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Natural convection produced by a non-uniform internal heat source is studied numeri-
cally. Our investigation is limited to a two-dimensional enclosure with an aspect ratio
equal to two. The energy source is Joule dissipation produced by an electric potential
applied through two electrodes corresponding to a fraction of the vertical walls. The
system of conservative equations of mass, momentum, energy and electric potential
is solved assuming the Boussinesq approximation with a discontinuous Galerkin finite
element method integrated over time. Three parameters are involved in the problem: the
Rayleigh number Ra, the Prandtl number Pr and the electrode length Le normalized by
the enclosure height. The numerical method has been validated in a case where electrodes
have the same length as the vertical walls leading to a uniform source term. The threshold
of convection is established above a critical Rayleigh number, Racr = 1702. Due to
asymmetric boundary conditions on thermal field, the onset of convection is characterized
by a transcritical bifurcation. Reduction of the size of the electrodes (from bottom up)
leads to disappearance of the convection threshold. As soon as the electrode length
is smaller than the cavity height, convection occurs even for small Rayleigh numbers
below the critical value determined previously. At moderate Rayleigh number, the flow
structure is mainly composed of a left clockwise rotation cell and a right anticlockwise
rotation cell symmetrically spreading around the vertical middle axis of the enclosure.
Numerical simulations have been performed for a specific Le = 2/3 with Ra ∈ [1; 105]
and Pr ∈ [1; 103]. Four kinds of flow solutions are established characterized by a two-
cell symmetric steady-state structure with down-flow in the middle of the cavity for the
first one. A first instability occurs for which a critical Rayleigh number depends strongly
on the Prandtl number when Pr < 3. The flow structure becomes asymmetric with only
one steady-state cell. A second instability occurs above a second critical Rayleigh number
that is quasi-constant when Pr > 10. The flow above the second critical Rayleigh number
becomes periodic in time showing that the onset of unsteadiness is similar to the Hopf
bifurcation. When Pr < 3, a fourth steady-state solution is established when the Rayleigh
number is larger than the second critical value characterized by a steady-state structure
with up-flow in the middle of the cavity.
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1. Introduction

Heating by Joule dissipation is employed in various industrial processes and particu-
larly in the glass industry. Electric melting is commonly used for production of potentially
volatile, polluting glasses, high-added-value products and also in other sectors like wool
insulation (Ross & Tincher 2004). One of the main advantages of this process is its high
thermal efficiency due to the bulk heat source and its high level of insulation. Indeed, the
introduction of electrodes in the liquid creates electric currents leading to a volumetric
heat source through the Joule effect. Moreover, raw materials overlie the top surface of the
furnace leading to thermal insulation (Stanek 1977). Due to the expansion coefficient of
molten glass, natural convection contributes to the chemical and thermal homogenization
of the liquid. The level of the convection depends on the glass properties and is one of
the main issues for engineers involved in the furnace design.

Molten glass or more accurately “glass former” liquid can be considered as a Newtonian
fluid and is characterized by a high viscosity. Indeed, when the temperature is approxi-
mately 1400◦C, the dynamic viscosity is approximately ten thousand times greater than
that of water (Scholze 1990). Moreover, the thermal conductivity is small even if radiation
is the main mode of heat transfer (Viskanta & Anderson 1975). Consequently, one of
the main characteristics of molten glass is the high Prandtl number which can range
from 102 for clear glasses up to 105 for dark glasses. The Joule-heated problem in the
framework of glass synthesis using electrodes has been considered by Curran (1971, 1973),
who show that the use of uniform electric conductivity does not change the numerical
results significantly. He also showed that thermal gradients are more pronounced for
dark glass. A three-dimensional numerical simulation has been made by Choudhary
(1986) in a configuration with horizontal electrodes. In previous work, only stationary
solutions are determined and spatial resolution remains poor. Moreover, nothing was
done to predict the general features of the scaling laws of velocity and heat transfer.
More recently, Sugilal et al. (2005) studied the flow and heat transfer regimes in a two-
dimensional enclosure for a uniform Joule heated fluid taking into account the Lorentz
force in the momentum balance. They found the critical Rayleigh number numerically and
determined the Nusselt number for the stationary regime. Gopalakrishnan et al. (2010)
performed successful numerical simulations in a two-dimensional configuration to study
the mixing of molten glass dealing with a periodic condition applied to electrodes. They
showed that the flow becomes unsteady even with stationary boundary conditions for a
dark glass. Nevertheless, the previous contributions have not studied whether instabilities
occur from the physics, rather than from poor numerical resolution.

Consequently, the purpose of this work is to study the thermoconvective instabilities
which can occur in an enclosure filled with an electrically conducting liquid. Indeed,
from the industrial point of view, it is very important to know parameters leading to
unsteady behavior which can be the source of bad working conditions. In the same spirit
of previous works performed to study the heat and mass transfer of liquid non-uniformly
heated from above in a rectangular enclosure (Flesselles & Pigeonneau 2004; Pigeonneau
& Flesselles 2012; Uguz et al. 2014), a simple cavity heated by Joule effect is considered.
The electric field is delivered by two electrodes with lengths corresponding to a fraction
of the vertical walls of the enclosure.

Apart from this industrial motivation, natural convection with a volumetric heat
source has been studied for a long time. When the source term is spatially uniform,
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convection appears when the so-called Rayleigh number exceeds a threshold as in classical
Rayleigh-Bénard problems. The critical Rayleigh number depends on the temperature
profile determined in a basic solution. One of the first contributions to this topic was
made by Tritton & Zarraga (1967) who experimentally investigated free convection for a
uniformly heated layer of water showing the onset of convection for a smaller Rayleigh
number compared to the classical Rayleigh-Bénard problem. The linear stability of
the experiment achieved by those authors has been confirmed by Roberts (1967) who
determined the critical Rayleigh number. The thermal behavior has also been studied
when the Rayleigh number is larger than the critical value. Thirlby (1970) numerically
investigated free convection with an internal heat source for an infinite layer of fluid.
Convection was analyzed both in two-dimensional and three-dimensional configurations.
Kulacki & Goldstein (1975) determined the critical Rayleigh numbers both with a linear
stability and with an energetic analysis in various cases depending on boundary conditions
imposed on the top and bottom walls. Emara & Kulacki (1980) provided a numerical
study for a range of Prandtl numbers between 0.05 and 20 and for Rayleigh numbers up
to 5 · 108.

Despite these contributions, a careful analysis of heat and mass transfer in the case of a
non-uniform Joule heated cavity is still lacking. Even if the occurence of time-dependent
solutions has been seen by Gopalakrishnan et al. (2010), the nature of the instability was
not characterized accurately. Moreover, unsteady solutions observed by Sugilal et al.

(2005) and Gopalakrishnan et al. (2010) with poor time and space resolutions are
questionable. In this paper, we investigate the case of an enclosure heated in volume
with an electric field generated by two electrodes with lengths corresponding to a fraction
of the vertical walls. Our main aims are to characterize the flow and the heat transfer
as a function of relevant parameters and to analyze the transition regimes in a two-
dimensional enclosure. To carry out this work, we develop an accurate numerical solver
to study unsteady solutions with a discontinuous Galerkin finite element method.

In the following, section 2 describes the problem statement in which balance equations
are presented and assumptions are also specified. In section 3, the numerical accuracy
of the solver is assessed in particular for the case where the electrode lengths are equal
to the cavity height. In section 4, results obtained for a non-uniform Joule-heated cavity
with shortened electrodes are presented. Finally, we draw conclusions in § 5. Appendix
A provides a scaling analysis used to normalize the system of equations involved in this
problem.

2. Problem statement

We consider a rectangular cavity of length L and height H filled with an electrically
conducting liquid in a gravity field g as shown in Figure 1. The enclosure is reported to a
Cartesian framework (x, y) for which the unit vector along the x-axis is ex and ey along
the y-axis. The electrodes are a fraction of the left and right vertical walls which provide
the electric field. Their length is equal to Le as depicted in Figure 1. The boundaries ∂Ω1

and ∂Ω2 correspond to the left and right electrodes, respectively, on which an electric
potential designated by Φ is applied. More accurately, the following Dirichlet conditions
are imposed: on ∂Ω1, Φ = Φ0 and on ∂Ω2, Φ = 0. The boundary ∂Ω3 composed by
the rest of the vertical walls apart from electrodes and by the bottom horizontal wall is
considered as an electric and thermal insulator. A uniform temperature T0 is applied on
the top of the enclosure ∂Ω4. This boundary is also assumed to be an electric insulator.
A no-slip boundary condition is applied on all boundaries.

Before introducing the governing equations, the physical properties have to be dis-
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Figure 1: Cavity, domain Ω, filled with an electric liquid conductor. A potential is applied
on vertical electrodes, boundaries ∂Ω1 and ∂Ω2 while a temperature is applied on the
frontier ∂Ω4.

cussed in the context of the glass melting process. The physical properties involved in
the problem are given in Figure 1 for which the density ρ is defined at the temperature
T0. For a glass former liquid, the typical value of ρ is approximately 2300 kg/m3. The
density variation with the temperature T is taken into account in the framework of the
Boussinesq approximation characterized by the volumetric thermal dilatation coefficient
β close to 10−4 K−1. The dynamic viscosity η depends strongly on temperature. Indeed, it
is classically admitted that glass former liquids follow a Vogel-Fulcher-Tammann relation
characterized by an exponential behavior of the dynamic viscosity as a function of
temperature (Scholze 1990). Typically for window glass, the dynamic viscosity changes
from 103 to 5 Pa·s when the temperature increases from 1000 to 1500◦C. Taking into
account this dependence does not change the main phenomena that we want to pinpoint
in this work (Gramberg et al. 2007; Chiu-Webster et al. 2008; Pigeonneau & Flesselles
2012). Of course the thermal dependence prevails for accurate computations achieved for
the design purpose on domains close to real industrial plants.

Heat transfer is characterized by thermal conductivity, λ, which must take into account
the radiative contribution. More accurately, a glass former liquid is a semitransparent
medium. In the limit where the radiative absorption is important, the radiative transfer
can be seen as a Fourier flux for which the thermal conductivity is a function of the
absolute temperature to the power three (see Viskanta & Anderson (1975) for more
details). Nevertheless, in this work, λ is assumed constant. For typical temperatures
experienced by a glass former liquid in a furnace, λ is generally equal to 10 to 100
W·m−1·K−1. The specific heat capacity Cp is approximately 1200 J·kg−1·K−1 meaning
that the thermal diffusivity κ = λ/(ρCp) is small (∼ 10−6 m2·s−1). Consequently, the
relevant feature for such liquid is that viscous diffusion is more efficient than thermal
diffusion. In other words, the Prandtl number recalled later must be larger than one.
Typically, this dimensionless number is approximately 102–104 for glass former liquids.

Finally, σ and µ, corresponding respectively to the electric conductivity and the
magnetic permeability, are involved in the electromagnetic field. The electric conductivity
is strongly related to the ion mobility in oxide glasses (Scholze 1990). It is expected that σ
increases with temperature according to the Arrhenius law. Nevertheless, the activation
energy stays moderate. Therefore, the electric conductivity varies in the approximate
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range from 10 S·m−1 to 30 S·m−1 when T is in the range [1000, 1400]◦C. Consequently,
once again, this property is assumed to be constant in the following. Finally, we recall that
the magnetic permeability µ is the product of the vacuum permeability, µ0 = 4π · 10−7

H·m−1, and the relative permeability µr. For common glasses used for thermal insulation
applications, µr is close to 1 meaning that µ is quasi equal to the vacuum permeability.

Rigorously, the coupling between the fluid motion, heat transfer and electromagnetism
has to be done with the Navier-Stokes, energy conservation and Maxwell equations. How-
ever, the problem can be greatly simplified. First, note that in practice to avoid fouling
of the electrodes, an alternating current is provided with frequencies of approximately
10 Hz–100 Hz. Using typical values of electric conductivity and magnetic permeability, it
may be shown that Faraday induction does not play a significant role meaning that the
electric field E derives from a scalar potential, Φ since ∇×E = 0. Ohm’s law given by

J = σ (E + u×B) , (2.1)

expresses that the current density J is proportional to the electric field and to the
cross product of the velocity u and the magnetic field B (Laplace force). The second
contribution can be neglected because this term is quantified by the magnetic Reynolds
number

Rem = Reµσν, (2.2)

in which Re is the Reynolds number and ν = η/ρ is the kinematic viscosity. Due to the
high viscosity the Reynolds number stays moderate (∼ 10−1 to 1). Moreover, the small
magnetic permeability leads to a magnetic Reynolds number smaller than one meaning
that the contribution of the Laplace force can be neglected.

The driving forces in such a problem are the buoyancy force due to thermal dilatation
proportional to ρgβ∆T with ∆T the temperature range which will be quantified in the
following and the Lorentz force given by J × B. The ratio of the Lorentz to buoyancy
forces is given by

||J ×B||
ρgβ∆T

=
Ha2

Gr
, (2.3)

with Ha the Hartmann and Gr the Grashof numbers defined as follows

Ha =
σ∆ΦH

ν

√

µ

ρ
, (2.4)

Gr =
gβ∆TH3

ν2
. (2.5)

Since the source term in the energy equation is due to Joule dissipation, the range of
variation of ∆T can be estimated by balancing heat diffusion with the Joule dissipation
which gives the order of magnitude of ∆T (see for more details Appendix A):

∆T =
σΦ2

0H
2

2λL2
. (2.6)

The typical potential difference applied between electrodes is approximately 100 V
leading to typical values of Hartmann number less than one. Moreover, the range of tem-
perature experienced by the liquid is close to 103 K. Consequently, the Grashof number
is expected to be greater than 103 meaning that in general, for glass melting applications,
Lorentz forces can be neglected. The same assumptions have been made in the previous
works of Stanek (1977); Choudhary (1986) and, more recently, Gopalakrishnan et al.

(2010).
Under such conditions, the determination of the electric field in the liquid can be
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decoupled from heat and mass transfer. The electric potential will be determined by
solving a Laplace equation.

The governing equations of motion are the Navier-Stokes equations with the gravi-
tational body force due to the non-uniform temperature field coupled with the energy
balance. This system of equations is called the Navier-Stokes-Fourier equations according
to Zeytounian (2004). As mentioned above, Joule dissipation which is proportional to the
norm of the electric potential gradient to the power two will be given by the resolution
of the Laplace equation on Φ.

The governing equations are normalized according to the usual method as detailed in
Appendix A. The spatial coordinates are normalized by the height of the cavity, the time
t by H2/κ, the velocity u by

√
β∆TgH and the temperature is written as follows

θ =
T − T0
∆T

, (2.7)

with ∆T given by (2.6). Consequently, the balance equations are given by

∇ · u = 0, (2.8)

1

Pr

∂u

∂t
+

√

Ra

Pr
u ·∇u = −∇p+∇

2u+

√

Ra

Pr
θey, (2.9)

∂θ

∂t
+
√
PrRa∇θ · u = ∇

2θ + 2L2 (∇Φ)
2
, (2.10)

∇
2Φ = 0. (2.11)

in which u is the velocity, p the pressure taking into account the hydrostatic contribution.
The Rayleigh number Ra and the Prandtl number Pr are given by

Ra =
gβ∆TH3

νκ
, (2.12)

Pr =
ν

κ
. (2.13)

Equations (2.8)–(2.10) arise from the mass, the momentum and the energy balances.
The Laplace equation (2.11) comes from the free divergence of the electric current which
is given by Ohm’s law. In the energy equation (2.10), the viscous dissipation source term
has been neglected. Note that L in eq. (2.10) is the dimensionless length of the enclosure,
i.e. equal to 2 in the present case.

Note that reversal of the boundary conditions on the electric potential does not change
the Joule dissipation term. Moreover, boundary conditions on temperature and velocity
respect the symmetry about the middle axis of the enclosure. Consequently, left-right
symmetry is fulfilled in the present problem. Nevertheless, up-down symmetry currently
observed in a cavity differentially heated end walls (Batchelor 1954; de Vahl Davis 1983)
is not valid with our thermal boundary conditions applied on the top and bottom walls.

This set of equations is solved numerically using our own solver written with the Rheolef
C++ library (Saramito 2015a). Since the electric potential and the Joule dissipation do
not depend on time, they are computed at the beginning of the numerical procedure
using a classical Galerkin formulation with a second-order polynomial. For Navier-Stokes-
Fourier equations, a discontinuous Galerkin finite element method has been developed
with the same library (Saramito 2015b). The numerical method has been designed to
be fully implicit. The non-linear Navier-Stokes problem is numerically solved using a
damped Newton method (see (Saramito 2015b) for more details).
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The initial conditions are the following

u(x, 0) = 0,
θ(x, 0) = 0,

}

∀ x ∈ Ω, (2.14)

which consider that the fluid is at rest with a uniform temperature equal to the value
imposed at the top wall. From these initial conditions, the unsteady problem is solved
until time convergence or for a certain time when time convergence is not observed. The
same second-order polynomial is used for the temperature, pressure and velocity fields.
The time derivatives are determined using the backward differential formula at the second
order (BDF-2) which ensures that the numerical solver is unconditionally stable (Süli &
Mayers 2003). The Navier-Stokes solver has been previously tested on the driven cavity
benchmark proving a high level of accuracy of the numerical implementation (Saramito
2016). The time convergence is checked by computing the L2-norm of the time derivatives
of velocity and temperature evaluated by the backward differential formula at the second
order. The steady state is considered reached when the norms of time derivatives of both
velocity and temperature are below 10−10. Since this numerical technique is now well
known, no further details are provided. People interested in this numerical method can
find all details in the textbook of Di Pietro & Ern (2012).

The next section is devoted to preliminary results obtained when the electrode length
is equal to the cavity height, i.e. Le = 1. In section 4, attention will be drawn to the
situation where Le 6= 1.

3. Preliminary results with Le = 1

To control the numerical accuracy of our solver, computations have been performed
when Le = 1 leading to a uniform source term in the temperature equation. It is possible
to compare such a situation with previous works performed theoretically or numerically.

Numerical simulations have been done in a rectangular cavity with a length equal
to twice its height. The dimensionless mesh size is equal to 5 · 10−2 giving 1868 finite
elements. The range of Rayleigh number is taken in [1600, 2000] and three values of
Prandtl number have been studied: Pr = 1, 10 and 102. During each numerical simulation,
the maximum of the Euclidean velocity norm found in the enclosure at every time step is
recorded. Due to the normalization proposed above and proved in Appendix A, numerical
values of the velocity have to be multiplied by the square root of the Grashof number
to be equal to a Reynolds number and by

√
Ra Pr to be equivalent to a Péclet number

given by Pe = Re Pr.
Figure 2 depicts the maximum of the Péclet number, obtained in the steady-state

regime and designated as Pe∞, as a function of the Rayleigh number. As expected, the
threshold of convection is not modified when the Prandtl number changes (Krishnamurti
1973). Moreover, the amplitude of convection measured in term of Pe∞ is the same
whatever the Prandtl number demonstrating that the relevant parameter to characterize
the motion in the cavity is the Péclet number. This fact is similar to previous results
obtained on horizontal convection by Pigeonneau & Flesselles (2012) who demonstrated
that when the Prandtl number is larger than one, this dimensionless number becomes
irrelevant.

The velocity in the cavity becomes non-null above a critical Rayleigh number Racr.
Above Racr, Pe∞ behaves as the square root of Ra−Racr, as expected in a supercritical
bifurcation (Manneville 2004). From the numerical results, the non-linear regression has
been performed assuming the square root feature to determine Racr. The curve obtained
by fitting is plotted in Figure 2. From this non-linear regression, the critical Rayleigh
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Figure 2: Pe∞ as a function of Ra for L = 2, Le = 1 and Pr = 1, 10 and 100 obtained
with a mesh size equal to h = 5 · 10−2.

number has been found to be 1702. To control the spatial resolution, we performed the
same numerical computations for Pr = 1 with a mesh size equal to 2.5 ·10−2, giving 7394
finite elements. We do not observe any difference from the previous spatial resolution on
Racr. Our critical Rayleigh number is larger than the solution given for a linear stability
achieved in a periodic domain without vertical walls, for which Kulacki & Goldstein
(1975) found a critical Rayleigh number equal to 1386. The finite domain and the no-slip
boundary condition at each wall constrain the fluid to be at rest. Consequently, it is
expected to find a larger threshold value. The critical Rayleigh number obtained here is
close to the value determined numerically by Sugilal et al. (2005) in the same geometry
and conditions. These authors employed a finite volume method with a uniform mesh
size equal to 1/60 in both the space directions. They found a critical Rayleigh number
equal to 1650. Nevertheless, no effort was made to study the mesh convergence in that
contribution.

Figure 3 plots the time behavior of the Reynolds number divided by the steady-state
value for four Rayleigh numbers larger than the critical value in an enclosure of aspect
ratio equal to 2. The mesh size is h = 5 · 10−2 and the Prandtl number is equal to one.
As expected in the case of a supercritical bifurcation, after an exponential growth, the
amplitude of the velocity reaches the steady-state limit.

This kind of behavior can be described by the following equation (Manneville 2004)

Re

Re∞

=
αeβrt√

1 + α2e2βrt
, (3.1)

for which α and β are two constants of integration and the reduced control parameter r
is defined by

r =
Ra−Racr

Racr
. (3.2)

The solid line in Figure 3 corresponds to this solution with α = 5.71·10−7 and β = 10.295.
Figure 4 depicts the temperature field obtained for Ra = 1700, 1800, 1900 and for

Pr = 1. The temperature increases from the top to the bottom in the temperature range
[0, 1] which does not change significantly for the three values of Ra meaning that the
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Figure 3: Re/Re∞ as a function of rt for L = 2, Le = 1, Pr = 1 and for four Rayleigh
numbers larger than the critical value.

(a) Ra = 1700 (b) Ra = 1800 (c) Ra = 1900

Figure 4: Isolines of temperature field in the enclosure for L = 2, Le = 1 and Pr = 1 with
a mesh size h = 5 ·10−2 at (a) Ra = 1700, (b) Ra = 1800 and (b) Ra = 1900. Ten isolines
equally spaced between 0 (on the top boundary) and 1 (on the bottom boundary) have
been drawn on each sub-figures.

values of isolines in Figure 4 are equivalent between the three solutions. At Ra = 1700
which is just below the critical Rayleigh number established above, the fluid is at rest
and the temperature is expected to be in agreement with a simple solution of a pure
heat diffusion equation given by Eq. (A 2) recalled in Appendix A. Above the critical
Rayleigh number, the temperature field is advected by fluid motion. In our solution, the
velocity field is structured in two cells with a clockwise rotation for the left cell and an
anticlockwise rotation for the right cell as shown in Figure 5. The maximum norm of
the velocity is localized exactly in the middle of the enclosure and its value is equal to
6.7 · 10−2. The two cell centres are on the line y = 1/2 with a localization at x = 0.575
for the left cell and x = 1.425 for the right cell.

It is noteworthy that the sense of rotation of the two cells is arbitrary and comes
from the numerical perturbations that arise, for instance, from small mesh anisotropy.
Theoretically, both directions of rotation are possible. To examine this point, a numerical
simulation has been performed starting from the reverse of the steady-state solution
obtained at Ra = 1900 presented in Figure 5. The steady-state solution of this second
run is shown in Figure 6 in which anticlockwise-clockwise cells are obtained. Whereas
from the first solution, the Reynolds number obtained in the steady-state regime is
equal to 2.92, the second solution gives a value equal to 2.76 showing that it is not
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Figure 5: Velocity field in the enclosure for L = 2, Le = 1 and Pr = 1 with a mesh size
h = 5 · 10−2 at Ra = 1900.

(a) Temperature (b) Velocity

Figure 6: Steady-state solution with anticlockwise-clockwise cells obtained by reversing
the solution with clockwise-anticlockwise cells for Ra = 1900. In sub-figure (a) ten
temperature isolines are equally spaced between 0 (on the top boundary) and 1 (on
the bottom boundary).

purely the reverse of the first solution. This is due to the fact that the flow solution
depends on the thermal features. Temperature isolines of this second solution depicted
in figure 6a show that temperature is advected in the opposite direction in comparison
to the solution given in figure 4c. Due to the boundary conditions on θ between the
bottom and top walls, up and down symmetry does not exist. The same observation
has been underlined by Bergeon et al. (1998) who investigated Marangoni convection.
Consequently, the bifurcation observed here should be a transcritical bifurcation for which
one branch of the solution is supercritical and the second branch is subcritical.

In classical Rayleigh-Bénard convection, the thermal flux on boundaries where the
temperature is imposed is usually taken to define the Nusselt number. Here, due to the
presence of the source term and the energy conservation, the thermal gradient integrated
over the top boundary is imposed and can not be used to define the Nusselt number.
According to Roberts (1967) and Thirlby (1970) (see also (Goluskin 2016)), the average
temperature over the cavity length is introduced as follows

〈θ〉(y, t) = 1

L

∫ L

0

θ(x, y, t)dx. (3.3)

The Nusselt number is seen as the ratio of the average temperature at the bottom wall
without convection to the average temperature at the same location with convection.
Since for a uniform volume source term, the temperature at the bottom wall is equal to
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Figure 7: Nu as a function of Ra for L = 2, Le = 1 and Pr = 1, 10 and 100 obtained
with a mesh size equal to h = 2.5 · 10−2.

one, the Nusselt number is defined by

Nu =
1

〈θ〉(0, t) . (3.4)

Figure 7 plots the Nusselt number as a function of Rayleigh number for three Prandtl
numbers. Below Racr, the Nusselt number is obviously equal to one since the fluid is at
rest. Above Racr, Nu behaves quasi-linearly with Ra. The increase of the Nusselt number
is due to the decrease of the average temperature produced by the fluid motion. This is
the main signature of this case in which, when fluid motion occurs, the temperature in
the enclosure becomes more and more homogeneous with a decrease in the amplitude of
the temperature range. More accurately, Thirlby (1970) proposed to describe the Nusselt
number as follows

Nu =
Ra

Ra−Γ (Ra−Racr)
, (3.5)

in which the coefficient Γ can be determined from the linear stability. Using the prediction
of Roberts (1967), Thirlby (1970) gave a value for Γ = 0.599. From our numerical results
obtained with three values of the Prandtl number, a regression computation gives a value
of Γ = 0.585. The solution obtained by the law given by Eq. (3.5) is provided as a solid
line. To compare with the linear stability solution, we plot in Figure 7 the solution of
Thirlby (1970) with Γ = 0.599 showing that the two laws are close even if in our case
the problem is described in a finite domain.

These preliminary results show that our numerical method is very accurate in describ-
ing natural convection with a volumetric source term. The bifurcation occurring in this
configuration has been very well reproduced in agreement with the theoretical predictions
already published. Now, we turn our attention to the situation where Le 6= 1 which is
seldom studied.
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Figure 8: Joule dissipation corresponding to 2L2(∇Φ)2 in the enclosure for Le = 2/3
drawn over 16 colors equally ranged in [0; 5].

4. Convective regimes and transitions for Le 6= 1

From the practical point of view, electrodes are often shorter than the height of the
enclosure. To study the effect of shortening of the electrodes, numerical simulations have
been performed by cutting electrodes symmetrically from the bottom of the enclosure.

4.1. Onset of convection for Le < 1

In a case of electrodes shorter than the height of the enclosure, the electric potential
field is a solution of a Laplace equation with mixed boundary conditions: Dirichlet
conditions on each electrode (∂Ω1 and ∂Ω2 in Figure 1) and Neumann conditions on
∂Ω3 and ∂Ω4. As is well known in electrostatics, even if the potential field remains
continuous at the extremity of each electrode, its gradient diverges, as does the Joule
dissipation. Figure 8 depicts the source term equal to 2L2(∇Φ)2 introduced in the heat
transfer equation in the enclosure with a particular length Le = 2/3. The dissipation
clearly occurs principally close to the edge of each electrode.

From the fundamental solution of the Laplace equation, the electric potential gradient
diverges as 1/

√
̟ where ̟ is the distance taken from the electrode edge, i.e. y = 1−Le

and x = 0 or L. Joule dissipation should diverge as 1/̟. Figure 9 plots the behavior
of the Joule dissipation source term as a function of x from the left electrode edge. The
numerical solution clearly shows that the source term diverges as expected since the
solid line in Figure 9 is an approximate solution given by 1/(3x). Nevertheless, even if
the source term diverges, its integral stays finite.

Since Joule dissipation is mainly concentrated in the neighborhood of the electrode
edge, Joule heating is more important around these two singular points. Figure 10a
depicts the temperature field when the Rayleigh number is equal to 102 and Pr = 1
obtained after time convergence. Far from the vertical walls (in the middle of the
enclosure), θ behaves as in the previous section. Nevertheless, the temperature increases
close to the electrode edges leading to a non-uniform temperature field. According to the
criterion mentioned by Joseph (1976, § 59), if the cross product between the thermal
gradient and the gravity is equal to zero, the motionless solution could exist. Clearly,
this criterion is not fulfilled when Le < 1. Consequently, motion is expected to appear
without a threshold on the Rayleigh number. Figure 10b provides the stream function,
noted ψ, when the Rayleigh number is equal to 102 which is smaller than the critical
Rayleigh number established in the previous section. The stream function is obtained
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Figure 9: Joule dissipation source term 2L2(∇Φ)2 as a function of x from the left electrode
edge, i.e. x = (0, 1− Le) in the enclosure for Le = 2/3.

(a) Temperature
(b) Stream function

ψ = −9.55 · 10−4 ψ = 9.55 · 10−4

Figure 10: Temperature θ ∈ [0, 0.84] (drawn over 16 colors equally spaced) and stream
function ψ obtained after time convergence for Pr = 1, Ra = 102 and Le = 2/3. Stream
isolines are equally spaced over 30 values ranged in [−9.55 · 10−4; 9.55 · 10−4].

by solving a Poisson equation with a source term equal to the opposite of the vorticity.
On the boundary, ψ is imposed equal to zero. An arrow has been added in Figure 10b
to indicate the direction of the flow in the middle of the enclosure. Moreover, the values
of ψ are given close to the cell centers in Figure 10b. The sign of ψ pinpoints the
rotation direction of cells which are clockwise and anticlockwise for the left and right
cells respectively, noting that this result is not a particular branch of solutions. Indeed,
the vorticity direction results from the cross product ∇θ × ey, as can be easily verified
by taking the rotational of the momentum equation (2.9). The direction of the thermal
gradient in the neighborhood of the electrode edges being from the middle of the cavity
toward the vertical walls, the rotation directions of the left and right cells are necessarily
clockwise and anticlockwise respectively.

To study the nature of the transition when the electrode length changes, numerical
computations have been done for Le ∈]0, 1[. The Prandtl number is set equal to 1 and
the Rayleigh number is equal to 102. As shown in Figure 11, when the electrode length
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Figure 11: Pe∞ vs. Le for Pr = 1 and Ra = 102.

is strictly shorter than one then the threshold in motion does not exist. The behavior
of the steady-state Péclet number as a function of Le proves this assertion. The non-
monotonic profile observed in Figure 11 means that an optimal electrode length exists
maximizing the flow intensity. The maximum of the kinematic intensity is observed for
Le approximately equal to 0.4. This non-monotone behavior can be explained easily by
noting that when the electrode lengths are equal to zero, the electric field disappears
completely and the source term no longer exists. However, as soon as Le is not equal to
zero, but still smaller than one, the electrodes can be seen as a source for the left electrode
and a sink for the right electrode leading to a strong Joule dissipation concentrated in
the neighborhood of the two top corners. Since the Joule dissipation scales as 1/

√
̟

spreading over the electrode length, the Joule dissipation must be proportional to the
square root of Le. Now, as the thermal field is proportional to the Joule dissipation term
and as the viscous force balances the buoyancy source term in the momentum equation, it
is expected that the Péclet number is proportional to the square root of Le. To establish
this approximation, the source term is integrated over the domain. But, as can easily
be shown, the surface integral can be replaced by a linear integral over the electrode
length. In the opposite situation, i.e. for long electrodes, the trend is different. As shown
in Figure 11, the Péclet number behaves as a square function of 1−Le. This trend can be
explained by noting that when the electrode lengths are close to 1, the electric potential
field behaves as A0

√
̟ + A1̟

2. The first term comes from the solution behavior close
to the electrode edge and the second term ensures that the gradient of Φ vanishes on the
bottom wall. To satisfy the boundary condition A0 must be proportional to (1− Le)

3/2.
Since the electric field gradient is concentrated at the electrode edge scaling over a length
approximately equal to

√
1− Le, the Joule source term must be proportional to (1−Le)

2

which is exactly the scaling observed for the Péclet number.
In Figure 12, the y-axis component of the velocity, v, is plotted in the middle of the

cavity (y = 0.5) as a function of x for Pr = 1 and Ra = 102 for various electrode
lengths. Since the intensity of the velocity field changes with Le, each profile is divided
by the maximum of the v component along the x-axis. It is noteworthy that v profiles
obtained for all electrode lengths are very similar. Moreover, these profiles suggest that
the two cells are such that the fluid rises up close to the electrodes leading to clockwise
and anticlockwise rotations for the left and right cells respectively. Consequently and in
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Figure 13: Pe∞ vs. Le in the situation where Ra = 104 or 105 and for Pr = 1.

perfect agreement with our explanation given above using Joseph’s criterion, only one
flow structure exists when Le becomes less than one.

To go further, two other cases have been investigated for Ra = 104 and Ra = 105

which are larger than the critical Rayleigh number of the previous section. The influence
of the electrode length is also investigated for Pr = 1. For all numerical simulations, a
steady-state regime is established. Figure 13 plots the Péclet number obtained after time
convergence versus Le. The behavior changes strongly in comparison with the previous
results obtained at Ra = 102. Indeed, the Péclet number increases monotonically with
Le for a Rayleigh number equal to 104. Using the previous analysis about the scaling of
the Joule dissipation term, approximate solutions have been established for small Le and
when 1− Le ≪ 1. Since the Rayleigh number is above the critical Rayleigh number it is
clearly found that the flow does not vanish when Le goes to one.
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(a) Le = 0.8 (b) Le = 0.9

Figure 14: Temperature field obtained for Ra = 105, Pr = 1 and for (a) Le = 0.8 and (b)
Le = 0.9. In sub-figure (a), θ ∈ [0; 0.39] is drawn with a map of 16 colors equally spaced
and in sub-figure (b), θ ∈ [0; 0.36].

Numerical computations performed at Ra = 105 provide new results. First, the increase
of the Péclet number at small Le is sharper than the solution obtained at Ra = 104. This
result can be easily explained by noting that at large Rayleigh number, the flow is mainly
driven by inertia. In this case, the balance in the momentum equation is achieved between
the inertia term and the buoyancy source. Consequently, the velocity scales as the square
root of temperature. Since the temperature is proportional to the Joule dissipation, it
is expected that when the electrode length is small, the velocity and in consequence the
Péclet number scales as Le to the power one fourth. The approximate solution given in
Figure 13 shows that this trend is verified.

The Péclet number presents a discontinuity between Le = 0.8 and 0.9. When Le 6 0.8,
the Péclet number increases quasi-linearly with the electrode length which once again can
be explained using the scaling of the Joule dissipation term and the fact that the flow
is in the inertial regime. To explain the discontinuity above Le = 0.8, it is necessary
to explore the flow structures. The temperature field is plotted for Ra = 105, Pr = 1
and when the electrode lengths are equal to Le = 0.8 and Le = 0.9 in Figure 14. The
temperature field for Le = 0.8 (panel a) is mainly driven by the convective transfer
meaning that the structure is composed by the down-flow in the middle of the enclosure
as already seen when Ra = 102. For Le = 0.9 (panel b), the flow structure shifts to
another solution with up-flow in the middle of the cavity creating a plume. Even if the
down-flow structure is favored, the up-flow structure can be stable. This solution can be
considered as a disconnected branch investigated in more detail by Torres et al. (2014).

In fact, we postpone careful analysis of the different structures to subsection 4.3 studied
for a electrode length equal to 2/3. We will see that the up-flow structure giving rise to
a plume is observed for small Prandtl number.

4.2. Steady-state convective regime for Le = 2/3

In this subsection, the electrode lengths are set equal to 2/3 and we investigate the
effect of the Rayleigh and Prandtl numbers on the heat and mass transfer. Results in this
section are limited in the case for which the time convergence occurs. It is numerically
observed that the range of Rayleigh number having a steady-state solution decreases
when the Prandtl number increases. Figures 15 and 16 provide the temperature and
the stream function for Ra = 104 and 105, respectively. While the temperature field at
Ra = 102, depicted in the previous subsection (Figure 10), is close to the solution of a
pure heat diffusion regime, the advection becomes stronger and stronger at Ra = 104

and 105, to become a main contribution in the solution of the temperature field. When



Thermoconvective instabilities of a non uniform Joule-heated liquid 17

(a) Temperature
(b) Stream function

ψ = −4.6 · 10−2 ψ = 4.6 · 10−2

Figure 15: (a) θ ∈ [0, 0.55] mapped over 16 colors equally spaced; (b) stream function
ranged in ±4.6 · 10−2 plotted with 30 isolines equally spaced obtained after time
convergence for Pr = 1, Ra = 104 and Le = 2/3.

(a) Temperature
(b) Stream function

ψ = −4.36 · 10−2 ψ = 4.36 · 10−2

Figure 16: (a) θ ∈ [0, 0.36] mapped over 16 colors equally spaced; (b) stream function
ranged in ±4.36 · 10−2 plotted with 30 isolines equally spaced obtained after time
convergence for Pr = 1, Ra = 105 and Le = 2/3.

the Rayleigh number is equal to 102 and 104, the centers of the two cells are located on
the horizontal median of the enclosure. For Ra = 105, the vortex centers go down and
become closer. In this situation, the flow structure is composed by two counter-rotating
cells with the formation, in the middle of the enclosure, of a jet directed downwards.

This observation of the flow structure indicates that at least two flow regimes exist
in this problem, in agreement with the scaling analysis provided in Appendix A. At
low Rayleigh number, the flow regime is driven by heat conduction, whereas when the
Rayleigh number is large, the temperature field is driven by convection.

Figure 17 represents the steady-state Péclet number as a function of the Rayleigh
number obtained for four Prandtl numbers. The two regimes are clearly established in
Figure 17. When the Rayleigh number is smaller than 103, the Péclet number behaves
linearly as a function of Rayleigh number. The pre-factor of the law depends on the length
of the electrodes following the results obtained in subsection 4.1. Above Ra = 103, the
behavior of Pe∞ changes towards a convective regime for which the Péclet number scales
as the square root of the Rayleigh number. The first regime is in perfect agreement with
the scaling established in Appendix A in which the Reynolds number is proportional to
the Grashof number implying that the Péclet number is linear with the Rayleigh number.

The second regime needs enlightenment. Indeed, if only the momentum equation
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obtained with a mesh size equal to h = 2.5 · 10−2.

is considered, as it was done in the scaling analysis, the balance of the inertial and
the buoyancy forces predicts that the dimensionless velocity is constant meaning that
the Reynolds number should be proportional to

√

Ra /Pr and consequently the Péclet

number should scale as
√

RaPr which is not the case. To establish the right scaling, it
is crucial to take into account the fact that the Prandtl number is larger than one. In
this case, the inertia does not play a significant role in the momentum equation meaning
that the balance is once again achieved between the viscous and the buoyancy terms as
follows

u0 ∼
√

Ra

Pr
θ0, (4.1)

in which u0 is the order of magnitude of the dimensionless velocity and θ0 the typical value
of the reduced temperature. From the energy equation, the balance at large Rayleigh and
Prandtl numbers is given by the convective term and the Joule dissipation such as

u0θ0 ∼ S√
RaPr

, (4.2)

with S an arbitrary constant. Using these two equations, u0 is inversely proportional
to the square root of the Prandtl number. Consequently, the Reynolds number scales
as

√
Ra/Pr and the Péclet number becomes proportional to the square root of the

Rayleigh number as is the case in Figure 17. The two kinematic regimes are insensitive
to the Prandtl number as observed in Figure 17 since the Péclet number does not change
significantly when the Prandtl number increases from 1 to 103.

As shown in Figure 10-(b), Figure 15-(b) and Figure 16-(b), the temperature range
becomes narrower when the Rayleigh number increases. To be more accurate in terms of
thermal behavior, the average temperature given by Eq. (3.3) is depicted in Figure 18.
Four Prandtl numbers have been investigated. The Rayleigh number ranges between 102

and 2.4 · 104 for Prandtl numbers larger than 1. The last value of Ra has been chosen
in order to have a steady-state solution. For Pr = 1, the largest value of the Rayleigh
number is equal to 105. For the two small Rayleigh numbers, the average temperature
profile over the y-axis is close to the solution without convection. A sharp difference
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Figure 18: x-axis average temperature profile (y vs. 〈θ〉) for (a) Pr = 1, (b) Pr = 10, (c)
Pr = 102 and Pr = 103 and for various Rayleigh numbers ranging between 102 to 105 for
L = 2 and Le = 2/3 obtained with a mesh size equal to h = 2.5 · 10−2.

occurs when the Rayleigh number is larger than 103. The temperature profile becomes
increasingly flat far away the top horizontal wall. It is noteworthy that the temperature
profiles are very similar for the four Prandtl numbers.

The Nusselt number defined by eq. (3.4) has been plotted in Figure 19 as a function
of Ra and for the four Prandtl numbers already mentioned. Clearly, two regimes are
identified: for Ra less than 103, the Nusselt number is constant while for Ra above 103

the Nusselt number increases with respect to Ra. Notice that the Nusselt number in the
conductive regime is larger due to the fact that without motion the temperature range is
a little smaller when the electrode length is shorter than the cavity height, as can be seen
in Figure 18. For Prandtl numbers equal to 10 to 103, the profiles are completely similar
meaning that the Prandtl number does not play a significant role. Moreover, a nonlinear
fitting shows that the Nusselt number increases slowly with the Rayleigh number since
the dependence is logarithmic as already pointed out by Sugilal et al. (2005). For a
Prandtl number equal to one, the Nusselt number has been determined up to the limit
over which the solution becomes unsteady. Even if the logarithmic behavior is depicted
as well for Pr = 1, the slope changes.

The Péclet and the Nusselt numbers provided in this subsection have been reported
when a steady-state regime is obtained. Over a threshold in terms of Rayleigh number
depending of the Prandtl number, the stationary state with the symmetrical structure is
not reached. The following two subsections are devoted to the study of these transitions.
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obtained with a mesh size equal to h = 2.5 · 10−2.

4.3. Break-up of the symmetric solution for Le = 2/3

To control the steady-state regime, the L2-norms of the time derivatives of the velocity
and temperature fields with the backward differential formula at the second order are
determined as a function of time. To improve the time resolution, the time step is set
equal to 2 ·10−3. The typical behavior of the time derivative of the velocity field obtained
for a particular Prandtl number equal to 10 is depicted in Figure 20. The Rayleigh
number ranges between 1.1 · 104 and 2.5 · 104. The computation is stopped either when
the maximum of the time derivatives of velocity and temperature becomes less than
10−10 or when a predefined time is reached. At small Rayleigh numbers, convergence
is quickly reached. Whatever the Rayleigh number, the time derivative of the velocity
decreases exponentially with time due to the convergence following eigenmodes of the
Navier-Stokes-Fourier equations. At short times, the fastest mode predominates while
at long times when the largest modes have already converged only the smallest mode
remains which corresponds to the second behavior seen in Figure 20. When the Rayleigh
number increases, the absolute value of the smallest eigenvalue decreases, requiring a
longer time to observe convergence. The fastest mode does not change significantly with
the Rayleigh number as shown in Figure 20 where rates of convergence at short times are
practically identical whatever Ra. In contrast, the smallest mode depends strongly on
the Rayleigh number. These results mean that the time derivative of the velocity during
the second step behaves as follows:

∂u(x, t)

∂t
= A(x)eγt, (4.3)

in which the eigenvalue γ characterizes the time convergence. As depicted in Figure 20,
below a critical value, γ is negative and when the Rayleigh number becomes larger than
a threshold which is close to 2.5 · 104 for Pr = 10, γ becomes positive meaning that the
system evolves toward another state. The critical Rayleigh number of this first transition
will be designated Racr1 .

When the Prandtl number is equal to one, the occurrence of the transition differs. First,
Racr1 is much larger and requires more numerical accuracy. To determine the critical
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Figure 20: L2-norm of the time derivative of the velocity in the cavity as a function of
time for L = 2, Le = 2/3 and Pr = 10 obtained with a mesh size equal to h = 2.5 · 10−2

and a time step equal to 2 · 10−3.

Rayleigh number we perform numerical simulations by increasing the spatial resolution
with a mesh size equal to 1.76 · 10−2 which increases the number of finite elements by a
factor of two. The time step is once again taken equal to 2 · 10−3. Figure 21 depicts the
L2-norm of the time derivative of the velocity as a function of time for three Rayleigh
numbers taken close to the threshold. The critical Rayleigh number Racr1 is between
1.66 · 105 and 1.67 · 105 meaning that when the Prandtl number is equal to one, we can
take Racr1 = 1.665 · 105 with an uncertainty equal to 0.6 %. While for Pr = 10 two steps
are observed in the convergence toward the steady-state regime, only one step emerges
for Pr = 1, underlining that the spectrum of eigenvalues is narrower for Pr = 1 than for
a larger Prandtl number.

When the Prandtl number is larger than one, the critical Rayleigh number is deter-
mined by studying the behavior of the eigenvalue γ given in eq. (4.3). Due to a strong
variation of the critical Rayleigh number when Pr ∈ [1; 10], γ is investigated when the
Prandtl number ranges between 2 and 103. The eigenvalue γ has been determined by
fitting the time derivative with a decaying exponential function of time. Figure 22 depicts
−γ as a function of Ra. For each Prandtl number, a quadratic function of Ra is found.
For the smallest Prandtl numbers, the Rayleigh number for which γ becomes positive
is large while when the Prandtl number becomes larger than 10, profiles of −γ merge
toward a unique behavior meaning that the critical Rayleigh number does not change
significantly.

To determine more accurately the value of Racr1 , each curve of −γ is fitted with a
quadratic function of Ra. The value of Racr1 is determined by finding the zero value of
−γ. The solid line with circle symbols given later in Figure 33 presents the first critical
Rayleigh number Racr1 as a function of the Prandtl number in which the critical Rayleigh
number obtained for Pr = 1 has been added. Racr1 decreases strongly when Pr is in the
range [1; 10]. As already mentioned when Pr = 1, the critical Rayleigh number Racr1 is
1.665 · 105 while above Pr = 10, Racr1 is approximately equal to 2.5 · 104 and does not
change significantly for larger Prandtl numbers.

The thermal and kinematic structures shown in Figure 15 for Ra = 104 and Pr = 1
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Figure 22: Behavior of −γ as a function of Ra number for Pr ∈ [2; 103].

for which two counter-rotating cells are observed do not stay stable above the critical
Rayleigh number Racr1 . This bifurcation can be seen by looking the behavior of the L2-
norm of u as a function of time. A typical curve is given in Figure 23 when Ra = 3.5 ·104
and Pr = 102 corresponding to a condition above the transition. After a fast increase,
the velocity norm reaches a first plateau. When the time is larger than 13, the velocity
decreases to reach a second plateau.

The modification of the flow structure can be seen by looking the iso-values of the
temperature field shown in Figure 24 for which six snapshots have been reported. For
the two first snapshots, the structures are symmetric obtained when the velocity reaches
the first plateau in Figure 23. The observation of the stream function at the same times
represented in Figure 25 allows us to see the flow structure. For the two first snapshots,
the flow structure is characterized by two counter-rotating cells. While at small times the
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Figure 23: L2-norm of u as a function of time obtained for Pr = 102 and Ra = 3.5 · 104
for L = 2, and Le = 2/3.

(a) t = 9, θ ∈ [0; 0.40] (b) t = 10, θ ∈ [0; 0.41] (c) t = 11, θ ∈ [0; 0.41]

(d) t = 12, θ ∈ [0; 0.43] (e) t = 13, θ ∈ [0; 0.48] (f) t = 14, θ ∈ [0; 0.51]

Figure 24: Snapshots of 10 equally spaced isolines of θ obtained for Pr = 102 and Ra =
3.5 · 104 when time is equal to (a) t = 9, (b) t = 10, (c) t = 11, (d) t = 12, (e) t = 13 and
(f) t = 14.

temperature field is symmetric with respect to the middle vertical axis, the symmetry is
broken when time becomes larger than 11 which is in the range where the L2-norm of
the velocity plotted in Figure 23 decreases. The stream function shows that the left-hand
cell becomes more and more important relative to the right-hand cell (see Figure 25).
When the time is larger than 14, a steady-state asymmetric flow structure is observed
with only one cell.

The transition from the two symmetric cells to one asymmetric cell also has an effect on
the behavior of the Nusselt number. In Figure 26, the time behavior of Nu is plotted when
the Rayleigh number is equal to 3.5 · 104 and Pr = 102. As for the norm of the velocity
field, two values of the Nusselt number arise. The first plateau is obtained when the flow
structure is composed by the two symmetric cells. After a fast transition obtained when
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(a) t = 9, [−4.82; 4.82] · 10−3 (b) t = 10, [−4.86; 4.73] · 10−3 (c) t = 11, [−4.97; 4.60] · 10−3

(d) t = 12, [−5.20; 4.1] · 10−3 (e) t = 13, [−5.30; 2.29] · 10−3 (f) t = 14, [−5.46; 0.00] · 10−3

Figure 25: Snapshots of 10 equally spaced isolines of ψ obtained for Pr = 102 and
Ra = 3.5 · 104 when time is equal to (a) t = 9, (b) t = 10, (c) t = 11, (d) t = 12, (e)
t = 13 and (f) t = 14. For each sub-figure, the range of ψ has been reported in each
sub-caption.
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Figure 26: Nu as a function of time obtained for Pr = 102 and Ra = 3.5 · 104 for L = 2,
and Le = 2/3.

t ∼ 13, the Nusselt number decreases by 13% to reach a second constant value when the
second regime is fully established.

The asymmetric solution observed in sub-figures 24f and 25f is characterized by a
clockwise cell. This rotation is chosen artificially by the solver. Indeed, due to the left-
right symmetry, a solution with an anticlockwise rotation cell is totally possible. From
a previous converged solution, a numerical test with an initialized solution obtained by
changing x in L−x proves that the anticlockwise cell structure is also a solution meaning
that we found two branches of solutions respecting the symmetry of the problem.

Once again, the transition when the Prandtl number is equal to one is different. A
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(a) t = 1.5, θ ∈ [0; 0.35] (b) t = 2, θ ∈ [0; 0.36] (c) t = 2.3, θ ∈ [0; 0.28]

(d) t = 2.6, θ ∈ [0; 0.27] (e) t = 3, θ ∈ [0; 0.32] (f) t = 3.6, θ ∈ [0; 0.32]

Figure 27: Snapshots of 10 equally spaced isolines of θ obtained for Pr = 1 and Ra =
1.68 · 105 for (a) t = 1.5, (b) t = 2, (c) t = 2.3, (d) t = 2.6, (e) t = 3 and (f) t = 3.6.

numerical simulation has been made at Ra = 1.68 · 105. Figure 27 depicts six snapshots
of iso-values of θ. Starting from a symmetric structure relatively similar to the previous
one observed at Pr = 100, the flow structure changes completely, as can be seen in
Figure 27-(c). Two counter-rotating cells are present but with a change in rotation.
Before the transition, the fluid moves up close to the vertical boundaries while at the
transition, the fluid moves down close to the vertical walls. After a period of transition,
the flow is structured with two counter-rotating cells for which the fluid moves up in the
middle of the cavity leading to a creation of a plume. As seen in Figure 27-(f) obtained at
t = 3.6, the structure is quite symmetric which is not the case of the transition observed
when the Prandtl number is larger than 3. The solution obtained for Pr = 1 is similar to
that reported by Sugilal et al. (2005).

It is noteworthy that when the Prandtl number is less than 3, the flow structure
becomes asymmetric over Racr1 as observed for larger Pr. Moreover, numerical solutions
performed for larger Rayleigh numbers converge toward a steady-state structure similar
to the one observed at Pr = 1. For a Prandtl number larger than 3, this transition is not
observed but the solution becomes unsteady, as will be shown in the next subsection.

4.4. Hopf bifurcation for large Ra and Pr > 10

Solutions found for (Ra = 3.5 · 104,Pr = 102) and (Ra = 1.68 · 105,Pr = 1) stay in a
steady-state regime, since after the transition, the time convergence is numerically found.
By increasing the Rayleigh number when Pr > 3, a second instability is established for
which the solution becomes periodic in time. Using a simple dichotomy method, the
onset of the second instability is determined. This second instability is characterized by
a critical Rayleigh number Racr2 . Figure 33, given later, depicts the behavior of Racr2 as
a function of Pr (solid line with square symbols).

To see the occurrence of the periodic solution, Figure 28 presents the behavior of
the L2-norm of the velocity for four Rayleigh numbers when the Prandtl number is
equal to 10. As already seen in Figure 23, the norm of the velocity rapidly reaches a
plateau corresponding to the symmetric configuration followed by a decrease of the flow
intensity. Figure 28 depicts the behavior after the first transition. The establishment
of the periodic solution depends on the gap between the Rayleigh number used for
a particular computation and Racr2 . The transition occurs earlier when the Rayleigh
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Figure 28: ‖u‖ as a function of t for Pr = 10 and (a) Ra = 4.5 · 104, (b) Ra = 5 · 104, (c)
Ra = 5.5 · 104 and (d) Ra = 6 · 104.

number increases. The periodic regime begins with an increase in the amplitude of
oscillations and its duration becomes shorter as Ra increases. Amplitudes of velocity
oscillations grow with the Rayleigh number.

In order to see the effect of the second transition on the thermal structure, the Nusselt
number is plotted as a function of time in Figure 29 when the Prandtl number is equal to
10 and for four Rayleigh numbers equal to 4.5 ·104, 5 ·104, 5.5 ·104 and 6 ·104. As already
mentioned above, the transition to the second instability occurs later when the Rayleigh
number is lightly larger than the critical Rayleigh number. The periodic solution does
not lead to a strong effect on the Nusselt number. While the oscillation on the velocity
is clearly observed when Ra = 4.5 · 104, the Nusselt number stays more and less stable
above the second transition. The amplitude of Nu increases for larger Rayleigh numbers
but the increase is very weak. We previously observed that the Nusselt number evolves
slowly with the Rayleigh number when Ra is smaller than Racr1 . Therefore, it is expected
to see a weak effect on heat transfer.

In order to show typical results, we provide a movie available at https://doi.org/10.1017/jfm.2018.168
recording the temperature field determined when the Pr = 102 and Ra = 4 · 104. From
the initial condition for which the temperature is set equal to zero, the temperature
field rapidly reaches the first regime corresponding to the symmetric condition. After a
certain time, the flow moves to the asymmetric structure. Finally, the oscillations start
to grow before reaching the periodic regime. The oscillations are mainly observed close
to the right vertical wall in the enclosure. Nevertheless, as already pointed out in the
previous subsection in which a steady-state one cell structure has been obtained, the
periodic solution with an anticlockwise cell can be obtained numerically. This means
that once again two branches of solutions are possible.

Additional calculations have been made for Prandtl numbers equal to 10, 102 and
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Figure 29: Nu as a function of t for Pr = 10 and for Ra = 4.5 · 104, 5 · 104, 5.5 · 104 and
6 · 104.
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Figure 30: Fourier spectra of the norm of ‖u‖ for Pr = 10 and 102.

103 and for various Rayleigh numbers above Racr2 . In order to obtain more information
about the nature of the second instability, a Fourier analysis has been performed in the
time range for which the flow is fully periodic. Figure 30 depicts the Fourier spectra
obtained for two Prandtl numbers and four Rayleigh numbers. The amplitude and the
frequency are respectively designated by A and f . Signals are very close to a sinusoidal
behavior with a fundamental frequency and an amplitude corresponding to the velocity
oscillation seen in Figure 28. Secondary peaks are observed at a frequency equal to a
second harmonic of the signal but with a much smaller amplitude.

From the asymmetric solution established when the Rayleigh number is above Racr1 ,
the flow solution converges toward a limit cycle when Ra > Racr2 . The periodic solutions
observed here look like a supercritical Hopf bifurcation which can be characterized by the
amplitude and the frequency of oscillations (Manneville 2004). Using the Fourier analysis,
the amplitude and the frequency of the fundamental harmonic can be determined. As
already pointed out in § 4.2, the flow motion is very well described in terms of the
Péclet number whatever the Prandtl number. In order to have an amplitude similar to
the Péclet number, the fundamental amplitude is multiplied by

√
RaPr. According to



28 F. Pigeonneau, A. Cornet and F. Lopépé

0 0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10

12

A
√

R
a
P
r

r

Pr = 10
Pr = 102

Pr = 103

A
√

RaPr = 13.053
√
r

Figure 31: Fundamental amplitude A
√

Ra Pr as a function of the reduced control
parameter r for three Prandtl numbers.

Manneville (2004, pages 128-129), the oscillation amplitude is a function of the reduced
control parameter r given for this second instability by

r =
Ra−Racr2

Racr2
. (4.4)

Figure 31 presents the fundamental amplitude multiplied by
√

RaPr as a function of r
for Pr = 10, 102 and 103. Even if numerical results are little scattered meaning that
the limits of our numerical resolutions are close, a clear trend is observed. A non-linear
regression shows that the amplitude grows as the square root of r as expected in the Hopf
bifurcation. Moreover, the fundamental frequency f plotted as a function of r provided
in Figure 32 shows that f is a linear function of the reduced control parameter.

It is noteworthy that the periodic solution presents a master result whatever the
Prandtl number which has important consequences for industrial applications. Moreover,
when the Prandtl number is larger than 102, the critical Rayleigh numbers Racr1 and
Racr2 do not depend on Pr. Consequently, only the Rayleigh number remains as a control
parameter of the flow.

4.5. Stability diagram

A summary of the four main structures obtained for the specific electrode length Le =
2/3 is provided in Figure 33. Below the curve giving Racr1 , the flow is composed of a
unique symmetric structure with a left clockwise cell and a right anticlockwise cell. The
fluid goes from the top to the bottom in the middle of the enclosure. In this regime, the
Péclet number is a linear function of Ra when Ra < 103 and a square root function of
Ra when Ra > 103. Above the first critical Rayleigh number, an asymmetric structure is
observed for which anticlockwise or clockwise cells are obtained. The characteristic of the
transition between symmetric/asymmetric solutions is hard to establish with our time
integration method. A stability study would be needed to explain why the symmetric
solution does not stay stable. Nevertheless, the base solution is hard to extract to perform
a stability analysis. Physically, the mechanism of the destabilization would be due to
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Figure 32: Fundamental frequency f as a function of the reduced control parameter r for
three Prandtl numbers.

the instability of the central jet. Indeed, if the jet shifts a little horizontally then a
disequilibrium in pressure occurs pushing the jet toward the side where the jet is shifted.

Below a Prandtl number equal to 3 and above a second critical Rayleigh number, a
third flow structure is observed characterized by a left anticlockwise cell and a right
clockwise cell leading to vertical flow in the middle of the enclosure. Finally when the
Prandtl number is larger than 3 and for Ra > Racr2 , an unsteady asymmetric structure
arises. Due to left-right symmetry of the problem, two branches of solutions with anti-
and clockwise cells exist.

4.6. Consequences for electric glass melting

Results obtained may have important consequences for the glass melting process. First,
the occurrence of asymmetric structures can lead to a disequilibrium of the electric circuit
and of the fusion of raw materials. When the flow structure shifts from a symmetric
structure to an asymmetric situation for which hot spots are observed close to electrodes,
the raw materials can disappear and the thermal insulation is strongly affected. Moreover,
electrodes can be eroded strongly. Unsteady solutions can also be a source of process
instabilities difficult to control for glass makers.

From the linear regression given in Figure 32, the dimensionless frequency is larger than
22.32. In order to have an idea concerning the value of this frequency in SI units, the
dimensionless frequency has to be multiplied by κ/H2. Since the typical height in glass
melting industry is approximately one meter, only the value of the thermal diffusivity is
required. As already mentioned in the introduction and in § 2, radiation is the main mode
of thermal transfer. Using a simple Rosseland approximation, the thermal conductivity
is given by (Viskanta & Anderson 1975)

λ =
16n2σSBT

3

3βR
, (4.5)

with n is the refractive index typically equal to 1.5 for glass former liquids, σSB is
the Stefan-Boltzmann constant equal to 5.67 · 10−8 W·m−2·K−4, T is the absolute
temperature and βR is the Rosseland absorption coefficient given in m−1. For the typical
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Figure 33: Stability diagram (Pr,Racr1,2) describing the three main structures obtained
numerically when Le = 2/3. The first transition is delimited by Racr1 given in solid line
with circle symbols. The second transition is given by Racr2 in solid line with square
symbols.

glass composition used to make wool insulation, the Rosseland absorption coefficient is
equal to 200 m−1. Since the thermal diffusivity is given by λ/(ρCp) and if the temperature
is taken equal to 1300◦C, κ is approximately 3 · 10−6 m2·s−1. Using the dimensionless
frequency equal to 22.23, we found that oscillations occur at 3 · 10−4 Hz corresponding
to a time period of approximately one hour. For a dark glass, the Rosseland absorption
coefficient is much larger and is typically equal to 1000 m−1 giving a smaller oscillation
frequency of approximately 6 · 10−5 Hz (time period close to 5 h).

5. Conclusion

This work has been devoted to natural convection in a Joule-heated cavity. A non-
uniform volumetric heat source is produced by an electric field applied with two vertical
electrodes localized on the vertical walls of the enclosure. The coupled Navier-Stokes, heat
transfer and electric potential equations are solved using a discontinuous Galerkin finite
element technique. The solver is tested in a situation for which the heat source is uniform
in volume leading to a threshold in convection similar to in classical Rayleigh-Bénard
convection. The critical Rayleigh number is determined. The bifurcation is similar to a
transcritical one for which two solutions are possible. The heat transfer is characterized
by computing the average temperature profile over the horizontal coordinate.

After this preliminary test validating the numerical solver, we shorten the electrodes
from the bottom. In such a case, the threshold disappears and the flow exists as soon
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as the Rayleigh number is larger than zero. By studying the full range of the electrode
length, an optimal length has been obtained when the Rayleigh number is less than 1702.

Numerical simulations have been made for a large range of Prandtl number, between
1 to 103 and a large range of Rayleigh number, up to 105 limited at only one electrode
length set equal to 2/3 of the cavity height. This case presents a large possibility of
solutions starting from a symmetric two-cell steady-state with two rotation directions,
an asymmetric cell steady-state and finally asymmetric cell time-periodic solutions. In
the first kind of solution, the intensity of convection can be characterized in terms of the
Péclet number. Two regimes arise: one obtained when the Rayleigh number is smaller
than 103, exhibiting a linear behavior of the Péclet number versus the Rayleigh number;
the second regime is characterized by a square root dependency of the Péclet number as
a function of Rayleigh number.

On increasing the Rayleigh number, the flow does not remain in the symmetric
structure. Using the behavior of the convergence toward the steady-state regime, we
establish the behavior of the critical Rayleigh number as a function of the Prandtl number
of this first transition. At small Prandtl number, the dependency on the critical Rayleigh
number is very important. However, when the Prandtl number is larger than 10, the
critical Rayleigh number does not change significantly and is equal to 2.5 · 104.

This second solution becomes periodic in time above a second critical Rayleigh number
which is less sensitive to the Prandtl number. Performing numerical simulations for
Rayleigh numbers above the second critical Rayleigh number allows us to quantify the
amplitudes and frequencies of the observed oscillations. We prove that the nature of
the second instability is a supercritical Hopf bifurcation. A stability diagram has been
established. Even though one electrode length has been investigated, it is expected that
with another electrode length the critical Rayleigh numbers will change. However the
various solutions established in this work should be the same.

In terms of industrial processes, the occurrence of a periodic flow can be a source of
difficulties in controlling industrial plants. In the glass industry, the typical Rayleigh
number is always larger than the critical value found in the present study. Moreover,
we observe that the flow structure can change dramatically which can be deleterious for
working conditions. Conversely, these instabilities could be an opportunity to control the
heat and mass transfer since we establish a simple relation between oscillating solutions
and the Rayleigh number. The purpose here should be to improve the homogeneization
process, which is very important in applications because the forming process is mainly
controlled by the thermal and chemical homogeneities of the glass former liquid at the
exit of the furnace.

Even if careful attention has been paid to obtain good numerical accuracy, our solutions
have a limit in terms of space and time resolutions. Due to the large range of possible
solutions and the dependence on up to three parameters, a continuation method would
be more appropriate to explore the stability of this kind of problem. Moreover, our study
focuses only on two-dimensional configurations and only one length of electrode has been
investigated. To examine whether such instabilities are also present in more realistic
situations, we plan to extend this work to three-dimensional numerical simulations in
the near future.
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Appendix A. Scaling analysis

In the problem statement, the set of conservative equations are normalized by charac-
teristic quantities justified by a scaling analysis provided in this appendix.

A.1. Temperature scale

The scale of temperature range can be established by studying the solution without
motion. Indeed, when the electric potential is applied on the entire vertical boundary,
i.e. Le = H , Φ is given by the following linear relation

Φ = Φ0

(

1− x

L

)

. (A 1)

With this electric field, the temperature without motion can also be found easily. Its
solution is

T = T0 +
σΦ2

0H
2

2λL2

(

1− y2

H2

)

. (A 2)

With this solution, the difference of temperature can be defined as follows:

∆T =
σΦ2

0H
2

2λL2
, (A 3)

which arises from the balance between thermal conduction and Joule dissipation.
When the electrode length is smaller than H , the electric field is no longer a linear

function of x and the accurate solution must be determined numerically. As it pointed
out in § 4, Φ exhibits strong variations close to electrodes. However, outside the vertical
walls, the electric potential is quasi-linear meaning that the Joule dissipation source is
approximately uniform. The range of temperature does not change significantly and the
previous estimation can be applied. With such a scaling, the temperature can be written
in the following dimensionless form:

θ =
T − T0
∆T

. (A 4)

Note that when Le = H , the thermal field is independent of x and is thermally unstable.

A.2. Velocity scale

The space coordinates are normalized with the height of the enclosure, H . Before
studying the scaling of the velocity, the dimensionless forms of the potential Φ, and J

have to be defined. It is obvious that Φ is reduced by Φ0. Following Ohm’s law,

J = −σ∇Φ, (A 5)

where J is normalized by σΦ0/H .
The velocity field is normalized by a scale U , the time by τ and the pressure by δP .

In the following, all dimensionless variables are written with the same symbols already
introduced so that no misunderstanding is possible.
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It is noteworthy that due to the fact that the pressure gradient must be kept in the
momentum equation in order to satisfy the continuity equation, δP is on the order of
ρgβ∆TH . Reporting these scalings in the momentum equation gives the general form of
the momentum equation

Re

(

St
∂u

∂t
+ u ·∇u

)

= −∇p+∇
2u+

Gr

Re
θey, (A 6)

for which the dimensionless numbers are the following

Re =
UH

ν
: Reynolds number, (A 7)

St =
H

τU
: Strouhal number, (A 8)

Gr =
gβ∆TH3

ν2
: Grashof number, (A 9)

and ν = η/ρ is the kinematic viscosity. Recall that the Reynolds number is the ratio of
the inertial to viscous forces. The Strouhal number which will be examined in the next
subsection compares the relevant time scale of the dynamics to the advection time over
the height of the cavity. The Grashof number is a relevant number when buoyancy forces
are involved in the dynamics. It can be seen as the ratio of the momentum diffusion time
to advection time due to buoyancy forces. Recall that the Grashof number can be given
as a function of two other classical numbers as follows

Gr =
Ra

Pr
, (A 10)

with Ra the Rayleigh number and Pr the Prandtl number defined by eqs. (2.12) and
(2.13) respectively.

Two main scenarii appear as a function of the Reynolds number. First, if Re is assumed
small, a balance force is achieved between the viscosity and buoyancy effects leading to
the following scaling of the Reynolds number:

Re = Gr . (A 11)

In such a situation, the velocity scale U is proportional to β∆TgH2/ν. Conversely, if
the inertia is important, the balance is achieved between inertial and buoyancy terms.
Consequently, the Reynolds number behaves as

Re =
√

Gr, (A 12)

leading to the order of magnitude of U being equal to
√
β∆TgH.

A.3. Time scale

The time scale is given by the amplitude of the Strouhal number. Since two types of
transfer occur in this problem, i.e. momentum and heat, the dynamics is controlled by the
slowest phenomena. In order to establish the order of magnitude of the Strouhal number,
the thermal equation can be rewritten in a dimensionless form using the previous scaling
as follows

St
∂θ

∂t
+∇θ · u =

1

Pr Re

[

∇
2θ + 2L2 (∇Φ)

2
]

. (A 13)

Recall here the length L is the dimensionless length.
By using the dimensionless momentum equation (A 6) and assuming that the Reynolds
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number is larger than one, the Strouhal number can be scaled by

St = min

(

1

Re
,

1

PrRe

)

, (A 14)

for which two limit cases arise as a function of the Prandtl number. Since in the framework
of this study the Prandtl number is considered larger than one, the Strouhal number is
given by

St =
1

PrRe
, (A 15)

meaning that the time scale is controlled by the thermal diffusion for which the typical
time scale is τ = H2/κ.

To solve numerically the coupled Navier-Stokes-Fourier equations, the velocity scale
is taken in the limit of large Reynolds number meaning that this dimensionless number
is the square root of the Grashof number. This choice has been done because when the
Grashof number is large the buoyancy term becomes important. By taking Re =

√
Gr,

a better balance of the various terms in the momentum equation is obtained since the
convective and buoyancy terms are of the same order of magnitude.

Following these developments, the momentum and thermal partial differential equa-
tions can be written as follows

1

Pr

∂u

∂t
+

√

Ra

Pr
u ·∇u = −∇p+∇

2u+

√

Ra

Pr
θey, (A 16)

∂θ

∂t
+
√

Pr Ra∇θ · u = ∇
2θ + 2L2 (∇Φ)

2
, (A 17)

meaning that the momentum equation is quasi-steady when Pr ≫ 1.
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