i.e. only accounting for the solid-liquid interaction through the transferred momentum 536 

due to interfacial stresses, maximum values are almost equal in the 2D and 3D simulations. 537 

However, a lower value is found in the 3D simulation for the maximum velocity of the liquid 538 

phase. This is due to the interaction of the liquid flow with the two largest cavity walls (plane 539 

P3 and its symmetric), not accounted for in the 2D approximation. Thus, the transport of the 540 

liquid phase by the solid phase, while being obviously present, plays a less important role in 541 

comparison to the 2D approximation.  542 

It is also interesting to observe the distribution of the flow in the horizontal cross sections. 543 

The maximum velocities for both phases are not observed at the symmetry plane of the cavity. 544 

Instead they are localized at about 1/3 of the half-cavity thickness from the cavity surfaces. 545 

This uneven distribution is enhanced when successively considering the cross sections from 546 

top (height 57 mm) to bottom (height 17 mm). Figure 12-d shows that grains are present far 547 

ahead the vertical solid front shown in Figure 12-a as nucleation is taking place at the 548 

liquidus temperature 498.72 K (225.57 °C). Note that the map of the presence of grain in 549 

Figure 12-d is coherent with the temperature map given in Figure 12-c and the position of 550 

the liquidus isosurface. The solid fraction thus remains very low in a large undercooled zone, 551 

as shown when comparing Figure 12-a with the liquidus position – or the nucleation front in 552 

Figure 12-d –. This is due to the very low driving force for growth at low undercooling. 553 

Consequently, liquid flow is possible in this undercooled region, and is stronger in the vicinity 554 

of the symmetry plane. Transport of Pb solute that segregates between the grains is also 555 

preferentially taking place in the vicinity of the symmetry plane, explaining the isocontour 556 

drawn in Figure 12-b, concave along the vertical growth front and convex in the bottom right 557 

region of the cavity. Close to the cavity walls, the sedimentation of the grains is the main 558 

cause for the liquid flow, leading to liquid velocity higher than at the center of the cavity.   559 
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Figure 12.  Simulations for the 3D cavity test for Sn-5wt%Pb alloy solidification showing snapshots at 10 s in the 

vertical symmetry plane and in 3 horizontal transversal planes at heights 17 mm, 37 mm, and 57 mm from the 

bottom. Variables drawn are (a) solid fraction, (b) average composition, (c) temperature, (d) grain density, (e) liquid 

velocity, and (f) solid velocity. Black iso-lines in the planar representations are (a) 𝑔𝑠 = {0.02 ; 0.03}, (b) 〈𝑤〉 =
{5.04 ; 5.06 ; 5.08} wt%Pb, (c) 𝑇 = {494.15 ; 495.15 ; 497.15 } K ({221 ; 222 ; 224 } °C) and (d) 𝑁 = {2 ;  3} 108 

grains m
-3

. Iso-surfaces in the four top views are defined by (a) 𝑔𝑠 = 0.01, (b) 〈𝑤〉 = 5.02 wt%Pb , (c) 𝑇 =
496.15 K (223 °C) , and (d) 𝑁 = 107 grains m−3. Velocity vectors in the bottom views are only displayed in the 

symmetry plane. The simulation case is defined in Figure 11 and Table 3. 
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Figure 13 displays the evolution upon solidification of the iso-surfaces of the average 560 

composition. The formation of a segregated channel at the bottom of the cavity is revealed. It 561 

forms first around the central zone of the cavity where the movements of the solid and liquid 562 

phases are not limited, unlike those restricted on the external surfaces. Inside the cavity, there 563 

always exists, until the end of the solidification process, some liquid flow that circulates 564 

through the packed bed and transports the solute from the upper to the lower regions, although 565 

its intensity is significantly reduced in comparison with the slurry zone. Consequently, the 566 

free recirculation of inter-granular flow enriched in the heavy element Pb leads to the 567 

formation of a positively segregated channel with a high solute content in the interior domain. 568 

When the process advances, this channel becomes a preferential path for the liquid phase and 569 

continues to expand along the width of the cavity (following the direction of inter-granular 570 

flow) as well as to develop in the thickness of the cavity with a content decreasing 571 

progressively when approaching the lateral surface. The various distribution of solute 572 

composition, in turn, induces different rates of solidification in the cavity, resulting in 573 

subsequent heterogeneities of quantities in all three dimensions.  574 

 575 

  

  
Figure 13. Simulations for the 3D cavity test for Sn-5wt%Pb alloy solidification showing 

snapshots of the average composition at times (a) 150 s, (b) 200 s, (c) 250 s, and (d) 300 s. 

Iso-surfaces are displayed for 3, 4, 7, 9, and 10 wt%Pb. Iso-lines on the plane at height 20 

mm from the bottom are from 3 to 4.2 wt%Pb with equi-interval of 0.1 wt%Pb). The 

simulation case is defined in Figure 11 and Table 3. 

 576 

  577 
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5.3.  Three-dimensional Simulation of an Industrial Steel Ingot 578 

5.3.1.  Description 579 

The numerical model is now applied to predict macrosegregation in an industrially cast steel 580 

ingot as produced by the company Aubert & Duval. Physical features and alloying 581 

components of the casting are detailed in [18], while its schematic is illustrated in Figure 14-582 

a. The bottom and lower region of the steel ingot are cooled via a mold while the upper region 583 

is surrounded by an insulating refractory material. The top surface is covered by a layer of 584 

exothermal powder. The mold outer surface thermally exchanges with the environment by 585 

convection and radiation.  586 

 587 

For the current study, the steel is considered as a binary alloy composed of an iron base and a 588 

0.36wt% nominal carbon content, which plays a dominant role in determining buoyancy force 589 

compared to other chemical elements [18]. A simulation is performed on one quarter of a 590 

cylinder (0.3 m radius and 1.8 m height), an approximation of the octagonal cross-section of 591 

the real ingot, which is bounded by two symmetric planes (P2 and P3 in Figure 14-b). The 592 

heat exchange through the mold and the refractory – not represented in the simulation – is 593 

modelled by applying Fourier type boundary conditions to the cylindrical surface and bottom 594 

region of ingot (P5 and P4 in Figure 14-b). Two different convective heat transfer 595 

coefficients are used: ℎ𝑒𝑥𝑡_𝑠𝑢𝑝 =  700 W m
-2

 K
-1 

in the upper zone of the cylindrical part (0.4 596 

m depth from the top) representing a limited heat extraction through refractory and 597 

ℎ𝑒𝑥𝑡_𝑖𝑛𝑓  =  1000 W m
-2

 K
-1

 in both the lower zone (1.4 m height from the bottom) and the 598 

bottom surface, representing faster cooling via the grey iron mold. The top surface (P1 in 599 

Figure 14-b) is assumed to be adiabatic as the thermal cooling is restrained by use of the 600 

exothermal powder layer. At the beginning of the simulation, the ingot is assumed to be 601 

already filled by the liquid alloy at 1776.15 K (1503 °C). The exterior temperature is modeled 602 

to be gradually changed during the process: beginning at 900 K (626.85 °C) until 2000 s, then 603 

imposed to be 300 K (26.85 °C) when the cooling time is over 4000 s, and decreased linearly 604 

with time during the intermediate period. Grain nucleation is modeled following an 605 

instantaneous nucleation law with an initial density of 109 grains m−3 and a nucleation 606 

undercooling of 10−3 K. Crystals are assumed to be blocked when the solid fraction reaches a 607 

packing value of 0.4. In this investigation, only equiaxed spherical crystals are considered. 608 

The simulation is carried out with a uniform mesh size of 20 mm and a constant time step of 609 

0.01 s. 610 

5.3.2.  Results and discussion 611 

Figure 15 presents the velocities of liquid and solid phases in a vertical cross-section, for 612 

which the vectors indicate the velocity direction and the color reflects the velocity magnitude. 613 

The three upper sub-figures (a-c) are for the liquid phase and the lower (d-f) for the solid 614 

phase. The pink surface displays the packing limit interface at a solid fraction of 0.4, below 615 

which solid grains are blocked and piled up from the bottom to this interface. Additionally, 616 

the tangential component of velocities is also illustrated in four transversal cross-sections at 617 

0.4, 0.8, 1.2 and 1.6 m from the ingot’s bottom.  618 
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 619 

 

 
(a) (b) 

Figure 14. Schematics of the 3.3 ton steel ingot cast by Aubert & Duval [18] presenting 

(a) dimensions and materials and (b) simulated settings. Simulation parameters are given in 

Table 4. 

 620 

 
Table 4. Simulation parameters for the ingot case 

presented in Figure 14. 

 621 

As it can be observed in these figures, the flow descends along the cooled side and ascends 622 

along the centerline, resulting in a global circulation loop in the shape of an elongated torus. 623 

The maximum velocity is around 150 mm/s along the cooled wall. The persistence of this 624 

circulation loop is remarkable and its flow direction is the reverse of the direction observed 625 

when solid transport is not taken into account. If the solid is assumed to be fixed to the mold, 626 

the flow is driven only by natural convection induced by density differences in the liquid. The 627 
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density of the liquid depends on the temperature and on the chemical composition; the 628 

concentration of carbon is most important when compared to all solutes in the 629 

multicomponent steel [18]. In the mushy zone the liquid density decreases with decreasing 630 

temperature because the liquid is enriched in carbon as solidification progresses. This creates 631 

a lateral liquid density gradient from the cooled walls towards the core of the casting, which 632 

drives the thermosolutal natural convection. If the solid is fixed, lighter liquid ascends along 633 

the walls and heavier liquid descends in the core. When solid grains move, the flow is 634 

completely modified. Solid crystals, heavier than the liquid, sediment along the cooled walls 635 

and entrain the liquid, thus inducing a downward flow. This phenomenon leads to an overall 636 

flow loop descending at the solidification front and ascending in the ingot core. This clearly 637 

shows that besides the thermo-solutal effect the solid transport plays a significant role in the 638 

formation of the natural convective flow during solidification. Moreover, the motion of solid 639 

and liquid are strongly coupled; the moving phases can entrain one another via drag forces.  640 

 641 

The predicted flow structure is clearly three-dimensional and is not axisymmetric, although a 642 

four-fold symmetry is implicitly assumed by the choice of the computational domain. The 3D 643 

structure of the flow is indicated in the horizontal slices of Figure 15, showing the tangential 644 

velocity component for both phases. It is around one order of magnitude smaller than that of 645 

the vertical velocities. The 3D structure is even more clearly observable on the shape of the 646 

packing front (pink surface in Figure 15) and in the distribution of macrosegregation, shown 647 

in Figures 16–17. It is possible that a certain degree of destabilization is induced by the 648 

numerics due to the use of a relatively coarse mesh size (20 mm).  649 

 650 

Figure 16 presents the distribution of solid fraction (a-c) and of average composition (d-f) at 651 

different instants (10, 100 and 200 s). It can be seen that in the beginning of the process (at 652 

time 10 s) the whole population of grains are transported and sediment at quite high speed 653 

(about 150 mms
-1

) along the cooled wall. Despite a higher solid fraction near the wall (which 654 

can be seen in the transverse cross-sections) there is no permanent solid layer attached to this 655 

cooled wall. Additionally, in the velocity maps in Figure 15 it can be seen that after sinking 656 

to the bottom along the cooled side, the mobile solid phase is transported towards the center 657 

zone by liquid flow. In this way, solid grains coming from the outer solidified region first 658 

accumulate at the center area and then extend to the side wall, resulting in a packed solid built 659 

up from the bottom side. Since solute-depleted grains settle and occupy the lower zone, the 660 

liquid enriched in solute is ejected upwards. This gives rise to the formation of a negative 661 

segregation cone in the lower zone of the ingot, as shown in Figure 17-a. This is a typical 662 

phenomenon experimentally found in steel ingots. Figure 17-b shows the segregation profiles 663 

at the ingot center. The blue curve is obtained from the present numerical solution and can 664 

reproduce the general trend measured experimentally and represented by red points: negative 665 

segregation in the lower zone and positive segregation in the upper zone. Nevertheless, the 666 

numerically calculated segregations are more severe than those measured: it can be noted that 667 

the simulation predicts a negative segregation which is more pronounced than that of the one 668 

measured, whereas the calculated positive segregation is less intense than measured. The 669 

discrepancy between numerical and experimental results may be caused by different factors. It 670 

should be noted first that approximated boundary conditions were used in the absence of mold 671 
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and refractory. In addition, other factors were neglected, such as the dendritic morphology of 672 

solid grains, the simultaneous presence of columnar and equiaxed grain structures, and the 673 

shrinkage phenomenon. As an illustration, the investigation accounting for (orange curve in 674 

Figure 17-b) globular grain morphology with a 2D-FVM [18] is shown in Figure 17-b. It 675 

reveals larger deviation from the measurements compared to the present 3D-FEM simulation. 676 

However, when compared with (green curve in Figure 17-b) dendritic morphology of solid 677 

crystals performed with a 2D-FVM implementation [18], clear improvement is seen and the  678 

prediction of segregation comes closer to experimental data. 679 

  680 
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Figure 15. 3D FEM simulation of the solidification of a binary Fe-0.36wt%C alloy. 

Calculated velocities of (a-c) the liquid phase and (d-f) the solid phase at process times (a, d) 

10 s, (b, e) 100 s and (c, f) 200 s. In the vertical longitudinal cross-section, vectors indicate 

the velocity direction, while their color reflects the velocity magnitude. In the four horizontal 

transverse sections, the maps present the distribution of tangential velocities. The pink surface 

represents the packing surface at the characteristic solid fraction 0.4. The simulation case is 

defined in Figure 14 and Table 4. 
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Figure 16. 3D FEM simulation of the solidification of a binary Fe-0.36wt%C alloy. 

Calculated solid fractions (a-c) and average solute composition (d-f) at process times (a, d) 

10 s, (b, e) 100 s and (c, f) 200 s. The pink surface represents the packing surface at solid 

fraction 0.4. The simulation case is defined in Figure 14 and Table 4. 
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Figure 17. 3D FEM simulation of the solidification of a binary Fe-0.36wt%C alloy with (a) 

the final macrosegregation map and (b) segregation profiles along the center line with (red 

points) measurements, (blue curve) present 3D FEM simulation and (orange curve) 2D 

cylindrical FVM considering a spherical globular solid grains and (green curve) 2D 

cylindrical FVM simulation accounting for a dendritic morphology of the solid phase [18]. 

The simulation case is defined in Figure 14 and Table 4. 

 683 

6.  Conclusions 684 

In this study, a finite element solidification model which takes into account the transport of 685 

equiaxed grains is presented. This model consists of  686 

 the resolution of a set of highly nonlinear and strongly coupled equations over 687 

multiple scales in time and space, including those of energy, phase movement, phase 688 

transport, grain density transport, solute transport, nucleation and solid growth,  689 

 the coupling of the equations based on the operator splitting algorithm, previously 690 

developed by Založnik and Combeau [8], demonstrated as an effective way for the 691 

numerical resolution of the evolution of solidification structures in the growth stage 692 

and the transport stage. 693 

Different issues make the finite element implementation challenging: 694 
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 solution of pure transport equations by the finite element method, 695 

 sharp discontinuities in the velocity fields due to the packing of solid grains. 696 

Propositions were introduced to overcome these difficulties:  697 

 addition of an adaptive artificial diffusion to the transport equations,  698 

 implementation of a specific treatment to deal with the packing issue, consisting in 699 

using a transition function and adjusting the solid velocity. 700 

A careful investigation was conducted to ensure the consistency between related quantities 701 

during the process as well as to guarantee the conservation of mass and energy. It 702 

progressively consisted of:  703 

 a 1D pure transport simulation of sedimentation to evaluate its effects and to propose 704 

appropriate values for the adaptive artificial diffusion, 705 

 application of the complete transport-growth model to simulate macrosegregation in a 706 

2D configuration [11], 707 

 extension of the above simulation in 3D, resulting in a heterogeneous distribution of 708 

variables in the third direction which could not be captured by 2D simulations, 709 

 3D simulation of the solidification of a 3.3 ton Fe - 0.36 wt% C steel ingot, 710 

representative of a real ingot [18], showing macrosegregation prediction in reasonable 711 

agreement with experimental measurements. 712 

To our knowledge, the present development is original in the context of the finite element 713 

method. It should be noted that the computational time reached 35 days for the simulation of 714 

the binary Fe-0.36wt%C alloy. Improvements are expected when using a combination of 715 

adaptive techniques for the macroscopic time step and the FE mesh. The present finite 716 

element model could then become a promising tool to simulate solidification, especially for 717 

industrial applications such as ingots of complex geometries and large size. It also has 718 

potential for coupling with segregation due to thermomechanical deformation while 719 

accounting for the grain structure formed during casting.  720 
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Appendix A – Nomenclature and notations 798 

𝐛 body force 

𝐶𝑑 drag coefficient 

𝑐𝑝 specific heat 

𝐷 diffusion coefficient 

𝑑𝑔 grain diameter 

𝐷𝑀 artificial diffusion coefficient 

𝐠 gravity vector 

𝑔 phase fraction 

𝑔𝑐
𝑠 packing solid fraction 

ℎ enthalpy per unit mass 

ℎ𝑒
𝐯𝑠 characteristic mesh size of an element 𝑒  in direction of velocity 𝐯𝑠 
𝐣 solute flux vector 

𝐽 
𝛤 interfacial solute transfer due to phase change 

𝐽 
𝑗 interfacial solute transfer due to diffusion 

𝐽 
𝛷 interfacial solute transfer due to nucleation 

𝑘𝑝 partition coefficient 

𝑙 heat conduction length 

𝐿𝑓 latent heat of fusion 

𝐌 
𝑑 interfacial momentum transfer due to interfacial stress 

𝐌 
𝛤 interfacial momentum transfer due to phase change 

𝐌 
𝛷 interfacial momentum transfer due to nucleation 

𝑛 number of micro-time steps over a macro-time step 

𝐧 unit vector normal to the liquid-solid interface 

𝑁 grain density 

�̇� generation rate of grain density 

𝑝 pressure 

𝐪 heat flux vector 

𝑄 
𝛤 interfacial heat transfer due to phase change 

𝑄 
𝑗 interfacial heat transfer due to diffusion 

𝑄 
𝛷 interfacial heat transfer due to nucleation 

𝑅 resistance coefficient 

𝑆v interfacial area concentration 

𝑇 temperature 

𝑡 time 

𝛿𝑡 micro time step 

∆𝑡 macro time step 

𝑇𝑒𝑥𝑡 exterior temperature  

𝑣 growth velocity of grains 

𝐯 velocity vector 

𝐯𝑐𝑒𝑛𝑡𝑒𝑟 velocity at the center of an element 

𝑤 solute mass concentration 

  

𝛼 first constant parameter of the artificial diffusion coefficient 

𝛼𝑡 transition function 

𝛽 second constant parameter of the artificial diffusion coefficient 

𝛽𝑠ℎ𝑟 shrinkage coefficient 

𝛽𝑇 thermal expansion coefficient 
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𝛽𝑤 solutal expansion coefficient 

𝛿 solute diffusion length 

𝛤 rate of exchanged mass due to phase change 

ҡ thermal conductivity 

𝜆2 characteristic length for permeability 

𝜇 dynamic viscosity 

𝜑𝑖 interpolation function associated with node 𝑖 
𝜌 mass density 

𝛕 deviatoric stress tensor 

𝛷 rate of transferred mass due to grain nucleation 

𝜈 iteration 

  

Subscripts  Superscripts 

   

𝑔𝑟 growth   ∗ interface 

𝑖, 𝑗 indexes of nodes  𝐵 buoyancy 

𝑛𝑢𝑐𝑙 nucleation  𝑇 transpose 

𝑝𝑎𝑐𝑘𝑒𝑑 packed-bed regime  𝑙 liquid phase 

𝑟𝑒𝑔𝑖𝑚𝑒 flux regime  𝑚 mixture 

𝑟𝑒𝑓 reference  𝑠 solid phase 

𝑠𝑙𝑢𝑟𝑟𝑦 slurry regime  𝛼 phase 𝛼 

𝑡𝑟 transport  𝜈 iteration 

𝑝𝑟𝑜𝑗 projection    

𝑚𝑜𝑑𝑖𝑓 modification    

0 initial state    

     

Supplementary symbols 799 

〈   〉 volume average over all phases 

〈   𝛼 〉 volume average in phase 𝛼 
〈   𝛼 〉𝛼 intrinsic volume average in phase 𝛼 

⊗ tensor product 

∇ gradient operator 

∇ ∙ divergence operator 

   ̅ averaging operator 

𝑁𝑛 number of nodes 

𝑅𝑒 Reynolds number 

𝑡𝑎𝑛ℎ hyperbolic tangent 

‖  ‖ magnitude of a vector  

  

  800 
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Appendix B – Solute Diffusion Lengths and Area Concentration 801 

The solute diffusion lengths are taken from the work of Tveito and co-workers [41], as the 802 

following formulations. 803 

 804 

Solute diffusion length in the liquid phase 805 

 806 

𝛿𝑙 
=
𝑤𝑙∗ − 〈𝑤𝑙〉𝑙

−
𝜕𝑤𝑙

𝜕𝐧
|
∗  (C. 1) 

   

 
=

𝑑

𝑑
𝑅𝑔
−

𝑓(𝑅𝑔, ∆) + 𝑔(𝑅𝑓, 𝑅𝑔, ∆)

𝑑[𝑅𝑔 + 𝑑 − (𝑅𝑔 + ∆ + 𝑑)𝑒
−∆ 𝑑⁄ ] − 𝑓(𝑅𝑔, ∆) + 𝑔(𝑅𝑓, 𝑅𝑔, ∆)(𝑒

−∆ 𝑑⁄ − 1)

 
(C. 2) 

   

where   

 𝑑 =
𝐷𝑙

𝑣
  𝑓(𝑅𝑔, ∆) =

(𝑅𝑔 + ∆)
2
− 𝑅𝑔

2

2
 

(C. 3) 

     

 𝑔(𝑅𝑓, 𝑅𝑔, ∆) =
𝑅𝑓
3 − (𝑅𝑔 + ∆)

3

3(𝑅𝑔 + ∆)
  ∆= 𝑚𝑖𝑛 (𝑅𝑓 − 𝑅𝑔 ;  

2𝑅𝑔
𝑆ℎ𝑐𝑜𝑛𝑣

) (C. 4) 

     

 𝑆ℎ𝑐𝑜𝑛𝑣 =
2

3𝑔𝑙
𝑆𝑐1 3⁄ 𝑅𝑒𝑛(𝑅𝑒)  𝑆𝑐 =

𝜇𝑙

𝜌𝑙𝐷𝑙
 (C. 5) 

     

 𝑅𝑒 =
𝑔𝑙2𝑅𝑔‖〈𝐯

𝑙〉𝑙 − 〈𝐯𝑠〉𝑠‖

𝜈
  𝑛(𝑅𝑒) =

2𝑅𝑒0.28 + 4.65

3(𝑅𝑒0.28 + 4.65)
 (C. 6) 

 807 

Solute diffusion length in the solid phase 𝛿𝑠 =
𝑅𝑔
5

 (C. 7) 

 808 

The area concentration is calculated as: 𝑆v = 4𝜋(𝑅𝑔)
2
𝑁 (C. 8) 

  809 
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Appendix C – Thermophysical Data 810 

 

Table C1. Thermophysical data of Sn – 5 wt.% Pb alloy [8]. 

811 
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Appendix D – Analytical solution for the 1D Test Case 812 

The 1D Test Case consists in pure sedimentation of a column of preexisting globular grains 813 

with fixed size in a uniform temperature domain. Considering constant and equal densities of 814 

the solid and liquid phases, as well as no phase change and no nucleation, the average total 815 

mass conservation simplifies to 𝑔𝑠 〈𝒗𝑠〉𝑠 + 𝑔𝑙  〈𝒗𝑙〉𝑙 = 0. For the sake of simplicity, a 816 

constant settling value of the solid velocity is imposed, set to  〈𝑣𝑠〉0
𝒔 = −1 𝑚𝑚 𝑠−1. The 1D 817 

domain height and the initial conditions are defined in Figure 4: a continuous and uniform 818 

60 mm mushy zone region is initially present between heights 20 mm and 80 mm, with a 819 

uniform average grain density per unit volume, 𝑁0 =  10
9 𝑔𝑟𝑎𝑖𝑛𝑠 𝑚3, and volume fraction of 820 

solid,  𝑔0
𝒔 = 0.1. One can easily derive the value for the liquid velocity in the mushy zone, 821 

 〈𝑣𝑙〉𝑙 = −  𝑔0
𝒔 〈𝑣𝑠〉0

𝒔/(1 −  𝑔0
𝒔) = 0.11 𝑚𝑚 𝑠−1. Similarly, the radius of the grains, 𝑅0, is 822 

simply given by using the definition of the fraction of solid,  𝑔0
𝒔 = 𝑁0(4/3)𝜋𝑅0

3, leading to 823 

the value 𝑅0 = 0.288 𝑚𝑚. Considering the fixed settling velocity and the packing limit at 824 

which the grain stop, 𝑔𝑐
𝑠 = 0.3, the time evolution of the distribution of the mushy zone is 825 

simply derived by considering that the total fraction of the solid phase is unchanged over the 826 

entire domain, while not exceeding 𝑔𝑐
𝑠 in the packed bed. Values are reported in Table D1. 827 

The temperature is fixed to 498 K (224.856 °C), i.e. below the liquidus temperature of the 828 

𝑆𝑛 − 5 𝑤𝑡% 𝑃𝑏 alloy, that is 498.72 K (225.57 °C) according to the thermophysical 829 

properties listed in Table C1 of Appendix C [8]. The average solute mass composition is 830 

defined by 〈𝑤〉 = 𝑔𝑠 〈𝑤𝑠〉𝑠 + 𝑔𝑙  〈𝑤𝑙〉𝑙. At any time, as the system is closed with respect to 831 

mass transfer, integration over the entire domain must retrieve the nominal composition of the 832 

alloy, 𝑤0 = 5 wt% Pb. The initial composition profile assumes no macrosegregation. This 833 

means that the average composition is equal to 𝑤0 at any position along the domain. 834 

However, assuming complete mixing in both liquid and solid phases, the lever rule holds and 835 

one can derive the equilibrium intrinsic composition of the liquid and solid phases,  〈𝑤𝑙〉𝑙 =836 

5.556 wt% Pb and  〈𝑤𝑠〉𝑠 = 0.364 wt% Pb, respectively. Knowing the distribution of solid 837 

and liquid and their initial and intrinsic compositions, one can directly compute the average 838 

compositions by tracking the change of phases due to sedimentation. Computed values are 839 

reported in Table D1.   840 
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Table D1. Time evolution of the distribution of the solid along with  

1D simulation domain (dashed lines in Figure 5  and Figure 6). 

841 
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List of table captions 842 

Table 1 Simulation parameters for the 1D test case presented in Figure 4. 843 

Table 2 Simulation parameters for the 2D test case presented in Figure 7. 844 

Table 3 Simulation parameters for the 3D test case presented in Figure 11. 845 

Table 4 Simulation parameters for the ingot case presented in Figure 14. 846 

Table C1 Thermophysical data of Sn – 5 wt.% Pb alloy [8]. 847 

Table D1 Time evolution of the distribution of the solid along with 1D simulation domain 848 

(dashed lines in Figure 5  and Figure 6). 849 
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List of figure captions 851 

Figure 1 Schematic of the resolution algorithm using the splitting method. 852 

Figure 2 Transition function 𝛼𝑡 vs. solid fraction supposing a packing solid fraction 853 

𝑔𝑐
𝑠 = 0.3. 854 

Figure 3 Adjustment strategy for the velocity of convected grains in the vicinity of the 855 

packed bed. 856 

Figure 4 Schematics of the 1D sedimentation test showing the sample geometry and initial 857 

distribution of solid grains. Additional conditions and simulation parameters are 858 

given in Table 1. 859 

Figure 5 Vertical profiles at times 0 s, 10 s, 30 s and 60 s for (a) solid fraction, (b) solid 860 

velocity, (c) liquid velocity, (d) average composition and (e) temperature with 861 

parameter α=20; β=1. The analytical solution (dashed curves) is derived in 862 

Appendix D. 863 

Figure 6 Vertical profiles at times 0 s, 10 s, 30 s and 60 s for (a, d) the solid fraction, (b, e) the 864 

average composition and (c, f) the temperature with (a-c) 𝛼 = 1; 𝛽 = 0 and (d-f) 865 

𝛼 = 0; 𝛽 = 1. The analytical solution (dashed curves) is derived in Appendix D. 866 

Figure 7 Schematics of the 2D cavity test for Sn-5wt%Pb alloy solidification showing the 867 

geometry and initial values. Simulation parameters are given in Table 2. 868 

Figure 8 Simulations for the 2D cavity test for Sn-5wt%Pb alloy solidification showing 869 

snapshots at time 10 s with the present finite element model (left column, FE) and 870 

with a reference finite volume model [8] (right column, FV): (a) solid fraction , 871 

𝑔𝑠, and intrinsic solid velocity vectors, 〈𝐯𝑠〉𝑠, (b) temperature, 𝑇, and intrinsic 872 

liquid velocity vectors, 〈𝐯𝑙〉𝑙. Black curves are isolines of solid fraction (0.1; 0.2; 873 

0.3). The simulation case is defined in Figure 7 and Table 2. 874 

Figure 9 Simulations for the 2D cavity test for Sn-5wt%Pb alloy solidification showing 875 

maps of average Pb composition (wt%) at (a) 10 s, (b) 20 s, (c) 200 s, and (d) the 876 

end of solidification for the finite element (FE) and the finite volume (FV) 877 

simulations. Black curves are isolines of solid fraction (0.1; 0.2; 0.3). The 878 

simulation case is defined in Figure 7 and Table 2. 879 

Figure 10 Simulations for the 2D cavity test for Sn-5wt%Pb alloy solidification showing 880 

maps of grain density (m
-3

) at (a) 10 s, (b) 20 s, (c) 200 s, and (d) end of 881 

solidification for (FE) the finite element simulation and (FV) the finite volume 882 

simulation. The simulation case is defined in Figure 7 and Table 2. 883 

Figure 11 Schematics of the 3D cavity test for Sn-5wt%Pb alloy solidification showing the 884 

geometry and initial values. Simulation parameters are given in Table 3. 885 
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Figure 12 Simulations for the 3D cavity test for Sn-5wt%Pb alloy solidification showing 887 

snapshots at 10 s in the vertical symmetry plane and in 3 horizontal transversal 888 

planes at heights 17 mm, 37 mm, and 57 mm from the bottom. Variables drawn 889 

are (a) solid fraction, (b) average composition, (c) temperature, (d) grain density, 890 

(e) liquid velocity, and (f) solid velocity. Black iso-lines in the planar 891 

representations are (a) 𝑔𝑠 = {0.02 ; 0.03}, (b) 〈𝑤〉 = {5.04 ; 5.06 ; 5.08} wt%Pb, 892 

(c) 𝑇 = {494.15 ; 495.15 ; 497.15 } K ({221 ; 222 ; 224 } °C) and (d) 𝑁 =893 

{2 ;  3} 108 grains m
-3

. Iso-surfaces in the four top views are defined by (a) 894 

𝑔𝑠 = 0.01, (b) 〈𝑤〉 = 5.02 wt%Pb , (c) 𝑇 = 496.15 K (223 °C) , and (d) 895 

𝑁 = 107 grains m−3. Velocity vectors in the bottom views are only displayed in 896 

the symmetry plane. The simulation case is defined in Figure 11 and Table 3. 897 

Figure 13 Simulations for the 3D cavity test for Sn-5wt%Pb alloy solidification showing 898 

snapshots of the average composition at times (a) 150 s, (b) 200 s, (c) 250 s, and 899 

(d) 300 s. Iso-surfaces are displayed for 3, 4, 7, 9, and 10 wt%Pb. Iso-lines on the 900 

plane at height 20 mm from the bottom are from 3 to 4.2 wt%Pb with equi-901 

interval of 0.1 wt%Pb). The simulation case is defined in Figure 11 and Table 3. 902 

Figure 14 Schematics of the 3.3 ton steel ingot cast by Aubert & Duval [18] presenting 903 

(a) dimensions and materials and (b) simulated settings. Simulation parameters 904 

are given in Table 4. 905 

Figure 15 3D FEM simulation of the solidification of a binary Fe-0.36wt%C alloy. 906 

Calculated velocities of (a-c) the liquid phase and (d-f) the solid phase at process 907 

times (a, d) 10 s, (b, e) 100 s and (c, f) 200 s. In the vertical longitudinal cross-908 

section, vectors indicate the velocity direction, while their color reflects the 909 

velocity magnitude. In the four horizontal transverse sections, the maps present 910 

the distribution of tangential velocities. The pink surface represents the packing 911 

surface at the characteristic solid fraction 0.4. The simulation case is defined in 912 

Figure 14 and Table 4. 913 

Figure 16 3D FEM simulation of the solidification of a binary Fe-0.36wt%C alloy. 914 

Calculated solid fractions (a-c) and average solute composition (d-f) at process 915 

times (a, d) 10 s, (b, e) 100 s and (c, f) 200 s. The pink surface represents the 916 

packing surface at solid fraction 0.4. The simulation case is defined in Figure 14 917 

and Table 4. 918 

Figure 17 3D FEM simulation of the solidification of a binary Fe-0.36wt%C alloy with (a) 919 

the final macrosegregation map and (b) segregation profiles along the center line 920 

with (red points) measurements, (blue curve) present 3D FEM simulation and 921 

(orange curve) 2D cylindrical FVM considering a spherical globular solid grains 922 

and (green curve) 2D cylindrical FVM simulation accounting for a dendritic 923 

morphology of the solid phase [18]. The simulation case is defined in Figure 14 924 

and Table 4. 925 
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1.  Introduction 34 

The casting industry commonly faces difficulties in the production of products free from 35 

macrosegregation [1]. Microsegregation naturally takes place during solidification as a 36 

redistribution of the chemical species at the solid-liquid interface occurs, the result of 37 

thermodynamic equilibrium. Various processes take place which enhance segregation far 38 

from its interfacial origin including long range diffusion, liquid flow due to shrinkage, melt 39 

convection, solid deformation and transport of solid grains/fragments in the casting. The later 40 

induce macrosegregation from both solid and liquid transport over long distances. While these 41 

phenomena are difficult to avoid during conventional casting of metallic alloys, their 42 

magnitude needs to be controlled. The local average composition defined in a small 43 

representative volume must not deviate from the nominal composition of the alloy by more 44 

than a few percent, otherwise the properties could vary significantly and subsequent 45 

thermomechanical heat treatments may not be able to restore the desired properties 46 

everywhere in the product. This is true for various classes of metallic alloys, including large 47 

steel products [2]. Recently, efforts have been made to provide detailed experimental 48 

characterizations of macrosegregation in large steel ingots [3, 4, 5]. 49 

Numerical modeling of solidification accounting for the transport of the equiaxed grains at the 50 

process scale remains limited. Work was first done by Ni and Beckermann who proposed a 51 

volume-averaged model that consistently coupled microscopic phenomena with macroscopic 52 

transport [6, 7]. Other solidification models, based on similar principles, have also been 53 

developed [8-17]. In volume-averaged models the transport of solid equiaxed grains is 54 

described by grain population balances along with mass and solute mass conservation 55 

equations for the solid phase. These equations consist of contributions from advection at the 56 

macroscopic (process) scale and grain growth governed by diffusion and phase change 57 

phenomena at the microscopic (grain) scale. These are strongly coupled with the transport of 58 

heat, mass, chemical species and momentum in the liquid and solid phases. Identifying the 59 

complexity in solving the set of coupled equations, Založnik and Combeau [8] proposed an 60 

operator splitting scheme as a flexible method for integration of the macroscopic transport 61 

terms and the local growth terms. This method was successfully implemented to simulate 62 

large ingot casting [18]. Modeling and simulation of steel ingots is particularly demanding 63 

due to the size of the castings and the complexity of the multiphase flow, however, models 64 

and applications have been improving in recent years [19-23]. These models are based on the 65 

finite volume method (FVM), while the finite element method (FEM) has not yet been 66 

considered for volume-averaged multiscale modelling of solidification with transport of 67 

equiaxed grains. An implementation using FEM may be attractive for multiple reasons. First, 68 

FEM generally offers more flexibility and versatility than FVM in describing the boundaries 69 

of the domain to be analyzed, and defining the boundary conditions which prevail there. This 70 

is particularly true when considering structured FVM where the "staircase" effect along the 71 

boundaries is detrimental. FEM also offers opportunities to more simply couple with 72 

stress/strain structural analyses, eg. to model the occurrence of thermomechanical defects in 73 

solidified regions, as such analyses are generally also conducted using FEM [24, 25].  74 
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In this paper, a numerical FEM solidification model is presented, accounting for microscopic 75 

phenomena as well as for the motion of solid and liquid phases. First, the macroscopic 76 

conservation equations and the constitutive relations describing interfacial interactions and 77 

exchanges are summarized. The resolution method and the numerical implementation for the 78 

set of non-linear equations is then detailed. This implies introducing an artificial diffusion 79 

which deals with the discontinuities at the packing front by FEM. Numerical simulation using 80 

the current model is then performed to validate the numerical implementation. Results 81 

demonstrate an efficient FEM resolution scheme implemented for the purely convective 82 

transport problem, which is difficult to solve numerically by FEM in the absence of diffusive 83 

effects. 84 

2.  Two-phase model of solidification 85 

This section summarizes the governing equations taken into consideration in this case when 86 

modeling solidification in the presence of solid transport. The full nomenclature and a 87 

complete set of notations can be found in Appendix A. Eqs. (1)-(4) represent the conservation 88 

of total mass, momentum, solute mass and energy, respectively, for each phase 𝛼 (𝛼 = 𝑠 for 89 

the solid or 𝛼 = 𝑙 for the liquid phase) [8]. These macroscopic conservation equations are 90 

obtained by averaging the microscopic equations over a representative elementary volume 91 

(REV). A detailed derivation of the governing equations can be found elsewhere [6, 26]. 92 

Mass 
𝜕

𝜕𝑡
(𝑔𝛼〈𝜌𝛼〉𝛼) + ∇ ∙ (𝑔𝛼〈𝜌𝛼〉𝛼〈𝐯𝛼〉𝛼) = 𝛤𝛼 + 𝛷𝛼 (1) 

   

Momentum 
𝜕

𝜕𝑡
(𝑔𝛼〈𝜌𝛼〉𝛼〈𝐯𝛼〉𝛼) + ∇ ∙ (𝑔𝛼〈𝜌𝛼〉𝛼〈𝐯𝛼〉𝛼⊗ 〈𝐯𝛼〉𝛼) (2) 

 = −𝑔𝛼∇〈𝑝𝛼〉𝛼 + ∇ ∙ (𝑔𝛼〈𝛕𝛼〉𝛼) + 𝑔𝛼〈𝐛𝛼〉𝛼 +𝐌 
𝛤,𝛼 +𝐌 

𝑑,𝛼 +𝐌 
𝛷,𝛼  

   

Species 
𝜕

𝜕𝑡
(𝑔𝛼〈𝜌𝛼〉𝛼〈𝑤𝛼〉𝛼) + ∇ ∙ (𝑔𝛼〈𝜌𝛼〉𝛼〈𝑤𝛼〉𝛼〈𝐯𝛼〉𝛼) (3) 

 = − ∇ ∙ (𝑔𝛼〈𝐣𝛼〉𝛼) + 𝐽 
𝛤,𝛼 + 𝐽 

𝑗,𝛼 + 𝐽 
𝛷,𝛼  

   

Energy 
𝜕

𝜕𝑡
(𝑔𝛼〈𝜌𝛼〉𝛼〈ℎ𝛼〉𝛼) + ∇ ∙ (𝑔𝛼〈𝜌𝛼〉𝛼〈ℎ𝛼〉𝛼〈𝐯𝛼〉𝛼) (4) 

 = − ∇ ∙ (𝑔𝛼〈𝐪𝛼〉𝛼) + 𝑄 
𝛤,𝛼 + 𝑄 

𝑞,𝛼 + 𝑄 
𝛷,𝛼  

In the above equations (1)-(4), the notation 〈 𝛼〉𝛼 indicates the intrinsic volume average in 93 

phase 𝛼, 𝑔 denotes the volume fraction, 𝜌 the density, 𝐯 the velocity, 𝑝 the pressure, 𝛕 the 94 

deviatoric part of the stress tensor, 𝐛 the body force per unit volume, 𝑤 the solute mass 95 

concentration, 𝐣 the solute flux vector, ℎ the specific enthalpy, 𝐪 the heat flux vector. The 96 

right-hand side of the above equations gathers the exchange terms rising from different 97 

microscopic processes:  𝛤 denotes the mass exchange rate due to phase change, 𝛷 the mass 98 

exchange rate due to grain nucleation, 𝐌 the vector for interfacial momentum exchange, 𝐽 the 99 

solute exchange rate, and 𝑄 the heat exchange rate. The contributions of nucleation (terms 100 
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with superscript 𝛷) can be neglected compared to other terms in theses equations. The 101 

microscopic exchange contributions are modeled as follows, more detail can be found in 102 

Appendix B. 103 

due to phase change due to interfacial stresses or diffusion 

  

 𝐌𝛤,𝛼 = �̅�𝛼∗𝛤𝛼  𝐌 
𝑑,𝛼 = 𝜌𝛼𝑅𝛼𝑆v(�̅�

𝛼∗ − 〈𝐯𝛼〉𝛼)  

    

 𝐽𝛤,𝛼 = �̅�𝛼∗𝛤𝛼  𝐽𝑗,𝛼 = 𝜌𝛼
𝐷𝛼

𝛿𝛼
𝑆v(�̅�

𝛼∗ − 〈𝑤𝛼〉𝛼) 

    

 𝑄𝛤,𝛼 = ℎ̅𝛼∗𝛤𝛼  𝑄𝑞,𝛼 =
ҡ𝛼

𝑙𝛼
𝑆v(�̅�

𝛼∗ − 〈𝑇𝛼〉𝛼) 

Here �̅�∗, �̅�∗, ℎ̅∗, �̅�∗ are the average values over the interface, R is the momentum resistance 104 

coefficient, D is the solute diffusion coefficient,  is the characteristic solute diffusion length, 105 

ҡ is the heat conductivity, l is the characteristic heat conduction length, 𝑆v = 𝐴 𝑉𝑒⁄  is the 106 

interfacial area concentration in the REV considered, of volume 𝑉𝑒. 107 

The model is closed by balances of mass, momentum, solute, and heat at the solid-liquid 108 

interface: 109 

∑ 𝛤𝛼 + 𝛷𝛼

𝛼=𝑠,𝑙

= 0 ∑ 𝐌 
𝛤,𝛼 +𝐌 

𝑑,𝛼 +𝐌 
𝛷,𝛼

𝛼=𝑠,𝑙

= 0 (5) 

∑ 𝐽 
𝛤,𝛼 + 𝐽 

𝑗,𝛼 + 𝐽 
𝛷,𝛼

𝛼=𝑠,𝑙

= 0 ∑ 𝑄 
𝛤,𝛼 + 𝑄 

𝑞,𝛼 + 𝑄 
𝛷,𝛼

𝛼=𝑠,𝑙

= 0 (6) 

The population of grains is described by an average density per unit volume, N. The 110 

population balance equation writes: 111 

𝜕𝑁

𝜕𝑡
+ ∇ ∙ (𝑁〈𝐯𝑠〉𝑠) = �̇�  (7) 

where the nucleation rate is defined as:  112 

�̇� = {

𝑁0
𝛿𝑡

if     (𝑇 ≤ 𝑇𝑛𝑢𝑐𝑙) and (𝑁 = 0  or ∫ �̇�𝑑𝑡 = 0
𝑡

0

 )

0 otherwise

  (8) 

𝑁0 is the nucleation density, 𝛿𝑡 the time step, and 𝑇𝑛𝑢𝑐𝑙 the nucleation temperature. In Eq. (8) 113 

nucleation occurs under two conditions: The first nucleation event occurs when the local 114 

temperature drops below the nucleation temperature for the first time. Further nucleation 115 

events follow if the local grain density drops to zero (due to grain transport or remelting) and 116 
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the local temperature is below the nucleation temperature. The latter criterion is a heuristic 117 

treatment used to prevent unphysical results [11].  118 

In order to resolve the coupled microscopic and macroscopic phenomena, the microscopic 119 

exchange terms can be considered as source terms in the governing equations. The equations 120 

can then be integrated directly in a coupled way. However, due to the stiffness of the 121 

microscopic terms, such a solution scheme requires very small time steps. This makes the 122 

computation time realistically too long to simulate industrial sized castings. In the present 123 

work, an operator splitting method is applied to solve the entire system of equations [8]. 124 

According to this method, the phase fractions and solute compositions are considered to 125 

evolve in two subsequent stages: the macroscopic transport stage and the microscopic growth 126 

stage. When using this assumption, each stage can be numerically integrated by operating on 127 

different scales of time and space. Therefore, such a splitting technique provides an efficient 128 

way to solve multi-scale problems. This splitting method is used for the solution of the mass 129 

conservation equation for the solid, the conservation equation for the grain population density 130 

and the solute conservation equations for both phases. The method is summarized as follows: 131 

first, in the macroscopic transport stage, only variation due to the macroscopic transport is 132 

integrated, which is determined by solving Eqs.(9)-(11) on the global finite element mesh 133 

using a macro time step. This gives an intermediate quantity with index tr: 134 

𝜕𝑔𝑡𝑟
𝑠

𝜕𝑡
+ ∇ ∙ (𝑔𝑡𝑟

𝑠 〈𝐯𝑠〉𝑠) = 0 (9) 

  

𝜕𝑁𝑡𝑟
𝜕𝑡

+ ∇ ∙ (𝑁𝑡𝑟〈𝐯
𝑠〉𝑠) = 0 (10) 

  

𝜕(𝑔𝑡𝑟
𝛼 〈𝑤𝛼〉𝑡𝑟

𝛼 )

𝜕𝑡
+ ∇ ∙ (𝑔𝑡𝑟

𝛼 〈𝑤𝛼〉𝑡𝑟
𝛼 〈𝐯𝛼〉𝛼) = 0 (11) 

Second, in the microscopic growth stage, the contribution of microscopic processes, 135 

nucleation and growth, are integrated through Eqs.(12)-(14). These equations are solved, 136 

locally, at each node of the finite element mesh, leading to quantity with index gr: 137 

𝜕𝑔𝑔𝑟
𝑠

𝜕𝑡
=
𝛤𝑠 + 𝛷𝑠

𝜌𝑠
 (12) 

  

𝜕𝑁𝑔𝑟
𝜕𝑡

= �̇� (13) 

  

𝜕(𝑔𝑔𝑟
𝛼 〈𝑤𝛼〉𝑔𝑟

𝛼 )

𝜕𝑡
=
𝐽 
𝛤,𝛼 + 𝐽 

𝑗,𝛼 + 𝐽 
𝛷,𝛼

𝜌𝛼
 (14) 

A smaller time step (micro time step) must be used for the microscopic growth stage. The 138 

solution of the macroscopic transport stage is the initial condition for the integration of the 139 

microscopic growth stage. The sequence of both integration steps thus gives the solution over 140 
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a macroscopic time step. The whole modeling algorithm, using this splitting approach, is 141 

shown schematically in Figure 1. 142 

Each iteration 𝜈 begins with an implicit finite element resolution for energy and transport 143 

conservation equations in the transport stage by using a macro time step. This gives the 144 

solutions denoted with superscript 𝜈 + 1 and subscript 𝑡𝑟 when they are associated with the 145 

transport stage. Then the nucleation-and-growth stage is solved locally (i.e., at each node), 146 

with variables initialized by values obtained from the transport stage at 𝜈 + 1. This local 147 

resolution proceeds through micro time steps, assuming that the average quantities for the 148 

solid plus liquid mixture, composition 〈𝑤〉 = 𝑔𝑙〈𝑤𝑙〉𝑙 + 𝑔𝑠〈𝑤𝑠〉𝑠 and enthalpy 〈ℎ〉 =149 

𝑔𝑙〈ℎ𝑙〉𝑙 + 𝑔𝑠〈ℎ𝑠〉𝑠, no longer evolve during the macro time step. Finally, the momentum 150 

equations are solved with a semi-implicit solver on the macro time step to compute the new 151 

estimation of velocity fields of the liquid and the solid phases at iteration 𝜈 + 1. A complete 152 

evolution of the different quantities over the time step is evaluated by the final results 153 

obtained from the growth stage, as these solutions already include the change from the 154 

transport stage. The splitting scheme is only used to solve the evolution of phase fractions, 155 

grain density and solute concentrations since it involves very different scales of time and 156 

space. The resolution of the energy and momentum conservation equations do not require 157 

operator splitting because the constitutive relations coupling the micro- and macroscopic 158 

scales are simpler. 159 

Regarding the transport stage, Eqs. (9)-(11) are of pure convective nature, and notoriously 160 

difficult to solve numerically in the absence of diffusive effects. Moreover, another numerical 161 

difficulty arises from the discontinuity of transport velocities due to the solid packing 162 

phenomenon. Indeed, when forming a packed solid layer, solid grains suddenly change from a 163 

moving state to a fixed state. Solving these issues in the framework of FEM for solidification 164 

simulations remains an open issue and will be addressed in the following sections. 165 

  166 
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Figure 1. Schematic of the resolution algorithm using the splitting method. 

  167 
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3.  Treatment of discontinuities at the packing front by the FEM 168 

The solution of convection-dominated equations by FEM can encounter problems of 169 

unphysical oscillations, especially in zones with steep gradients. Different resolution 170 

techniques have been developed to overcome such issues: e.g. discretizing by upwind 171 

methods [27-29], by stabilized methods such as Streamline Upwind Petrov-Galerkin [30], 172 

Galerkin Least-Squares [31, 32], Residual Free Bubbles [33], or by using a corrected flux 173 

approach [34]. A specific complexity in the resolution of Eqs. (9)-(11) arises from 174 

discontinuities due to the solid packing phenomenon taking place at the interface between the 175 

liquid pool and the packed bed of solid grains. On one side, small grains move freely in the 176 

liquid phase, the solid fraction being smaller than a characteristic packing fraction. On the 177 

other side, grains accumulate and grow to form a steady and fixed packed zone, the solid 178 

fraction being higher than the packing limit. Discontinuities are then related to abrupt changes 179 

in the velocity and fraction of the solid phase. Therefore, an adaptive artificial diffusion is 180 

introduced to stabilize the finite element resolutions without unreasonably smearing results. 181 

This added diffusion detects and reduces discontinuities at locations where the solid phase is 182 

being packed. The added diffusion is then not present everywhere, it is restricted to critical 183 

zones of packing. The diffusion coefficient, 𝐷𝑀, as expressed below, consists of the gradient 184 

of solid velocities, i.e. a combination of the divergence of the average solid velocity ∇ ∙ 〈𝐯𝑠〉 185 

and the divergence of the intrinsic average solid velocity ∇ ∙ (〈𝐯𝑠〉𝑠), which contain 186 

information about the variation of the related quantities: velocity and fraction of solid phase. 187 

𝐷𝑀 = (ℎ𝑒
𝐯𝑠)

2
(𝛼 |∇ ∙ 〈𝐯𝑠〉| + 𝛽|∇ ∙ 〈𝐯𝑠〉𝑠|) (15) 

  

In this expression, ℎ𝑒
𝐯𝑠 denotes the characteristic size of element 𝑒 in the direction of the solid 

velocity 𝐯𝑠, as proposed in [24]: 

ℎ𝑒
𝐯𝑠 =

2‖𝐯𝑐𝑒𝑛𝑡𝑒𝑟
𝑠 ‖

∑ |𝐯𝑐𝑒𝑛𝑡𝑒𝑟
𝑠 ∙ ∇𝜑𝑖|

𝑁𝑛
𝑖

 (16) 

where 𝜑𝑖 is the interpolation function associated with node 𝑖, 𝐯𝑐𝑒𝑛𝑡𝑒𝑟
𝑠  is the solid velocity at 188 

the center of the element, and 𝑁𝑛 is the number of nodes per element. The coefficients 𝛼 and 189 

𝛽 allow control over the amount of diffusion in a direct way, thus offering more flexibility 190 

than an implicit diffusion introduced by the upwind method. An alternative option would be 191 

to use the divergence of the intrinsic solid velocity, ∇ ∙ 〈𝐯𝑠〉𝑠, and the solid fraction gradient, 192 

∇𝑔𝑠. However, the former expression is preferred because it does not exist without solid 193 

transport. Hence the model is still valid in cases without solid motion. The formulation of the 194 

coefficient 𝐷𝑀 is inspired by the work of Cook and Cabot who developed an artificial non-195 

linear diffusion using the entropy gradient to treat issues associated with discontinuities of 196 

temperature and mass fraction in supersonic reacting flows [35]. For the aforementioned 197 

issues experienced when simulating solidification there has, as of yet, been no relevant 198 

investigations. 199 

 200 
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It should be noted that it is necessary to use the same artificial diffusion coefficient for all 201 

relevant transport equations in order to ensure consistency between the transport of related 202 

quantities and the conservation of mass and energy. Consequently, the transport equations for 203 

solid phase, grain density and solute, derived from Eqs. (9)-(11), are modeled by Eqs. (17)-204 

(19). These equations are solved in the finite element framework using an implicit scheme in 205 

time and a weighted residual approach with P1 linear elements (triangles in 2D, tetrahedra in 206 

3D) and SUPG stabilization method. 207 

  208 

𝜕𝑔𝑡𝑟
𝑠

𝜕𝑡
+ ∇ ∙ (𝑔𝑡𝑟

𝑠 〈𝐯𝑠〉𝑠) − ∇ ∙ (𝐷𝑀𝛻𝑔𝑡𝑟
𝑠 ) = 0 (17) 

  

𝜕𝑁𝑡𝑟
𝜕𝑡

+ ∇ ∙ (𝑁𝑡𝑟〈𝐯
𝑠〉𝑠) − ∇ ∙ (𝐷𝑀𝛻𝑁𝑡𝑟) = 0 (18) 

  

𝜕(𝑔𝑡𝑟
𝛼 〈𝑤𝛼〉𝑡𝑟

𝛼 )

𝜕𝑡
+ ∇ ∙ (𝑔𝑡𝑟

𝛼 〈𝑤𝛼〉𝑡𝑟
𝛼 〈𝐯𝛼〉𝛼) − ∇ ∙ (𝐷𝑀𝛻(𝑔𝑡𝑟

𝛼 〈𝑤𝛼〉𝑡𝑟
𝛼 )) = 0 (19) 

3.1.  Formulation of Energy Conservation 209 

Regarding heat transfer, the equation for energy conservation, Eq.(4), for the solid (𝛼 = 𝑠) 210 

and for the liquid (𝛼 = 𝑙) phases, assuming thermal equilibrium between both phases in the 211 

REV, and introducing the added diffusion, the following mixture energy equation can be 212 

established: 213 

 214 

𝜌 [
𝜕〈ℎ〉

𝜕𝑡
+ ∇ ∙ (𝑔𝑡𝑟

𝑠 〈ℎ𝑠〉𝑠〈𝐯𝑠〉𝑠 + 𝑔𝑡𝑟
𝑙 〈ℎ𝑙〉𝑙〈𝐯𝑙〉𝑙) − ∇ ∙ (𝐷𝑀∇(𝑔𝑡𝑟

𝑠 〈ℎ𝑠〉𝑠 + 𝑔𝑡𝑟
𝑙 〈ℎ𝑙〉𝑙))] 

−∇ ∙ (〈ҡ〉∇𝑇) = 0 

(20) 

  

where the average enthalpy and thermal conductivity are defined by 215 

 216 

〈ℎ〉 = 𝑔𝑠〈ℎ𝑠〉𝑠 + 𝑔𝑙〈ℎ𝑙〉𝑙    and   〈ҡ〉 = 𝑔𝑠〈ҡ𝑠〉𝑠 + 𝑔𝑙〈ҡ𝑙〉𝑙 (21) 

Additional it is assumed that the densities of phases are constant and equal and that  the heat 217 

diffusion follows the Fourier law. Using this method, the phase fractions in the advection 218 

terms should be taken as those calculated in the transport stage, so that mass conservation is 219 

maintained [8]. In the present work, the enthalpy formulation of the energy equation is used. 220 

Like the preceding transport equations, the energy equation is solved in the framework of the 221 

finite element formulation with an implicit scheme for time integration as well as a weighted 222 

residual approach with P1 linear elements and SUPG stabilization method. 223 

 224 

3.2.  Formulation of Momentum Conservation 225 

 226 

Several assumptions are made when solving the momentum equations, including: 227 
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i. The phase densities are constant and equal, except for the buoyancy forces for which 228 

the liquid and solid densities are modeled as follows, respectively. 229 

 230 

𝜌𝐵
𝑙 = 𝜌𝑟𝑒𝑓[1 − 𝛽𝑇(𝑇 − 𝑇𝑟𝑒𝑓) − 𝛽𝑤(〈𝑤

𝑙〉𝑙 − 𝑤𝑟𝑒𝑓)] (22) 

  

𝜌𝐵
𝑠 =

𝜌𝑟𝑒𝑓
1 − 𝛽𝑠ℎ𝑟

 (23) 

 231 

ii. The pressure is assumed to be identical in the solid and liquid phases. 232 

 233 

〈𝑝𝑙〉𝑙 = 〈𝑝𝑠〉𝑠 = 𝑝 (24) 

 234 

iii. The liquid behaves as a Newtonian fluid with a constant viscosity. Neglecting the 235 

interfacial momentum transfer due to phase change, the divergence of the average 236 

deviatoric stress tensor is modeled as: 237 

 238 

∇ ∙ 〈𝛕𝑙〉 = 𝜇𝑙  ∇ ∙ (∇(𝑔𝑙〈𝐯𝑙〉𝑙) + ∇(𝑔𝑙〈𝐯𝑙〉𝑙) 
𝑇 ) (25) 

 239 

iv. The momentum transfer due to nucleation and growth is considered negligible relative 240 

to other terms, the momentum balance at the solid-liquid interface is thus described as: 241 

 242 

𝐌 
𝑑,𝑙 +𝐌 

𝑑,𝑠 = 𝟎 (26) 

 243 

Using these assumptions, the liquid momentum equation is derived as Eq. (27) from the 244 

general formulation for phase 𝛼, Eq. (2). 245 

 246 

𝜌 [
𝜕

𝜕𝑡
(𝑔𝑙〈𝐯𝑙〉𝑙) + ∇ ∙ (𝑔𝑙〈𝐯𝑙〉𝑙⊗ 〈𝐯𝑙〉𝑙)] 

= −𝑔𝑙∇𝑝 + 𝜇𝑙 ∇ ∙ (∇(𝑔𝑙〈𝐯𝑙〉𝑙) + ∇(𝑔𝑙〈𝐯𝑙〉𝑙) 
𝑇 ) + 𝑔𝑙𝜌𝐵

𝑙 𝐠 −𝐌𝑟𝑒𝑔𝑖𝑚𝑒
𝑑,𝑠

 

(27) 

  

where the momentum transfer due to the drag force is described as  

𝐌𝑟𝑒𝑔𝑖𝑚𝑒
𝑑,𝑠 = ℳ𝑟𝑒𝑔𝑖𝑚𝑒(𝑔

𝑙)2(〈𝐯𝑙〉𝑙 − 〈𝐯𝑠〉𝑠) (28) 

 247 

in which 248 

ℳ𝑟𝑒𝑔𝑖𝑚𝑒 =

{
 
 

 
 ℳ𝑠𝑙𝑢𝑟𝑟𝑦 =

3𝑔𝑠𝜇𝑙𝐶𝑑𝑅𝑒

4(𝑑𝑔)
2
(𝑔𝑙)3

in the slurry regime    (𝑔𝑠 < 𝑔𝑐
𝑠)

ℳ𝑝𝑎𝑐𝑘𝑒𝑑 =
180(1 − 𝑔𝑙)2𝜇𝑙

𝜆2
2(𝑔𝑙)3

in the packed − bed regime  (𝑔𝑠 ≥ 𝑔𝑐
𝑠)

 (29) 

where the solid-liquid interaction follows the model of Agarwal and O'Neill [36].  249 
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In the finite element context, solving the above equation, Eq. (27), and distinguishing the two 250 

regimes on a single discretized domain may cause numerical difficulties because of the 251 

assembly of dissimilar and irregular terms (i.e. slurry regime contributions and packed-bed 252 

regime contributions). In order to overcome this issue, a smoothing procedure was developed, 253 

similar to the one introduced by Plotkowski and Krane [15]. It consists in using a transition 254 

function, 𝛼𝑡, to switch the momentum transfer, 𝐌𝑟𝑒𝑔𝑖𝑚𝑒
𝑑,𝑠

, between the two regimes. The 255 

following expression is proposed for this transition function, which provides a compromise 256 

between having a sufficiently sharp change of regimes while avoiding an abrupt switch 257 

between them: 258 

𝛼𝑡 = 1 − 0.5(1 − 𝑡𝑎𝑛ℎ[𝛼0(𝑔𝑐
𝑠 − 𝑔𝑠)])  (30) 

  

where the value 𝛼0 = 100 is chosen, as plotted in Figure 2. 

 259 

 
 

Figure 2. Transition function 𝛼𝑡 vs. solid fraction supposing a packing solid fraction 

𝑔𝑐
𝑠 = 0.3. 

 260 

The liquid momentum equation can then be expressed as 261 

𝜌 [
𝜕

𝜕𝑡
(𝑔𝑙〈𝐯𝑙〉𝑙) + ∇ ∙ (𝑔𝑙〈𝐯𝑙〉𝑙⊗ 〈𝐯𝑙〉𝑙)] (31) 

 
= −𝑔𝑙∇𝑝 + 𝜇𝑙 ∇ ∙ (∇(𝑔𝑙〈𝐯𝑙〉𝑙) + ∇(𝑔𝑙〈𝐯𝑙〉𝑙) 

𝑇 ) + 𝑔𝑙𝜌𝐵
𝑙 𝐠

− [𝛼𝑡ℳ𝑠𝑙𝑢𝑟𝑟𝑦 + (1 − 𝛼𝑡)ℳ𝑝𝑎𝑐𝑘𝑒𝑑](𝑔
𝑙)2(〈𝐯𝑙〉𝑙 − 〈𝐯𝑠〉𝑠) 

 

Which is solved by a semi-implicit time integration and a weighted residual method, precisely 262 

by the P1/P1 velocity-pressure formulation stabilized with the Variational Multi Scale method 263 

[37]. In the equation for the conservation of solid phase momentum, the inertial and viscous 264 

terms are neglected [8]. Therefore, the solid momentum equation, which is only considered in 265 

the slurry regime, reduces to: 266 
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−𝑔𝑠∇𝑝 + 𝑔𝑠𝜌𝐵
𝑠𝐠 +ℳ𝑠𝑙𝑢𝑟𝑟𝑦(𝑔

𝑙)2(〈𝐯𝑙〉𝑙 − 〈𝐯𝑠〉𝑠) = 0 (32) 

From this equation, the solid velocity can be calculated locally, at each node of the finite 267 

element mesh. In order to avoid a sudden change of the velocity when solid packing occurs, a 268 

gradual transition is applied, by using the same switching function 𝛼𝑡 introduced in Eq. (30). 269 

Therefore the solid velocity is calculated at each node by: 270 

〈𝐯𝑠〉𝑠 = 𝛼𝑡 (〈𝐯
𝑙〉𝑙 +

𝑔𝑠(𝜌𝐵
𝑠𝐠 − ∇𝑝)

ℳ𝑠𝑙𝑢𝑟𝑟𝑦(𝑔
𝑙)2
) (33) 

 271 

 

Figure 3. Adjustment strategy for the velocity of convected grains in the vicinity of the 

packed bed. 

Furthermore, it is necessary to ensure that moving solid grains do not penetrate the 272 

preexisting packed bed, to avoid the solid fraction at the packing front exceeding the packing 273 

fraction. The velocity of the grains is therefore adjusted so that they land smoothly on the 274 

packed bed, i.e. reaching 〈𝐯𝑠〉𝑠 = 0 at the packing limit. The algorithm for this adjustment is 275 

presented in Figure 3. It consists first of the calculation of the distance that the grains would 276 

travel in the direction of the solid fraction gradient, moving with their current velocity during 277 

the time step. This settling distance is 〈𝑣𝑠〉𝑝𝑟𝑜𝑗
𝑠 ∆𝑡, where 〈𝑣𝑠〉𝑝𝑟𝑜𝑗

𝑠  is the projected solid 278 

velocity and ∆𝑡 the time step. Then the settling distance is compared to the distance between 279 

the grains and the packing limit, 𝑑𝑃−𝐿𝑖𝑚𝑖𝑡
 , defined by the packing solid fraction, 𝑔𝑐

𝑠. If the 280 
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settling distance is higher, the velocity is corrected by the factor 𝛼 as shown in Figure 3. This 281 

correction prevents the grains from traveling beyond the packing limit. 282 

4.  Verification of the adaptive artificial diffusion method for particle packing 283 

The model described above is sophisticated as it involves artificial diffusive terms in 284 

conservation equations, a smoothing procedure for the transition from a slurry regime to a 285 

packed bed regime in the momentum conservation, as well as an adjustment strategy for the 286 

convection of solid in the vicinity of the packed bed. Several studies are then needed to 287 

evaluate the numerical parameters of the model. The first of which is presented below for a 288 

1D sedimentation configuration where a simple analytical solution can be derived. 289 

4.1.  Test Case Description  290 

In order to test these new parameters, the model is first applied to simulate a one-dimensional 291 

(1D) sedimentation process, considering only transport and neglecting nucleation and growth 292 

processes. It consists in the settling of a predefined number of globular grains with equal and 293 

constant size at uniform and constant velocity. A schematic of the test is presented in 294 

Figure 4 and the 1D analytical solution is derived in Appendix D. The computational domain 295 

is two-dimensional (2D), with a width and length of 1 mm × 100 mm. There is no heat 296 

exchange through the boundaries of the domain. The velocities at the top and bottom faces as 297 

well as the normal velocities along the vertical walls are set to zero and a perfect slip 298 

condition is applied to the tangential velocities on the vertical walls, i.e. returning to the 1D 299 

configuration described in Appendix D. Initial conditions are given in Figure 4. The binary 300 

alloy Sn-5wt%Pb is considered, its thermophysical properties can be found in Appendix C 301 

[8]. The enthalpy is evaluated according to the solid fraction and the temperature. The 302 

simulation parameters are given in Table 1. 303 

The present test case is defined to benefit from the simple analytical solution shown in 304 

Figure 5 and Figure 6 at several times with dashed lines. The downward velocity of the 305 

settling grains is arbitrarily imposed to be a constant value in the unpacked region, equal to 306 

1 mm s
-1

 and directed toward the –y-axis. The corresponding upward liquid velocity in the 307 

unpacked region was computed and found to be constant, equal to 0.111 mm s
-1

, in agreement 308 

with the total mass balance. When the fraction of solid reaches 0.3 in the packed bed the 309 

velocity of the phases falls to zero. As there is no solidification, the fraction of solid cannot 310 

increase further. Conservation of the initial mass of solid thus defines the height of the packed 311 

bed. It reaches 20 mm once settling is complete. Also considering the adiabatic boundary 312 

conditions for heat transfer as well as the absence of phase change by solidification/remelting, 313 

the temperature is expected to remain constant and uniform throughout the simulation 314 

domain, equal to its initial value 498 K (224°C) shown in Figure 5 and Figure 6. Due to the 315 

formation of a packed bed of grains with solid fraction 0.3 in a liquid with intrinsic 316 

composition 5 wt% Pb, the average composition reaches 3.609 wt% Pb. Consequently, total 317 

mass conservation leads to an average composition above the packed bed in the initially two-318 

phase region equal to 5.464 wt% Pb. 319 
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Figure 4. Schematic of the 1D sedimentation test showing the 

sample geometry and initial distribution of solid grains. Additional 

conditions and simulation parameters are given in Table 1. 

 320 

 
Table 1. Simulation parameters for the 1D test 

case presented in Figure 4. 

 321 

4.2.  Analysis of Simulation Results  322 

The initial solid velocity is set to 1 mm s
-1

 for the vertical component in the downward 323 

direction. The liquid velocity is then determined by solving the momentum equation, Eq. (31). 324 

The results are presented in Figure 5 and Figure 6. Those obtained from the numerical 325 

simulation are shown as solid lines while those calculated by the analytical solution are 326 

dashed lines. The sedimentation process is illustrated in Figure 5-a as profiles of solid 327 

volume fraction at t = 0 s, 10 s (before grains reach the bottom of the domain), 30 s 328 
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(accumulation below the packing limit), and 60 s (end of packing). From the initial state, the 329 

solid grains fall downward while the liquid moves upward in such a way that the continuity 330 

equation is respected, shown in Figure 5-b and -c. Since the solid fraction in the two-phase 331 

region is 0.1, the liquid velocity is ten times smaller than the solid velocity. The first grains 332 

reach the bottom after 20 s and begin to accumulate until the packing fraction (chosen as 0.3) 333 

is reached. During the process, the change of the solid phase from the moving to the packed 334 

state has an impact on the liquid movement, which is revealed by the peaks of liquid velocity 335 

at the packing front. The sedimentation is complete after 60 s, although the solid and liquid 336 

velocities remain non-zero within a small layer where the gravitational force is balanced with 337 

the diffusive effect. This phenomenon is maintained due to the persistent gradient of the solid 338 

fraction at the transition interface between the solid packed bed and the solid-free region. 339 

 340 

The analytical and numerical results show similar trends, however, there exist differences 341 

between the two solutions. The differences found within the transition zones are due to 342 

diffusive effects. The simulation results contain an inevitable numerical diffusion and in the 343 

current case, at the boundary of the packed bed, an additional artificial diffusion. Furthermore, 344 

it can be observed that the solid fraction in the packed zone exceeds the predefined packing 345 

value of 0.3. This over accumulation is related to purely numerical issues when packing the 346 

solid phase and it will be discussed further in the next section. 347 

 348 

As grain motion also involves the transport of solute and heat, it is important to verify the 349 

consistency of all transported quantities. The profiles of the average composition in Figure 5-350 

d present consistent evolution during the sedimentation process. When solid grains settle 351 

(Figure 5-b), the solute-rich liquid moves upward (Figure 5-c) and fills the region left by the 352 

grains, leading to an increase of the average composition in the upper zone. The average 353 

composition of 3.609 wt% Pb in the bottom zone corresponds to the final state where there is 354 

about 30% solid at 0.364 wt% Pb and 70% liquid at 5 wt% Pb. Furthermore, as expected for a 355 

pure transport phenomenon, the temperature does not change during this process. Only a 356 

slight deviation from the initial temperature, smaller than 1 K, can be seen at 60 s, as shown 357 

in Figure 5-e. A good overall conservation of all quantities is verified, the maximal relative 358 

errors for the global solute mass and energy being about 10
-6

 and 10
-5

, respectively. 359 

 360 

4.3.  Effects of Artificial Diffusion 361 

 362 

Two simulations were performed in order to study the impact of the artificial diffusion term, 363 

by separately assessing the effect of the constant parameters introduced with variable 𝐷𝑀. In 364 

the first case, the coefficients are 𝛼 = 1 and 𝛽 = 0 while in the second one, 𝛼 = 0 and 𝛽 = 1. 365 

Figure 6-a, -b and -c present respectively the vertical profiles of solid fraction, average 366 

composition and temperature along the sample height for Case 1. In this case, the solid 367 

accumulation cannot be simulated since numerical problems occur when solid grains reach 368 

the bottom boundary, consequently the temperature does not remain constant and uniform 369 

throughout the domain. 370 

 371 
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These problems are overcome in Case 2, the results of which are shown in Figure 6-d, -e and 372 

-f. This reveals that the term related to the variation of the intrinsic velocity has a more 373 

important role in solving numerical singularities than the average velocity. An over-packing 374 

relative to the predefined fraction is also stated with a higher excessive quantity than when 375 

𝛼 = 20; 𝛽 = 1. This observation further shows the role of artificial diffusion in treating 376 

numerical issues related to the packing of solid, since the higher the added diffusion the better 377 

the simulation respects the predefined packing critical solid fraction. However, using high 378 

values of 𝛼 and 𝛽 lead to an excess of diffusion and produce unphysical solutions.  379 

 380 

This set of simulations confirms that numerical concerns of finite element resolution in the 381 

presence of sharp discontinuities of the transport velocity field in an absence of diffusion in 382 

hyperbolic equations can be solved by adding a supplementary diffusive component. It is 383 

nevertheless important to adjust the amount of additional diffusion to avoid unreasonably 384 

diffusing quantities. It was found that 𝛽 = 1 and 𝛼 between 20 and 70 can provide a good 385 

compromise between diffusion and instabilities. Values of 𝛼 = 20 and 𝛽 = 1 were then 386 

chosen to be used in the following simulations, where the entire solidification model is 387 

performed.  388 
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(a) (b) (c) 

   

     

 
(d) (e) 

 

  

Figure 5. Vertical profiles at times 0 s, 10 s, 

30 s and 60 s for (a) solid fraction, (b) solid 

velocity, (c) liquid velocity, (d) average 

composition and (e) temperature with 

parameter 𝛼 = 20; 𝛽 = 1. The analytical 

solution (dashed curves) is derived in 

Appendix D. 
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389 (a) (b) (c) 

   

(d) (e) (f) 

   

Figure 6. Vertical profiles at times 0 s, 10 s, 30 s and 60 s for (a, d) the solid fraction, (b, e) the average composition and (c, f) the temperature with (a-c) 

𝛼 = 1; 𝛽 = 0 and (d-f) 𝛼 = 0; 𝛽 = 1. The analytical solution (dashed curves) is derived in Appendix D. 
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5.  Modeling Applications – Macrosegregation Simulations 390 

The following section presents test cases, first a two-dimensional (2D) and then 391 

three-dimensional (3D) applications for the solidification of a small Sn-Pb ingot. The 392 

objective is to further test the model while maintaining small geometries. Finally, the model 393 

being validated, a simulation for a 3D steel ingot on the scale of an industrial process will be 394 

given in order to discuss the application to a real casting geometry and to identify future 395 

possible improvements of the model.  396 

5.1.  Two-dimensional Test Case  397 

5.1.1.  Description  398 

The studied case, presented in Figure 7, is configured according to the Hebditch-Hunt 399 

benchmark study [38]. A 100 mm x 60 mm cavity contains the same Sn-5wt%Pb alloy as in 400 

the previous sections, initially in the liquid state at 499.15 K (226 °C). Cooling takes place 401 

from the left side, an environment at 25 K, with a heat transfer coefficient of 300 W m
-2 

K
-1

. 402 

The rest of the boundary is assumed adiabatic. The simulation is performed with the complete 403 

model, which accounts for nucleation and growth processes, and transport phenomena, shown 404 

schematically in Figure 1. Nucleation happens at sites where the liquid is cooled below the 405 

liquidus temperature and where there are no existing grains. A homogenous grain density of 406 

10
9
 grains m

-3
 is generated. The transport of heat, mass, and solute is due to the motion of the 407 

solid and liquid phases, which are controlled by both thermo-solutal convection and 408 

sedimentation. It is assumed that there is no phase movement on the sides of the cavity 409 

(sticking contact with the boundary). The two-dimensional computation is carried out on a 410 

non-structured triangular mesh with a mean mesh size of 1 mm (including 15 143 elements 411 

and 7 730 nodes) and 10 micro time steps per a constant macro time step of 0.01 s. 412 

 413 

 
 

Figure 7. Schematics of the 2D cavity test for Sn-5wt%Pb alloy 

solidification showing the geometry and initial values. Simulation 

parameters are given in Table 2. 

 414 



20 
 

 
Table 2. Simulation parameters for the 2D test 

case presented in Figure 7. 

 415 

 

 
Figure 8. Simulations for the 2D cavity test for Sn-5wt%Pb alloy solidification showing 

snapshots at time 10 s with the present finite element model (left column, FE) and with a 

reference finite volume model [8] (right column, FV): (a) solid fraction , 𝑔𝑠, and intrinsic solid 

velocity vectors, 〈𝐯𝑠〉𝑠, (b) temperature, 𝑇, and intrinsic liquid velocity vectors, 〈𝐯𝑙〉𝑙. Black 

curves are isolines of solid fraction (0.1; 0.2; 0.3). The simulation case is defined in Figure 7 and 

Table 2. 

 416 

5.1.2.  Results and discussion 417 

Figure 8 presents the results at t = 10 s, including (a) solid fraction map and solid velocity 418 

vectors; (b) temperature map and liquid velocity vectors. The three black isolines represent 419 

the solid fractions 0.1 (upper isoline), 0.2 (intermediate) and 0.3 (lower). It can be observed in 420 

Figure 8-a that after nucleation along the left cooled wall, solid grains settle to the bottom 421 

under the combined effect of gravity and downward solutal convection. Some of the grains 422 

that are still small are directly transported towards the right wall, they then continue to be 423 

carried by the liquid and move upward to about mid-height of the specimen. Due to the 424 

transport and settling of solid grains, a layer of packed grains begins building up along the 425 
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bottom of the specimen. Meanwhile, the coolest zone is observed on the left side of the 426 

cavity, as illustrated by the temperature map in Figure 8-b, clearly showing that the solid 427 

fraction distribution is not directly related to the temperature when accounting for solid 428 

transport. Moreover, the similarity between the solid and liquid velocities shows a strong 429 

interaction in the motion of the two phases. These results can be compared with those 430 

obtained by the finite volume model developed by Založnik and Combeau [8] and 431 

implemented in the finite volume code SOLID using the same average mesh size. The finite 432 

element simulation (FE, Figure 8-a and –b, left column) and the finite volume simulation 433 

(FV, Figure 8-a and –b, right column) produce very similar distributions for the different 434 

variables. However, differences between the FE and FV solutions can be observed and will be 435 

discussed further.  436 

 437 

Figure 9 displays the time evolution of the distribution of the average solute composition. As 438 

for Figure 8, the FE results are presented in the left column and the corresponding FV 439 

solutions in the right column. After 10 s of solidification, negative segregation forms at the 440 

bottom, while a large area of the cavity still remains at the initial composition of 5 wt%. The 441 

rejection of Pb from the solid phase during solidification enriches the liquid, increasing its 442 

density. However, the bottom area is occupied by the solid phase, composed of solute-443 

depleted grains, even denser than the solute-rich liquid. Accordingly, a negative segregation 444 

layer progressively builds up from the bottom side, observed from 10 to 20 s. Additionally, it 445 

can be observed that the transition between the slurry zone, which is at a solid fraction of 446 

~ 0.1, and the packed layer at a solid fraction of around 0.3, is rather thin. Such a narrow layer 447 

also indicates a prompt transition between the two flow regimes. While the solid velocity in 448 

the stationary packed bed is zero, an inter-granular liquid flow through the permeable packed 449 

bed persists. This flow creates a semicircular anti-clockwise circulation that brings solute 450 

from the upper to the lower regions of the packed bed in the left part of the domain, and from 451 

the lower to the upper regions in the right part. The resulting macrosegregation can be seen at 452 

time 200 s in Figure 9-c: the average composition map shows that a large area in the 453 

stationary mushy zone has a negative segregation which results from accumulation of solute-454 

depleted grains. However, the average composition is not uniform. At the very bottom of the 455 

cavity, there is an accumulation of solute which results from intergranular melt flow localized 456 

along the bottom wall and oriented in the direction of the temperature gradient. In the left part 457 

of the packed layer the negative segregation is amplified by the flow of intergranular liquid, 458 

which is oriented against the temperature gradient in this region. As the process advances, the 459 

channel continues to extend along the bottom side.  460 

 461 

When comparing FE and FV methods, the map produced at the end of solidification shows a 462 

similar tendency of segregation formation, including the negative segregation located in the 463 

left zone of the cavity and the positive channel formed at the bottom. However, the FE 464 

solution produces a less marked negative segregation, and a larger positive channel along the 465 

bottom wall. Additionally, in the upper zone of the cavity, the FE solution shows positive 466 

segregation near the upper-left corner and a slightly negative segregation nearby. In this 467 

region, the FV computation produces positively segregated channels with higher solute 468 

content, distributed horizontally and alternating with negatively segregated zones. Differences 469 



22 
 

between these two results can be partly explained by the influence of numerical factors. 470 

Because of the extremely high nonlinearity of the problem, any differences in the numerical 471 

solution methods can lead to noticeable differences between the solutions. The artificial 472 

diffusion used in the FE method inevitably leads to smoothing of the macroscopic fields and 473 

thus to a smaller degree of segregation than in the FV solution. In addition, many other 474 

factors, including discretization schemes, iteration procedures, etc., can be the cause of the 475 

differences between the FE and the FV results. The reader interested in such aspects can refer 476 

to literature in the context of simulations with a fixed solid phase [39, 40]. 477 

 478 

When considering the distribution of solid grains it is useful to look at the distribution of grain 479 

density in Figure 10 at different instants. At 10 s, 20 s, and 200 s, it can be first observed that 480 

a large number of grains are gathered in the packed layer. It can also be seen that the transport 481 

of crystals by liquid advection induces several zones of significant grain density in the slurry 482 

region. As solid grains are transported, such a heterogeneous distribution is expected. 483 

Although the results obtained from the FE and FV methods are still very similar at t = 10 s, 484 

larger differences between the two solutions are perceived later on. Compared to the FV 485 

results, a higher grain density in the right region is predicted by the FE simulation. It is known 486 

that the number of grains is governed and influenced by different coupled processes, 487 

consisting of nucleation, transport, re-melting and re-nucleation mechanisms. Although the 488 

physical parameters and the numerical procedure for nucleation are identical in both 489 

simulations, the larger quantity of grains in the FE solution might be caused by a higher 490 

frequency of nucleation events at nodes that were emptied of grains because of transport or 491 

remelting. Nevertheless, further investigations should be carried out, as the sources of those 492 

differences still remain unconfirmed. Despite these differences, clear similarities between 493 

both results can be observed, including a high grain density in the lower-right corner and a 494 

low grain density in the upper-left corner at the end of solidification.   495 
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Figure 9. Simulations for the 2D cavity test for Sn-5wt%Pb alloy solidification showing 

maps of average Pb composition (wt%) at (a) 10 s, (b) 20 s, (c) 200 s, and (d) the end of 

solidification for the finite element (FE) and the finite volume (FV) simulations. Black 

curves are isolines of solid fraction (0.1; 0.2; 0.3). The simulation case is defined in 

Figure 7 and Table 2. 

 496 

  497 
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Figure 10. Simulations for the 2D cavity test for Sn-5wt%Pb alloy solidification showing 

maps of grain density (m
-3

) at (a) 10 s, (b) 20 s, (c) 200 s, and (d) end of solidification for 

(FE) the finite element simulation and (FV) the finite volume simulation. The simulation 

case is defined in Figure 7 and Table 2.  

 498 

  499 
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5.2.  Three-dimensional Test Case 500 

5.2.1.  Description 501 

A case was developed to simulate macrosegregation in three dimensions. The case considered 502 

is an extension of the previous 2D case, giving the cavity a thickness of 10 mm in the third 503 

dimension. Due to symmetry, the computational domain occupies one half of the thickness of 504 

the specimen, as shown in Figure 11-a. The two largest surfaces are the median plane with 505 

symmetry conditions (numbered 6 in the figure, further denoted P6), and the front wall with a 506 

no-slip condition (plane numbered 3 in the figure, further denoted P3). Heat is extracted from 507 

the left wall, others being assumed adiabatic. The calculation is performed on a non-508 

structured mesh with a uniform mesh size of 1 mm, (294 935 elements and 57 626 nodes) and 509 

using a constant macro time step of 0.01 s and five micro increments per macro time step. 510 

 511 

 

Figure 11. Schematics of the 3D cavity test for Sn-5wt%Pb alloy 

solidification showing the geometry and initial values. Simulation 

parameters are given in Table 3. 

 512 

 
Table 3. Simulation parameters for the 3D test case 

presented in Figure 11. 

 513 

5.2.2.  Results and discussion 514 

Figure 12 presents the different fields along three horizontal planes and the vertical median 515 

plane at time 10 s. Comparison is possible with 2D simulations presented in Figure 8-a 516 
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(Figure 12-a and -f), Figure 8-b (Figure 12-c and -e), Figure 9-a (Figure 12-b) and 517 

Figure 10-a (Figure 12-d). Results show very similar trends. However, it can be observed 518 

that the distributions of variables are non-uniform within the thickness of the 3D geometry. In 519 

the solid fraction maps (Figure 12-a), across the horizontal planes, it can be seen that the 520 

solid zone advances further along the specimen walls (plane P3) than in the interior. Thus the 521 

iso-surface of solid fraction exhibits a concave shape in the central zone of the cavity. This 522 

phenomenon can be explained by considering the distributions of other quantities since all 523 

relevant variables are closely related. First, as seen on the maps of velocities (Figure 12-e and 524 

f), there is no motion of neither solid nor liquid along the walls due to the no-slip boundary 525 

conditions. Because the grains remain attached to the cavity walls and do not settle, the solid 526 

fraction is higher than in the interior of the cavity (plane P6). The solid and liquid phases are 527 

not constrained in the immediate vicinity of the external surfaces. With a high quantity of 528 

mobile solid grains, the settling velocity is thus stronger there than that in the central zone as 529 

observed on the solid velocity map (Figure 12-f). This solid motion then enhances the 530 

downward movement of the solute-enriched liquid phase. Comparison of the maximum 531 

velocities at 10 s is possible, showing (2D, solid phase) 40.4 mm s
-1

 versus (3D, solid phase) 532 

41.0 mm s
-1

 and (2D, liquid phase) 39.6 mm s
-1

 versus (3D, solid phase) 31.5 mm s
-1

. In both 533 

cases, the location of the highest velocities for the solid and liquid phases are very close. The 534 

solid velocity being directly computed from eq. (33) by neglecting the inertial and viscous 535 

terms, i.e. only accounting for the solid-liquid interaction through the transferred momentum 536 

due to interfacial stresses, maximum values are almost equal in the 2D and 3D simulations. 537 

However, a lower value is found in the 3D simulation for the maximum velocity of the liquid 538 

phase. This is due to the interaction of the liquid flow with the two largest cavity walls (plane 539 

P3 and its symmetric), not accounted for in the 2D approximation. Thus, the transport of the 540 

liquid phase by the solid phase, while being obviously present, plays a less important role in 541 

comparison to the 2D approximation.  542 

It is also interesting to observe the distribution of the flow in the horizontal cross sections. 543 

The maximum velocities for both phases are not observed at the symmetry plane of the cavity. 544 

Instead they are localized at about 1/3 of the half-cavity thickness from the cavity surfaces. 545 

This uneven distribution is enhanced when successively considering the cross sections from 546 

top (height 57 mm) to bottom (height 17 mm). Figure 12-d shows that grains are present far 547 

ahead the vertical solid front shown in Figure 12-a as nucleation is taking place at the 548 

liquidus temperature 498.72 K (225.57 °C). Note that the map of the presence of grain in 549 

Figure 12-d is coherent with the temperature map given in Figure 12-c and the position of 550 

the liquidus isosurface. The solid fraction thus remains very low in a large undercooled zone, 551 

as shown when comparing Figure 12-a with the liquidus position – or the nucleation front in 552 

Figure 12-d –. This is due to the very low driving force for growth at low undercooling. 553 

Consequently, liquid flow is possible in this undercooled region, and is stronger in the vicinity 554 

of the symmetry plane. Transport of Pb solute that segregates between the grains is also 555 

preferentially taking place in the vicinity of the symmetry plane, explaining the isocontour 556 

drawn in Figure 12-b, concave along the vertical growth front and convex in the bottom right 557 

region of the cavity. Close to the cavity walls, the sedimentation of the grains is the main 558 

cause for the liquid flow, leading to liquid velocity higher than at the center of the cavity.   559 
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Figure 12.  Simulations for the 3D cavity test for Sn-5wt%Pb alloy solidification showing snapshots at 10 s in the 

vertical symmetry plane and in 3 horizontal transversal planes at heights 17 mm, 37 mm, and 57 mm from the 

bottom. Variables drawn are (a) solid fraction, (b) average composition, (c) temperature, (d) grain density, (e) liquid 

velocity, and (f) solid velocity. Black iso-lines in the planar representations are (a) 𝑔𝑠 = {0.02 ; 0.03}, (b) 〈𝑤〉 =
{5.04 ; 5.06 ; 5.08} wt%Pb, (c) 𝑇 = {494.15 ; 495.15 ; 497.15 } K ({221 ; 222 ; 224 } °C) and (d) 𝑁 = {2 ;  3} 108 

grains m
-3

. Iso-surfaces in the four top views are defined by (a) 𝑔𝑠 = 0.01, (b) 〈𝑤〉 = 5.02 wt%Pb , (c) 𝑇 =
496.15 K (223 °C) , and (d) 𝑁 = 107 grains m−3. Velocity vectors in the bottom views are only displayed in the 

symmetry plane. The simulation case is defined in Figure 11 and Table 3. 
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Figure 13 displays the evolution upon solidification of the iso-surfaces of the average 560 

composition. The formation of a segregated channel at the bottom of the cavity is revealed. It 561 

forms first around the central zone of the cavity where the movements of the solid and liquid 562 

phases are not limited, unlike those restricted on the external surfaces. Inside the cavity, there 563 

always exists, until the end of the solidification process, some liquid flow that circulates 564 

through the packed bed and transports the solute from the upper to the lower regions, although 565 

its intensity is significantly reduced in comparison with the slurry zone. Consequently, the 566 

free recirculation of inter-granular flow enriched in the heavy element Pb leads to the 567 

formation of a positively segregated channel with a high solute content in the interior domain. 568 

When the process advances, this channel becomes a preferential path for the liquid phase and 569 

continues to expand along the width of the cavity (following the direction of inter-granular 570 

flow) as well as to develop in the thickness of the cavity with a content decreasing 571 

progressively when approaching the lateral surface. The various distribution of solute 572 

composition, in turn, induces different rates of solidification in the cavity, resulting in 573 

subsequent heterogeneities of quantities in all three dimensions.  574 

 575 

  

  
Figure 13. Simulations for the 3D cavity test for Sn-5wt%Pb alloy solidification showing 

snapshots of the average composition at times (a) 150 s, (b) 200 s, (c) 250 s, and (d) 300 s. 

Iso-surfaces are displayed for 3, 4, 7, 9, and 10 wt%Pb. Iso-lines on the plane at height 20 

mm from the bottom are from 3 to 4.2 wt%Pb with equi-interval of 0.1 wt%Pb). The 

simulation case is defined in Figure 11 and Table 3. 

 576 

  577 
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5.3.  Three-dimensional Simulation of an Industrial Steel Ingot 578 

5.3.1.  Description 579 

The numerical model is now applied to predict macrosegregation in an industrially cast steel 580 

ingot as produced by the company Aubert & Duval. Physical features and alloying 581 

components of the casting are detailed in [18], while its schematic is illustrated in Figure 14-582 

a. The bottom and lower region of the steel ingot are cooled via a mold while the upper region 583 

is surrounded by an insulating refractory material. The top surface is covered by a layer of 584 

exothermal powder. The mold outer surface thermally exchanges with the environment by 585 

convection and radiation.  586 

 587 

For the current study, the steel is considered as a binary alloy composed of an iron base and a 588 

0.36wt% nominal carbon content, which plays a dominant role in determining buoyancy force 589 

compared to other chemical elements [18]. A simulation is performed on one quarter of a 590 

cylinder (0.3 m radius and 1.8 m height), an approximation of the octagonal cross-section of 591 

the real ingot, which is bounded by two symmetric planes (P2 and P3 in Figure 14-b). The 592 

heat exchange through the mold and the refractory – not represented in the simulation – is 593 

modelled by applying Fourier type boundary conditions to the cylindrical surface and bottom 594 

region of ingot (P5 and P4 in Figure 14-b). Two different convective heat transfer 595 

coefficients are used: ℎ𝑒𝑥𝑡_𝑠𝑢𝑝 =  700 W m
-2

 K
-1 

in the upper zone of the cylindrical part (0.4 596 

m depth from the top) representing a limited heat extraction through refractory and 597 

ℎ𝑒𝑥𝑡_𝑖𝑛𝑓  =  1000 W m
-2

 K
-1

 in both the lower zone (1.4 m height from the bottom) and the 598 

bottom surface, representing faster cooling via the grey iron mold. The top surface (P1 in 599 

Figure 14-b) is assumed to be adiabatic as the thermal cooling is restrained by use of the 600 

exothermal powder layer. At the beginning of the simulation, the ingot is assumed to be 601 

already filled by the liquid alloy at 1776.15 K (1503 °C). The exterior temperature is modeled 602 

to be gradually changed during the process: beginning at 900 K (626.85 °C) until 2000 s, then 603 

imposed to be 300 K (26.85 °C) when the cooling time is over 4000 s, and decreased linearly 604 

with time during the intermediate period. Grain nucleation is modeled following an 605 

instantaneous nucleation law with an initial density of 109 grains m−3 and a nucleation 606 

undercooling of 10−3 K. Crystals are assumed to be blocked when the solid fraction reaches a 607 

packing value of 0.4. In this investigation, only equiaxed spherical crystals are considered. 608 

The simulation is carried out with a uniform mesh size of 20 mm and a constant time step of 609 

0.01 s. 610 

5.3.2.  Results and discussion 611 

Figure 15 presents the velocities of liquid and solid phases in a vertical cross-section, for 612 

which the vectors indicate the velocity direction and the color reflects the velocity magnitude. 613 

The three upper sub-figures (a-c) are for the liquid phase and the lower (d-f) for the solid 614 

phase. The pink surface displays the packing limit interface at a solid fraction of 0.4, below 615 

which solid grains are blocked and piled up from the bottom to this interface. Additionally, 616 

the tangential component of velocities is also illustrated in four transversal cross-sections at 617 

0.4, 0.8, 1.2 and 1.6 m from the ingot’s bottom.  618 
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 619 

 

 
(a) (b) 

Figure 14. Schematics of the 3.3 ton steel ingot cast by Aubert & Duval [18] presenting 

(a) dimensions and materials and (b) simulated settings. Simulation parameters are given in 

Table 4. 

 620 

 
Table 4. Simulation parameters for the ingot case 

presented in Figure 14. 

 621 

As it can be observed in these figures, the flow descends along the cooled side and ascends 622 

along the centerline, resulting in a global circulation loop in the shape of an elongated torus. 623 

The maximum velocity is around 150 mm/s along the cooled wall. The persistence of this 624 

circulation loop is remarkable and its flow direction is the reverse of the direction observed 625 

when solid transport is not taken into account. If the solid is assumed to be fixed to the mold, 626 

the flow is driven only by natural convection induced by density differences in the liquid. The 627 
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density of the liquid depends on the temperature and on the chemical composition; the 628 

concentration of carbon is most important when compared to all solutes in the 629 

multicomponent steel [18]. In the mushy zone the liquid density decreases with decreasing 630 

temperature because the liquid is enriched in carbon as solidification progresses. This creates 631 

a lateral liquid density gradient from the cooled walls towards the core of the casting, which 632 

drives the thermosolutal natural convection. If the solid is fixed, lighter liquid ascends along 633 

the walls and heavier liquid descends in the core. When solid grains move, the flow is 634 

completely modified. Solid crystals, heavier than the liquid, sediment along the cooled walls 635 

and entrain the liquid, thus inducing a downward flow. This phenomenon leads to an overall 636 

flow loop descending at the solidification front and ascending in the ingot core. This clearly 637 

shows that besides the thermo-solutal effect the solid transport plays a significant role in the 638 

formation of the natural convective flow during solidification. Moreover, the motion of solid 639 

and liquid are strongly coupled; the moving phases can entrain one another via drag forces.  640 

 641 

The predicted flow structure is clearly three-dimensional and is not axisymmetric, although a 642 

four-fold symmetry is implicitly assumed by the choice of the computational domain. The 3D 643 

structure of the flow is indicated in the horizontal slices of Figure 15, showing the tangential 644 

velocity component for both phases. It is around one order of magnitude smaller than that of 645 

the vertical velocities. The 3D structure is even more clearly observable on the shape of the 646 

packing front (pink surface in Figure 15) and in the distribution of macrosegregation, shown 647 

in Figures 16–17. It is possible that a certain degree of destabilization is induced by the 648 

numerics due to the use of a relatively coarse mesh size (20 mm).  649 

 650 

Figure 16 presents the distribution of solid fraction (a-c) and of average composition (d-f) at 651 

different instants (10, 100 and 200 s). It can be seen that in the beginning of the process (at 652 

time 10 s) the whole population of grains are transported and sediment at quite high speed 653 

(about 150 mms
-1

) along the cooled wall. Despite a higher solid fraction near the wall (which 654 

can be seen in the transverse cross-sections) there is no permanent solid layer attached to this 655 

cooled wall. Additionally, in the velocity maps in Figure 15 it can be seen that after sinking 656 

to the bottom along the cooled side, the mobile solid phase is transported towards the center 657 

zone by liquid flow. In this way, solid grains coming from the outer solidified region first 658 

accumulate at the center area and then extend to the side wall, resulting in a packed solid built 659 

up from the bottom side. Since solute-depleted grains settle and occupy the lower zone, the 660 

liquid enriched in solute is ejected upwards. This gives rise to the formation of a negative 661 

segregation cone in the lower zone of the ingot, as shown in Figure 17-a. This is a typical 662 

phenomenon experimentally found in steel ingots. Figure 17-b shows the segregation profiles 663 

at the ingot center. The blue curve is obtained from the present numerical solution and can 664 

reproduce the general trend measured experimentally and represented by red points: negative 665 

segregation in the lower zone and positive segregation in the upper zone. Nevertheless, the 666 

numerically calculated segregations are more severe than those measured: it can be noted that 667 

the simulation predicts a negative segregation which is more pronounced than that of the one 668 

measured, whereas the calculated positive segregation is less intense than measured. The 669 

discrepancy between numerical and experimental results may be caused by different factors. It 670 

should be noted first that approximated boundary conditions were used in the absence of mold 671 
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and refractory. In addition, other factors were neglected, such as the dendritic morphology of 672 

solid grains, the simultaneous presence of columnar and equiaxed grain structures, and the 673 

shrinkage phenomenon. As an illustration, the investigation accounting for (orange curve in 674 

Figure 17-b) globular grain morphology with a 2D-FVM [18] is shown in Figure 17-b. It 675 

reveals larger deviation from the measurements compared to the present 3D-FEM simulation. 676 

However, when compared with (green curve in Figure 17-b) dendritic morphology of solid 677 

crystals performed with a 2D-FVM implementation [18], clear improvement is seen and the  678 

prediction of segregation comes closer to experimental data. 679 

  680 
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Figure 15. 3D FEM simulation of the solidification of a binary Fe-0.36wt%C alloy. 

Calculated velocities of (a-c) the liquid phase and (d-f) the solid phase at process times (a, d) 

10 s, (b, e) 100 s and (c, f) 200 s. In the vertical longitudinal cross-section, vectors indicate 

the velocity direction, while their color reflects the velocity magnitude. In the four horizontal 

transverse sections, the maps present the distribution of tangential velocities. The pink surface 

represents the packing surface at the characteristic solid fraction 0.4. The simulation case is 

defined in Figure 14 and Table 4. 

  681 
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Figure 16. 3D FEM simulation of the solidification of a binary Fe-0.36wt%C alloy. 

Calculated solid fractions (a-c) and average solute composition (d-f) at process times (a, d) 

10 s, (b, e) 100 s and (c, f) 200 s. The pink surface represents the packing surface at solid 

fraction 0.4. The simulation case is defined in Figure 14 and Table 4. 
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Figure 17. 3D FEM simulation of the solidification of a binary Fe-0.36wt%C alloy with (a) 

the final macrosegregation map and (b) segregation profiles along the center line with (red 

points) measurements, (blue curve) present 3D FEM simulation and (orange curve) 2D 

cylindrical FVM considering a spherical globular solid grains and (green curve) 2D 

cylindrical FVM simulation accounting for a dendritic morphology of the solid phase [18]. 

The simulation case is defined in Figure 14 and Table 4. 

 683 

6.  Conclusions 684 

In this study, a finite element solidification model which takes into account the transport of 685 

equiaxed grains is presented. This model consists of  686 

 the resolution of a set of highly nonlinear and strongly coupled equations over 687 

multiple scales in time and space, including those of energy, phase movement, phase 688 

transport, grain density transport, solute transport, nucleation and solid growth,  689 

 the coupling of the equations based on the operator splitting algorithm, previously 690 

developed by Založnik and Combeau [8], demonstrated as an effective way for the 691 

numerical resolution of the evolution of solidification structures in the growth stage 692 

and the transport stage. 693 

Different issues make the finite element implementation challenging: 694 
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 solution of pure transport equations by the finite element method, 695 

 sharp discontinuities in the velocity fields due to the packing of solid grains. 696 

Propositions were introduced to overcome these difficulties:  697 

 addition of an adaptive artificial diffusion to the transport equations,  698 

 implementation of a specific treatment to deal with the packing issue, consisting in 699 

using a transition function and adjusting the solid velocity. 700 

A careful investigation was conducted to ensure the consistency between related quantities 701 

during the process as well as to guarantee the conservation of mass and energy. It 702 

progressively consisted of:  703 

 a 1D pure transport simulation of sedimentation to evaluate its effects and to propose 704 

appropriate values for the adaptive artificial diffusion, 705 

 application of the complete transport-growth model to simulate macrosegregation in a 706 

2D configuration [11], 707 

 extension of the above simulation in 3D, resulting in a heterogeneous distribution of 708 

variables in the third direction which could not be captured by 2D simulations, 709 

 3D simulation of the solidification of a 3.3 ton Fe - 0.36 wt% C steel ingot, 710 

representative of a real ingot [18], showing macrosegregation prediction in reasonable 711 

agreement with experimental measurements. 712 

To our knowledge, the present development is original in the context of the finite element 713 

method. It should be noted that the computational time reached 35 days for the simulation of 714 

the binary Fe-0.36wt%C alloy. Improvements are expected when using a combination of 715 

adaptive techniques for the macroscopic time step and the FE mesh. The present finite 716 

element model could then become a promising tool to simulate solidification, especially for 717 

industrial applications such as ingots of complex geometries and large size. It also has 718 

potential for coupling with segregation due to thermomechanical deformation while 719 

accounting for the grain structure formed during casting.  720 
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Appendix A – Nomenclature and notations 798 

𝐛 body force 

𝐶𝑑 drag coefficient 

𝑐𝑝 specific heat 

𝐷 diffusion coefficient 

𝑑𝑔 grain diameter 

𝐷𝑀 artificial diffusion coefficient 

𝐠 gravity vector 

𝑔 phase fraction 

𝑔𝑐
𝑠 packing solid fraction 

ℎ enthalpy per unit mass 

ℎ𝑒
𝐯𝑠 characteristic mesh size of an element 𝑒  in direction of velocity 𝐯𝑠 
𝐣 solute flux vector 

𝐽 
𝛤 interfacial solute transfer due to phase change 

𝐽 
𝑗 interfacial solute transfer due to diffusion 

𝐽 
𝛷 interfacial solute transfer due to nucleation 

𝑘𝑝 partition coefficient 

𝑙 heat conduction length 

𝐿𝑓 latent heat of fusion 

𝐌 
𝑑 interfacial momentum transfer due to interfacial stress 

𝐌 
𝛤 interfacial momentum transfer due to phase change 

𝐌 
𝛷 interfacial momentum transfer due to nucleation 

𝑛 number of micro-time steps over a macro-time step 

𝐧 unit vector normal to the liquid-solid interface 

𝑁 grain density 

�̇� generation rate of grain density 

𝑝 pressure 

𝐪 heat flux vector 

𝑄 
𝛤 interfacial heat transfer due to phase change 

𝑄 
𝑗 interfacial heat transfer due to diffusion 

𝑄 
𝛷 interfacial heat transfer due to nucleation 

𝑅 resistance coefficient 

𝑆v interfacial area concentration 

𝑇 temperature 

𝑡 time 

𝛿𝑡 micro time step 

∆𝑡 macro time step 

𝑇𝑒𝑥𝑡 exterior temperature  

𝑣 growth velocity of grains 

𝐯 velocity vector 

𝐯𝑐𝑒𝑛𝑡𝑒𝑟 velocity at the center of an element 

𝑤 solute mass concentration 

  

𝛼 first constant parameter of the artificial diffusion coefficient 

𝛼𝑡 transition function 

𝛽 second constant parameter of the artificial diffusion coefficient 

𝛽𝑠ℎ𝑟 shrinkage coefficient 

𝛽𝑇 thermal expansion coefficient 
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𝛽𝑤 solutal expansion coefficient 

𝛿 solute diffusion length 

𝛤 rate of exchanged mass due to phase change 

ҡ thermal conductivity 

𝜆2 characteristic length for permeability 

𝜇 dynamic viscosity 

𝜑𝑖 interpolation function associated with node 𝑖 
𝜌 mass density 

𝛕 deviatoric stress tensor 

𝛷 rate of transferred mass due to grain nucleation 

𝜈 iteration 

  

Subscripts  Superscripts 

   

𝑔𝑟 growth   ∗ interface 

𝑖, 𝑗 indexes of nodes  𝐵 buoyancy 

𝑛𝑢𝑐𝑙 nucleation  𝑇 transpose 

𝑝𝑎𝑐𝑘𝑒𝑑 packed-bed regime  𝑙 liquid phase 

𝑟𝑒𝑔𝑖𝑚𝑒 flux regime  𝑚 mixture 

𝑟𝑒𝑓 reference  𝑠 solid phase 

𝑠𝑙𝑢𝑟𝑟𝑦 slurry regime  𝛼 phase 𝛼 

𝑡𝑟 transport  𝜈 iteration 

𝑝𝑟𝑜𝑗 projection    

𝑚𝑜𝑑𝑖𝑓 modification    

0 initial state    

     

Supplementary symbols 799 

〈   〉 volume average over all phases 

〈   𝛼 〉 volume average in phase 𝛼 
〈   𝛼 〉𝛼 intrinsic volume average in phase 𝛼 

⊗ tensor product 

∇ gradient operator 

∇ ∙ divergence operator 

   ̅ averaging operator 

𝑁𝑛 number of nodes 

𝑅𝑒 Reynolds number 

𝑡𝑎𝑛ℎ hyperbolic tangent 

‖  ‖ magnitude of a vector  

  

  800 
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Appendix B – Solute Diffusion Lengths and Area Concentration 801 

The solute diffusion lengths are taken from the work of Tveito and co-workers [41], as the 802 

following formulations. 803 

 804 

Solute diffusion length in the liquid phase 805 

 806 

𝛿𝑙 
=
𝑤𝑙∗ − 〈𝑤𝑙〉𝑙

−
𝜕𝑤𝑙

𝜕𝐧
|
∗  (C. 1) 

   

 
=

𝑑

𝑑
𝑅𝑔
−

𝑓(𝑅𝑔, ∆) + 𝑔(𝑅𝑓, 𝑅𝑔, ∆)

𝑑[𝑅𝑔 + 𝑑 − (𝑅𝑔 + ∆ + 𝑑)𝑒
−∆ 𝑑⁄ ] − 𝑓(𝑅𝑔, ∆) + 𝑔(𝑅𝑓, 𝑅𝑔, ∆)(𝑒

−∆ 𝑑⁄ − 1)

 
(C. 2) 

   

where   

 𝑑 =
𝐷𝑙

𝑣
  𝑓(𝑅𝑔, ∆) =

(𝑅𝑔 + ∆)
2
− 𝑅𝑔

2

2
 

(C. 3) 

     

 𝑔(𝑅𝑓, 𝑅𝑔, ∆) =
𝑅𝑓
3 − (𝑅𝑔 + ∆)

3

3(𝑅𝑔 + ∆)
  ∆= 𝑚𝑖𝑛 (𝑅𝑓 − 𝑅𝑔 ;  

2𝑅𝑔
𝑆ℎ𝑐𝑜𝑛𝑣

) (C. 4) 

     

 𝑆ℎ𝑐𝑜𝑛𝑣 =
2

3𝑔𝑙
𝑆𝑐1 3⁄ 𝑅𝑒𝑛(𝑅𝑒)  𝑆𝑐 =

𝜇𝑙

𝜌𝑙𝐷𝑙
 (C. 5) 

     

 𝑅𝑒 =
𝑔𝑙2𝑅𝑔‖〈𝐯

𝑙〉𝑙 − 〈𝐯𝑠〉𝑠‖

𝜈
  𝑛(𝑅𝑒) =

2𝑅𝑒0.28 + 4.65

3(𝑅𝑒0.28 + 4.65)
 (C. 6) 

 807 

Solute diffusion length in the solid phase 𝛿𝑠 =
𝑅𝑔
5

 (C. 7) 

 808 

The area concentration is calculated as: 𝑆v = 4𝜋(𝑅𝑔)
2
𝑁 (C. 8) 

  809 
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Appendix C – Thermophysical Data 810 

 

Table C1. Thermophysical data of Sn – 5 wt.% Pb alloy [8]. 

811 
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Appendix D – Analytical solution for the 1D Test Case 812 

The 1D Test Case consists in pure sedimentation of a column of preexisting globular grains 813 

with fixed size in a uniform temperature domain. Considering constant and equal densities of 814 

the solid and liquid phases, as well as no phase change and no nucleation, the average total 815 

mass conservation simplifies to 𝑔𝑠 〈𝒗𝑠〉𝑠 + 𝑔𝑙  〈𝒗𝑙〉𝑙 = 0. For the sake of simplicity, a 816 

constant settling value of the solid velocity is imposed, set to  〈𝑣𝑠〉0
𝒔 = −1 𝑚𝑚 𝑠−1. The 1D 817 

domain height and the initial conditions are defined in Figure 4: a continuous and uniform 818 

60 mm mushy zone region is initially present between heights 20 mm and 80 mm, with a 819 

uniform average grain density per unit volume, 𝑁0 =  10
9 𝑔𝑟𝑎𝑖𝑛𝑠 𝑚3, and volume fraction of 820 

solid,  𝑔0
𝒔 = 0.1. One can easily derive the value for the liquid velocity in the mushy zone, 821 

 〈𝑣𝑙〉𝑙 = −  𝑔0
𝒔 〈𝑣𝑠〉0

𝒔/(1 −  𝑔0
𝒔) = 0.11 𝑚𝑚 𝑠−1. Similarly, the radius of the grains, 𝑅0, is 822 

simply given by using the definition of the fraction of solid,  𝑔0
𝒔 = 𝑁0(4/3)𝜋𝑅0

3, leading to 823 

the value 𝑅0 = 0.288 𝑚𝑚. Considering the fixed settling velocity and the packing limit at 824 

which the grain stop, 𝑔𝑐
𝑠 = 0.3, the time evolution of the distribution of the mushy zone is 825 

simply derived by considering that the total fraction of the solid phase is unchanged over the 826 

entire domain, while not exceeding 𝑔𝑐
𝑠 in the packed bed. Values are reported in Table D1. 827 

The temperature is fixed to 498 K (224.856 °C), i.e. below the liquidus temperature of the 828 

𝑆𝑛 − 5 𝑤𝑡% 𝑃𝑏 alloy, that is 498.72 K (225.57 °C) according to the thermophysical 829 

properties listed in Table C1 of Appendix C [8]. The average solute mass composition is 830 

defined by 〈𝑤〉 = 𝑔𝑠 〈𝑤𝑠〉𝑠 + 𝑔𝑙  〈𝑤𝑙〉𝑙. At any time, as the system is closed with respect to 831 

mass transfer, integration over the entire domain must retrieve the nominal composition of the 832 

alloy, 𝑤0 = 5 wt% Pb. The initial composition profile assumes no macrosegregation. This 833 

means that the average composition is equal to 𝑤0 at any position along the domain. 834 

However, assuming complete mixing in both liquid and solid phases, the lever rule holds and 835 

one can derive the equilibrium intrinsic composition of the liquid and solid phases,  〈𝑤𝑙〉𝑙 =836 

5.556 wt% Pb and  〈𝑤𝑠〉𝑠 = 0.364 wt% Pb, respectively. Knowing the distribution of solid 837 

and liquid and their initial and intrinsic compositions, one can directly compute the average 838 

compositions by tracking the change of phases due to sedimentation. Computed values are 839 

reported in Table D1.   840 
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Table D1. Time evolution of the distribution of the solid along with  

1D simulation domain (dashed lines in Figure 5  and Figure 6). 

841 
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Table 3 Simulation parameters for the 3D test case presented in Figure 11. 845 

Table 4 Simulation parameters for the ingot case presented in Figure 14. 846 

Table C1 Thermophysical data of Sn – 5 wt.% Pb alloy [8]. 847 

Table D1 Time evolution of the distribution of the solid along with 1D simulation domain 848 

(dashed lines in Figure 5  and Figure 6). 849 
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List of figure captions 851 

Figure 1 Schematic of the resolution algorithm using the splitting method. 852 

Figure 2 Transition function 𝛼𝑡 vs. solid fraction supposing a packing solid fraction 853 

𝑔𝑐
𝑠 = 0.3. 854 

Figure 3 Adjustment strategy for the velocity of convected grains in the vicinity of the 855 

packed bed. 856 

Figure 4 Schematics of the 1D sedimentation test showing the sample geometry and initial 857 

distribution of solid grains. Additional conditions and simulation parameters are 858 

given in Table 1. 859 

Figure 5 Vertical profiles at times 0 s, 10 s, 30 s and 60 s for (a) solid fraction, (b) solid 860 

velocity, (c) liquid velocity, (d) average composition and (e) temperature with 861 

parameter α=20; β=1. The analytical solution (dashed curves) is derived in 862 

Appendix D. 863 

Figure 6 Vertical profiles at times 0 s, 10 s, 30 s and 60 s for (a, d) the solid fraction, (b, e) the 864 

average composition and (c, f) the temperature with (a-c) 𝛼 = 1; 𝛽 = 0 and (d-f) 865 

𝛼 = 0; 𝛽 = 1. The analytical solution (dashed curves) is derived in Appendix D. 866 

Figure 7 Schematics of the 2D cavity test for Sn-5wt%Pb alloy solidification showing the 867 

geometry and initial values. Simulation parameters are given in Table 2. 868 

Figure 8 Simulations for the 2D cavity test for Sn-5wt%Pb alloy solidification showing 869 

snapshots at time 10 s with the present finite element model (left column, FE) and 870 

with a reference finite volume model [8] (right column, FV): (a) solid fraction , 871 

𝑔𝑠, and intrinsic solid velocity vectors, 〈𝐯𝑠〉𝑠, (b) temperature, 𝑇, and intrinsic 872 

liquid velocity vectors, 〈𝐯𝑙〉𝑙. Black curves are isolines of solid fraction (0.1; 0.2; 873 

0.3). The simulation case is defined in Figure 7 and Table 2. 874 

Figure 9 Simulations for the 2D cavity test for Sn-5wt%Pb alloy solidification showing 875 

maps of average Pb composition (wt%) at (a) 10 s, (b) 20 s, (c) 200 s, and (d) the 876 

end of solidification for the finite element (FE) and the finite volume (FV) 877 

simulations. Black curves are isolines of solid fraction (0.1; 0.2; 0.3). The 878 

simulation case is defined in Figure 7 and Table 2. 879 

Figure 10 Simulations for the 2D cavity test for Sn-5wt%Pb alloy solidification showing 880 

maps of grain density (m
-3

) at (a) 10 s, (b) 20 s, (c) 200 s, and (d) end of 881 

solidification for (FE) the finite element simulation and (FV) the finite volume 882 

simulation. The simulation case is defined in Figure 7 and Table 2. 883 

Figure 11 Schematics of the 3D cavity test for Sn-5wt%Pb alloy solidification showing the 884 

geometry and initial values. Simulation parameters are given in Table 3. 885 

  886 
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Figure 12 Simulations for the 3D cavity test for Sn-5wt%Pb alloy solidification showing 887 

snapshots at 10 s in the vertical symmetry plane and in 3 horizontal transversal 888 

planes at heights 17 mm, 37 mm, and 57 mm from the bottom. Variables drawn 889 

are (a) solid fraction, (b) average composition, (c) temperature, (d) grain density, 890 

(e) liquid velocity, and (f) solid velocity. Black iso-lines in the planar 891 

representations are (a) 𝑔𝑠 = {0.02 ; 0.03}, (b) 〈𝑤〉 = {5.04 ; 5.06 ; 5.08} wt%Pb, 892 

(c) 𝑇 = {494.15 ; 495.15 ; 497.15 } K ({221 ; 222 ; 224 } °C) and (d) 𝑁 =893 

{2 ;  3} 108 grains m
-3

. Iso-surfaces in the four top views are defined by (a) 894 

𝑔𝑠 = 0.01, (b) 〈𝑤〉 = 5.02 wt%Pb , (c) 𝑇 = 496.15 K (223 °C) , and (d) 895 

𝑁 = 107 grains m−3. Velocity vectors in the bottom views are only displayed in 896 

the symmetry plane. The simulation case is defined in Figure 11 and Table 3. 897 

Figure 13 Simulations for the 3D cavity test for Sn-5wt%Pb alloy solidification showing 898 

snapshots of the average composition at times (a) 150 s, (b) 200 s, (c) 250 s, and 899 

(d) 300 s. Iso-surfaces are displayed for 3, 4, 7, 9, and 10 wt%Pb. Iso-lines on the 900 

plane at height 20 mm from the bottom are from 3 to 4.2 wt%Pb with equi-901 

interval of 0.1 wt%Pb). The simulation case is defined in Figure 11 and Table 3. 902 

Figure 14 Schematics of the 3.3 ton steel ingot cast by Aubert & Duval [18] presenting 903 

(a) dimensions and materials and (b) simulated settings. Simulation parameters 904 

are given in Table 4. 905 

Figure 15 3D FEM simulation of the solidification of a binary Fe-0.36wt%C alloy. 906 

Calculated velocities of (a-c) the liquid phase and (d-f) the solid phase at process 907 

times (a, d) 10 s, (b, e) 100 s and (c, f) 200 s. In the vertical longitudinal cross-908 

section, vectors indicate the velocity direction, while their color reflects the 909 

velocity magnitude. In the four horizontal transverse sections, the maps present 910 

the distribution of tangential velocities. The pink surface represents the packing 911 

surface at the characteristic solid fraction 0.4. The simulation case is defined in 912 

Figure 14 and Table 4. 913 

Figure 16 3D FEM simulation of the solidification of a binary Fe-0.36wt%C alloy. 914 

Calculated solid fractions (a-c) and average solute composition (d-f) at process 915 

times (a, d) 10 s, (b, e) 100 s and (c, f) 200 s. The pink surface represents the 916 

packing surface at solid fraction 0.4. The simulation case is defined in Figure 14 917 

and Table 4. 918 

Figure 17 3D FEM simulation of the solidification of a binary Fe-0.36wt%C alloy with (a) 919 

the final macrosegregation map and (b) segregation profiles along the center line 920 

with (red points) measurements, (blue curve) present 3D FEM simulation and 921 

(orange curve) 2D cylindrical FVM considering a spherical globular solid grains 922 

and (green curve) 2D cylindrical FVM simulation accounting for a dendritic 923 

morphology of the solid phase [18]. The simulation case is defined in Figure 14 924 

and Table 4. 925 

























































































Mesh size  Ͳ.5 [mm] 

Macro time step Ͳ.Ͳͳ [s] 

Macro/Micro time ratio ͳͲ [-] ߙሺ��ሻ ʹͲ [-] ߚሺ��ሻ ͳ [-] 

Table 1 
 

 

 

 



Mesh size ͳ [mm] 

Macro time step Ͳ.Ͳͳ [s] 

Macro/Micro time ratio ͳͲ [-] ߙሺ��ሻ ʹͲ [-] ߚሺ��ሻ ͳ [-] 

Table 2 
 



Mesh size � [mm] 

Macro time step Ͳ.Ͳͳ [s] 

Macro/Micro time ratio 5 [-] ࢻሺ��ሻ ʹͲ [-] ࢼሺ��ሻ ͳ [-] 

Table 3 
 



Mesh size �� [mm] 

Macro time step Ͳ.Ͳͳ [s] 

Macro/Micro time ratio ͳͲ [-] ࢻሺ��ሻ ʹͲ [-] ࢼሺ��ሻ ͳ [-] 

Table 4 
 



Density of the liquid phase, �� ͲͲͲ [kg m
-3

] 

Density of the solid phase, �௦ ͳͶʹ [kg m
-3

] 

Thermal conductivity, ҡ� ͷͷ [W (m K)
-1

] 

Specific heat, ܿ� ʹͲ [J (kg K)
-1

] 

Latent heat of fusion, � ͳͲͲͲ [J kg
-1

] 

Partition coefficient, �� Ͳ.Ͳͷ [-] 

Eutectic temperature, �௨௧ Ͷͷ.ͳͷ ሺͳͺ͵ሻ [K] ([°C]) 

Melting temperature of  pure Sn, � ͷͲͷ.ͳͷ ሺʹ͵ʹሻ [K] ([°C]) 

Thermal expansion coefficient, ��  × ͳͲ−ହ [K
-1

] 

Solutal expansion coefficient, �� −ͷ.͵ × ͳͲ−ଷ [(wt.%)
-1

] 

Dynamic viscosity, ߤ� ͳͲ−ଷ [Pa s] 

Characteristic length for permeability, ߣଶ ʹͲͲ × ͳͲ− [m] 

Liquidus slope, �� −ͳ.ʹͺ [K (wt.%)
-1

] 

Solute diffusion coefficient at micro scale, in liquid, �� ͳͲ−଼ [m
2
 s

-1
] 

Solute diffusion coefficient at micro scale, in solid, �௦ ͳͲ−ଽ [m
2
 s

-1
] 

Grain density, �0 ͳͲଽ [grains m
-3

] 

Initial radius of grains, ݀_0 Ͳ.ͷ × ͳͲ− [m] 

Packing solid fraction, ��௦ Ͳ.͵ [-] 

Table C1 
 

 



Time 

t [s] 

Interval � [mm] 

Solid fraction �� [-] Average composition ۄ�ۃ [wt% Pb] Ͳ [Ͳ, ʹͲ] Ͳ 5 

 [ʹͲ, ͺͲ] Ͳ.ͳ 5 

 [ͺͲ, ͳͲͲ] Ͳ 5 ͳͲ [Ͳ, ͳͲ] Ͳ 5 

 [ͳͲ, ʹͲ] Ͳ.1 4.5364 

 [ʹͲ, Ͳ] Ͳ.ͳ 5 

 [Ͳ, ͺͲ] Ͳ 5.556 

 [ͺͲ, ͳͲͲ] Ͳ 5 ͵Ͳ [Ͳ, ͷ] Ͳ.3 3.6092 

 [ͷ, ʹͲ] Ͳ.ͳ 4.5364 

 [ʹͲ, ͷͲ] Ͳ.ͳ 5 

 [ͷͲ, ͺͲ] Ͳ 5.556 

 [ͺͲ, ͳͲͲ] Ͳ 5 Ͳ [Ͳ, ʹͲ] Ͳ.3 3.6093 

 [ʹͲ, ͺͲ] Ͳ 5.556 

 [ͺͲ, ͳͲͲ] Ͳ 5 

Table D1 
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