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Abstract-The paper introduces a new methodology for assessing on-line the prediction risk of short-term wind power forecasts.  The 

first stage of this methodology consists in computing confidence intervals with a confidence level defined by the end-user. The 

resampling approach is used, which in contrast to existing methods for wind forecasting, does not need to make a restrictive hypothesis 

on the distribution of the errors. To account for the nonlinearity of the power curve and the cut-off effect, the errors are classified 

using appropriate fuzzy sets.  The confidence intervals are then fine-tuned to reduce their width in case of stable weather conditions. 

For this purpose, an appropriate index, named as MRI, is defined reflecting the spread of the available Numerical Weather Predictions. 

A linear relation between that index and the resulting prediction error is shown. The second part of the methodology is to use the MRI-

index itself as a preventive on-line tool to derive signals for the operator on the meteorological risk, i.e. the probabilities for the 

occurrence of high prediction errors depending on the weather stability. Evaluation results of this methodology over a one-year period 

on the case study of Ireland are given, where the output of several wind farms is predicted using a dynamic Fuzzy-Neural Networks 

based model. The proposed methodology is generic and can be applied to all kinds of wind power prediction models. 
 

Keywords-Wind power, short-term forecasting, confidence intervals, prediction risk, on-line software, adaptive fuzzy-neural 

networks, numerical weather predictions. 

 
I.  INTRODUCTION  

 

OWADAYS, wind park installations in Europe exceed 23 GW. 

Motivated by the Kyoto Protocol, the indicative targets defined 

by the European Union (Directive 2001/77/EC) correspond to a share 

of electricity that should be produced by Renewable Energy Sources 

of 22.1% by year 2010. To achieve these targets, wind power in the 

Member States should increase to 45-60 GW. Such a large-scale 

integration of wind generation causes several difficulties in the 

management of a power system. Often, a high level of spinning 

reserve is allocated to account for the intermittent profile of wind 

production, thus reducing the benefits from the use of wind energy. 

Predictions of wind power production up to 48 hours ahead contribute 

to a secure and economic power system operation.  

Apart from spot forecasts of the wind farms output in the next 

hours, of major importance is to provide tools for assessing on-line the 

accuracy of these forecasts. Tools for on-line evaluation of the 

prediction risk are expected to play a major role in trading wind power 

in a liberalized electricity market since they can prevent or reduce 

penalties in situations of poor prediction accuracy. In practice today, 

uncertainty is given in the form of confidence intervals or error bands 

around the spot wind power predictions.  

Typical confidence interval methods, developed for models like 

neural networks [1]-[5], are based on the assumption that the 

prediction errors follow a Gaussian distribution. This however is often 

not the case for wind power predictions, where error distributions 

exhibit some skewness, while the confidence intervals are not 

symmetric around the spot prediction due to the shape of the wind 

turbines power curve. Moreover, the level of predicted wind speed 

introduces some nonlinearity to the estimation of the intervals; i.e. at 

the cut-off speed, the lower power interval may switch to zero due to 

the cut-off effect. The limits introduced by the wind farm power curve 

(min, max power) are taken into account by the method proposed in 

[6], which is based on modelling errors using a ß-distribution, the 

parameters of which have to be estimated by a post-processing 

algorithm. This approach however is applicable only to “physical” 

type of models since such models estimate power using an explicit 

wind farm power curve – i.e. the power curve for the whole group of 

wind turbines, which is not necessarily the case for statistical or 

artificial intelligence based models as the ones considered here [7].  

In [8], [9] wind speed errors are classified as a function of look-

ahead time and then they are transformed to power prediction errors 

using the wind turbine power curve vs. wind speed. This method 

however is also limited for application to physical models rather than 

statistical ones since it requires local wind speed predictions (at the 

level of the wind farm), while it does not provide uncertainty as a 

function of a pre-specified confidence level. The wind speed errors are 

estimations provided by the Numerical Weather Prediction (NWP) 

model. As a consequence, this method does not take into account the 

modelling error itself that might be due to the spatial refinement of 

weather predictions or to the power curve used. On the other hand, 

wind speed measurements are required, which, in general, are not 

made available on-line.  

This paper proposes a methodology for assessing on-line the 

uncertainty of wind power predictions by the joint use of 

appropriately defined confidence intervals and prediction risk indices. 

Initially, a generic approach is developed for the estimation of 

confidence intervals that can be applied to both “physical” and 

“statistical” wind power forecasting models. This is due to the fact 

that no hypothesis is made about the distribution of the prediction 

errors. The method accommodates both modelling errors and errors 

based on the NWPs. It uses past wind power data, which are often 

available on-line by a Supervisory Control and Data Acquisition 

(SCADA) system, as well as NWPs, which are the basic input to all 

models. 

Generally, when confidence higher than 80% is required, the 

intervals are quite wide. This can lead to conservative or costly 

managing strategies of the predicted wind power (i.e. allocation of 

high spinning reserve). Given that confidence intervals are estimations 

of the uncertainty based on the past performance of the model, the 

second objective of this work is to develop additional preventive tools 

able to assess on-line the prediction risk as a function of the forecasted 

weather situation. The aim is to provide comprehensive information to 

the operators so that they are able to adjust the risk they are going to 
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undertake when managing the predicted wind power, i.e. take low risk 

when forecasted weather situation is unstable. 

The paper presents detailed results from the application of the 

method to the case study of Ireland, where the aim is to predict the 

output of several wind farms for 48 hours ahead using on-line 

measurements and predictions from Hirlam NWP system. Evaluation 

is based on one-year of data. 

II.  UNCERTAINTY IN WIND POWER PREDICTIONS 

 

Let us define the prediction error for the look-ahead time t+k as 

following: 

tktkttkt
PPe

//
ˆˆ


  (1) 

where 
tkt

P
/

ˆ


 is the forecast for look-ahead time t+k produced by the 

model at time origin t, and 
kt

P


is the measured wind power. This 

error can vary between –100% and 100% of the nominal wind farm 

power. For a non-bounded prediction model it can take values even 

outside that range. The possible error of the prediction model, defined 

as “error margin”, depends on the level of measured wind power. 

Figure 1 represents graphically the error margin as a function of the 

wind farm characteristic curve. 

For wind speeds below cut-in speed, the error margin is maximal 

since the model can predict a production up to the nominal wind farm 

power. On the contrary, for higher wind speeds the model will show a 

positive error margin, i.e. the generated power is likely to be greater 

than the one proposed by the prediction model. Close to the cut-off 

wind speed the uncertainty is again maximal since the model can 

switch from a positive error margin to a negative one, or the inverse. 
 

  
 

Fig. 1.  The error margin as a function of the wind farm power curve. 
 

The observed prediction error itself is in general the result of three 

factors; a modelling error emod, an error due to the accuracy of the 

input meteorological predictions eNWP and finally, a stochastic 

component linked to the process itself es: 
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III.  METHODOLOGY FOR ESTIMATING THE UNCERTAINTY OF WIND 

POWER PREDICTIONS 

 

In this Section, a methodology is developed that permits to assess 

on-line the prediction risk. It includes: 
 

(i)  Development of confidence intervals for the spot power 

prediction. The approach is based on the resampling method, 

which is applied on samples of errors. Errors are classified using 

fuzzy sets to account for the level of power and the risk for cut-

off events.  

(ii) Development of an on-line prediction risk index based on 

ensembles of NWPs. This Index permits to derive rules for 

assessing the probability of high or extreme prediction errors 

due to unstable weather situations.  

(iii) Dynamic fine-tuning of the size of the intervals depending on 

the weather stability. This permits to avoid excessive risk or to 

take preventive actions in situations where high errors are 

expected.  

 

A.  Error pre-processing based on fuzzy sets modelling 
 

The first step before computing confidence intervals is to collect 

the prediction errors that the model made in the past. The intervals 

that are going to be computed will rely on the most recent information 

on the model’s performance. For this, a window in the past (a certain 

number of hours) is defined and used as a sliding window for storing 

the errors. The size of this window defines the size of the sample of 

errors. A separate sample is developed for each look-ahead time of the 

prediction horizon (i.e. for 1-hour ahead, 2-hour ahead, and so on). 

This is because prediction errors depend on the look-ahead time as 

illustrated in Figure 2. The collected errors are the most recent ones at 

a given time: when the actual wind power is known, that value is 

compared with all the past predictions made for that time (from 48 

hours to 1 hour ago).  
 

  
 

Fig. 2.  The distribution of the prediction errors varies as a function 

of the prediction horizon (left picture: 1-hour ahead prediction error 

distribution, right picture: 24-hour ahead prediction error 

distribution). Results are produced using data for a single wind farm 

in Ireland. 
 

The power prediction errors depend on the errors involved in the 

prediction of wind speed by the NWP system [8-10]. Due to its shape, 

the wind farm power curve is able to amplify (between cut-in and 

rated speed) or to reduce (below cut-in speed or between rated and 

cut-off speed) the uncertainty introduced by the NWPs. To account for 

this effect, the wind power curve is divided into three ranges of 

power: low, medium and high, which are characterised by fuzzy sets. 

The prediction errors are classified then as a function of these three 

ranges (Figure 3). Hence, the confidence interval estimation is carried 

out using the error samples corresponding to the power class of the 

predicted power. 
 

 
Fig. 3.  Splitting the power curve into three power class fuzzy sets and 

into two cut-off risk zones. 
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In a similar way, in order to deal with the risk due to the cut-off 

event, the universe of discourse of wind speeds - i.e. the entire range 

of wind speed values, is divided into two ranges corresponding to a 

“no cut-off risk zone” for low wind speeds, and to a “cut-off risk 

zone” for wind speeds close or higher than cut-off. An appropriate 

fuzzy set is associated to each zone as shown in Figure 3. The cut-off 

risk is considered in priority to the power class splitting. 

 

B.  Confidence interval estimation by the resampling approach 

 

Here is a formal definition of confidence intervals: the interval 

computed from the sample data which, were the study repeated 

multiple times, would contain the true effect CL% of the time, CL being 

the confidence level. 

A given set of observations (the sample) is a part of a whole 

population and can be seen as representative. The aim of methods like 

resampling is to have a better idea of the population distribution by 

going through the sample a high number of times. This evaluation of 

the population distribution can serve to estimate a mean, a variance, 

etc. No assumption is made concerning the distribution: that is the 

main reason why resampling is preferred to other methods like 

methods based on simple standard deviation for instance. 

Let us consider a sample containing N observations of a mean m 

for a given stochastic process. The procedure to compute from this 

sample the 95% confidence interval for that mean involves the 

following steps:  
 

(i)  N values are selected randomly and with replacement out of the 

original sample in order to create a new sample; 

(ii)  the new sample is sorted in ascending order; 

(iii) the 2.5% lowest and 97.5% highest value of that set are 

determined.  
 

This procedure represents one step of the resampling process 

(Figure 4). Indeed, these three actions are to be repeated a large 

number of times to re-create the population again and again. One 

always gets a new sample that is close to the original one, and the 

whole population distribution is not really simulated by this way. But, 

by calculating the mean of respectively the 2.5% lowest and the 

97.5% highest value of these randomly created samples, good 

estimates of the confidence limits for the mean m can be computed 

[1], [11], [12]. 

      

                   
 

Fig. 4.  One step of the resampling process. 
 

In the case of wind power forecasting, the resampling method is 

applied by considering error samples defined as a function of the look-

ahead time, the power range and the wind speed range. These error 

samples are treated one after the other using the procedure described 

above, assuming that the prediction error the model makes is the mean 

of a distribution and that we would like to compute confidence 

intervals for that mean. 

 

IV.  INFLUENCE OF NUMERICAL WEATHER PREDICTIONS 
 

Low quality forecasts are due partly to the power prediction model, 

and partly to the numerical weather prediction system (due in turn to 

low weather stability). Indeed, an unstable atmospheric situation can 

lead to very poor numerical weather predictions and thus to worthless 

wind energy ones. In contrast, when the atmospheric situation is 

stable, one can expect more accurate wind power predictions from the 

model. 

In general it is very difficult to validate the accuracy of numerical 

weather predictions since wind speed measurements are often not 

available on-line. This was the situation in the case-study examined in 

this paper, where only wind power measurements are available in 

parallel to Hirlam NWPs of wind speed at four levels. In order to 

study the relevance of the NWPs, a dynamic approach is developed 

based on their correlation to the measured power. The aim is to 

estimate the probability of situations where Hirlam fails to predict 

local conditions for a certain period of time (i.e. due to local weather 

situations). For this purpose, cross-correlations between wind power 

and Hirlam wind speeds were estimated using a sliding window of 

100 hours. The result is plotted in Figure 5 for a period of 2000 hours. 

The distribution of the obtained correlations is shown in Figure 6 for 

each level. The range of the values is between {–0.4, 0.92}. Low 

values indicate situations where low reliability of Hirlam forecasts 

might be expected. The frequency of these periods is however limited 

since the distributions are centred on the 0.8 correlation value. An 

additional conclusion is also that the most correlated Hirlam level 

varies in time. This is an indication that a performing prediction 

model could consider more than one level as input. 

In the following Paragraphs, the information included in the NWPs 

is exploited to develop tools for on-line estimation of the uncertainty 

in power predictions.  
 

 

Fig. 5.  Dips below 0.6 of the cross-correlation show situations 

where poor accuracy of the wind power predictions should be 

expected. 
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Fig. 6.  Distribution of the cross-correlations coefficients for various 

Hirlam levels. 
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A.  Ensemble forecasts for the assessment of weather stability 

 

Meteorological Centres are able to produce different scenarios of 

Numerical Weather Predictions by perturbing the initial conditions of 

the forecasting model or by using different NWP models. These 

scenarios are called ensemble forecasts and permit to evaluate the 

stability of the weather regime [13]. However, for wind power 

applications only one forecast for the next 48 hours is often made 

available (or purchased) at a given time. For instance, Hirlam gives a 

unique 48-hour ahead forecast every 6 hours. Nevertheless, for a 

given hour, several predictions can be available from different time 

origins in the past (-6, -12, -18… hours). In a stable and well-

predicted weather situation it is expected that these predictions will 

not differ significantly. Weather stability can be assessed by 

comparing all the available forecasts for the considered period. 
 

  

Fig. 7.  Stable (left picture) and unstable (right picture) weather 

situations. 
 

Because we want to have a general evaluation of that stability, 4 

sets of predictions of various ages (0, 6, 12 & 18 hours) for the 

following 24 hours are compared. Figure 7 gives the examples of a 

stable atmospheric situation (left picture, the forecasts are quite close) 

and of an unstable one (right picture, spread forecasts). 
 

B.  Development of a norm to assess the weather stability 

 

There are several possibilities to measure the spread of the various 

weather forecasts. In [10] the standard deviation of the forecasts for 

each time-step is mentioned as an example.  

Our aim here is to evaluate the global atmospheric situation. This 

is why a unique representative index is defined for the following Nh 

hours instead of indexes for every look-ahead time.  

In order to calculate the distance between two sets of forecasts, we 

propose a 2-norm between the Nh-valued vectors containing the 

predicted wind speed for the Nh following hours. Define  
T

thNttkttt
t wswswsws ],,,,[ˆ

1 


    to be the Nf available 

sets of wind speed forecasts (NWPs), with  being the age of each set. 

The values for  can be 0, 6, 12, etc, for the case of Hirlam. The 

distance between the predictions of ages i and j is given by: 
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Then, an index, called hereafter “meteo-risk” MRI-index, is 

defined to measure the spread of the weather forecasts at a given time. 

It uses the most recent forecast as a reference and reflects the 

variability of the older forecasts:  
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with 
i

p  (i = 1,…,Nf-2) being appropriate weights defined so that: 
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The use of the weights
i

p permits to give more importance on the 

recent information we get from the weather predictions.  
 

C.  Relation between weather stability and wind power prediction 

error 

 

In the frame of the case study of the paper, the horizon Nh for the 

calculation of the MRI-index is set to 24 hours. Since Hirlam forecasts 

are provided every 6 hours, there are four sets (Nf=4) of wind speed 

predictions covering the period. However, the same methodology can 

be applied to seven available sets of Hirlam forecasts on a 6-hour 

period for instance. 

Figure 8 shows the distribution of the values of the MRI-index as 

obtained using the data of one of the considered wind farms in Ireland 

(see Section V). It can be concluded that most of the times the weather 

regime is quite stable (low MRI-index values) and that there are only 

few occurrences of really spread forecasts. Figure 7 shows the patterns 

of a “stable” and an “unstable” weather situation with MRI-index 

values of 0.3 and 2.9 respectively. 
 

 
 

Fig. 8.  The distribution of weather situations as expressed by the 

MRI-index. 
 

For the same case study we collect wind power prediction errors as 

obtained by a fuzzy-neural network (F-NN) model [7] for a period 

covering one year. For the same period the MRI-index is estimated. By 

binning the data, calculating the average error for each bin, and 

comparing these averages to the global prediction error of the model, 

the representative points in Figure 9 are obtained. The prediction error 

increases linearly with the MRI-index: the tighter the Hirlam 

predictions are, the more accurate the wind power prediction model is. 

A linear fitting gives the solid curve shown in Figure 9. 
 

 
 

Fig. 9.  Prediction errors vs. MRI-index over a one year dataset: 

there is a linear relation between the prediction error and the MRI-

index. 
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Making this assumption would mean that the prediction error the 

model made follows an affine empiric relation: 
 

e = e0 + s.MRI, (6) 
 

which is composed by a basic part of the error e0 and by a NWP-

dependent error, the latter being a direct consequence of the prediction 

model sensibility to the weather stability. The slope s of the linear 

fitting model represents that sensibility. 
 

D.  Use of the MRI-index to adjust on-line the prediction risk  
 

    1)  Fine-tuning of the confidence intervals 
 

The relation (6) indicates that when the MRI-index is low, the 

model is expected to be more accurate. In that case one would be 

ready to accept tighter confidence intervals for the predictions. The 

aim here is to use Eqn. (6) to define a scale factor for the confidence 

intervals depending on the value of the MRI-index. This scale factor 

can be applied to either enlarge or narrow the intervals width in the 

following Nh hours. For instance, when the meteorological index 

equals 0.5, the size of the intervals for the following 24 hours is 

reduced by almost 20%. The strategy chosen here is to only narrow 

the intervals when the MRI-index permits to do so. It can be seen from 

Figure 8 that most (~65%) of the time, the MRI-index allows to 

decrease the interval size.  
 

    2)  On-line use of the MRI-index for monitoring prediction risk 
 

The relation that was drawn above permits to define rules 

concerning the expected prediction error depending on the MRI-index 

value. For that purpose, we bin the data by MRI-index and calculate 

the cumulative distribution function of the prediction errors for each 

bin (Figure 10). 
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Fig. 10.  Cumulative distribution functions of the prediction error 

depending on the MRI-index bin. 
 

These curves give the probability with which an error larger than a 

defined threshold occurs, depending on the value of the MRI-index. 

For instance, if at a certain time the index takes a value between 0 and 

1, there will be a probability of 36% that an error tkte   larger than the 

mean prediction error tkte   occurs. However, if at that same time the 

value of the index is within the [1.75-2] bin, the probability for the 

same kind of error occurring is twice as large (75%): 
 

IF MRI[1.75-2] THEN tkte  > tkte   with 75% probability. (7) 

 

Table I gives the probability for errors to be larger than 1, 1.5 and 

2 times the average error depending on the range of the MRI-index. 

The Table is estimated for the case of 5 wind farms in Ireland. Based 

on such a Table, several rules similar to the one given by (7) can be 

derived.  

Table I also provides information on the probability of extreme 

prediction errors to happen (extreme are defined as errors larger than 

twice the mean prediction error of the model). Actually, for these 5 

wind farms in Ireland, when the MRI-index takes low values (between 

0 and 1) an extreme prediction error is unlikely to happen, and that is 

not the case if this one is within the bin [1.75-2] (17% probability of 

occurrence). Moreover, if MRI>1.75, an error of at least 50% of the 

average prediction error is expected. 

In an on-line environment these rules permit to derive signals or 

alarms for the end-user of the wind power prediction model, 

informing that large prediction errors might occur. Then, the operator 

can consider such a signal for: 
 

 taking preventive actions (i.e. increase spinning reserve), 

 considering the lower interval, rather than the spot prediction of 

power, when trading, in order to avoid penalties, etc.  
 

In the developed software, the MRI-index is monitored as shown in 

Figure 15. The passage of the index to high zones triggers messages to 

the operator on the expected risk. The rules that are implemented 

evolve over time thanks to the storage of MRI-index values and 

prediction errors. 
 

 Ranges of MRI-index 

Probability of occurrence of 

errors larger than n times 

the mean prediction error 

Bin 

 [0, 1] 

Bin 

[1, 1.25] 

Bin 

[1.25, 1.5] 

Bin 

[1.5, 1.75] 

Bin 

[1.75, 2] 

n = 1 36 51 62 67 75 

n = 1.5 10 22 28 30 38 

n = 2 3 8 10 12 17 
 

Tab. I.  Rules for the occurrence of larger errors depending on the 

value of the MRI-index. 

V.  RESULTS 

Results are presented for five real wind farms in Ireland (WF-A to 

WF-E) with a total installed power of a few tens of MW. The 

prediction model is the Adaptive Fuzzy-NN model described in [7]. 

The available time series cover a period of almost two years from 

which 6600 hours were used for training (learning set), 1000 hours for 

cross-validation and one year for testing the performance of the 

model. The results presented here are on the testing set. Concerning 

the computation of confidence intervals, 12 days of prediction errors 

are stored in the samples. The desired confidence level is set to 85%. 

Figure 11 depicts an episode with the wind power predictions for 

the next 43 hours compared to the real values for WF-E. The 85% 

confidence intervals are built with the method described above. In 

order to illustrate the fine-tuning of the intervals, Figure 12 gives the 

example of a weather situation classified as stable with respect to the 

“meteo-risk” index. For the first 24 look-ahead times the resampling 

on past errors produces quite broad intervals, but their size is reduced 

by almost 20% afterwards thanks to the consideration of the weather 

situation. 
 

 
 

Fig. 11.  Wind power prediction with 85% confidence intervals. 
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The resampling approach that is used to design the confidence 

intervals displays a dynamic behaviour thanks to the updating of the 

sample of errors and also thanks to the fuzzy set modelling of the 

power curve. Figure 13 shows the evolution of the 6-hour ahead 

interval width during 1000 hours of the evaluation period. An 

interesting point is that these intervals are non-symmetric because they 

follow the concepts we described about the error margin – for instance 

the prediction error is more likely to be negative than positive when 

forecasting low power output. 
 

 
 

Fig. 12.  Wind power prediction with the resampling and fine-tuned 

confidence intervals. The intervals are narrowed for the first 24 hours 

due to a low MRI-index value. 
 

Moreover, the interval size varies a lot over time. For the example 

of Figure 13, the width of the 6-hour ahead confidence interval ranges 

from 10% to 70% of the wind farm nominal power. 

Depending on the weather stability described by the MRI-index, 

the intervals are tuned: when the weather situation is considered as 

stable (low index values) they are narrowed by up to 30%. The dashed 

curves in Figure 13 correspond to the final intervals. 
 

 
 

Fig. 13.  Evolution of the 85% confidence 6-hour ahead interval 

width over a 1000-hour period for the resampling intervals and the 

fine-tuned ones. 
 

The performance of the confidence interval estimation for the five 

wind farms in Ireland is summarized in Tab. II, i.e. the observed 

confidence at the end of the evaluation period (one year) for both 

resampling and fine-tuned intervals, as well as the percentage of 

reduced intervals and their average reduction due to the use of the 

MRI-index.  
 

Wind 

farm 

Observed 

confidence of 

resampling 

intervals (%) 

(1) 

Observed 

confidence of fine-

tuned intervals (%) 

 

(2) 

No of times 

(%) intervals 

are reduced 

 

(3) 

Average width 

reduction (%) 

 

 

(4) 

WF-A 84.87 82.93 65.10 11.32 

WF-B 82.38 80.31 66.60 8.85 

WF-C 81.05 80.53 68.78 7.28 

WF-D 83.60 82.16 63.98 7.28 

WF-E 84.29 82.85 63.52 8.23 
 

Tab. II.  Observed confidence for the two types of intervals after one 

year of simulation and effects of the MRI-index on the interval 

reduction. 

One can see that the consideration of the weather stability permits 

to narrow the intervals most of the times (~65% in column 3), and the 

average reduction is up to 11% of their initial size (WF-A). The 

corresponding confidence loss is not significant (column 2). 
 

 
 

Fig. 14.  Average width of the 6-hour ahead confidence intervals for 

WF-A and for various specified confidences (75, 80, 85, 90  & 95%). 
 

The interval size reduction is illustrated in Figure 14, where the 

average interval width (for the 6-hour ahead ones) is plotted against 

the observed confidence. The various interval sizes are quite 

important, but one has to keep in mind that this study deals with 

single wind farms and so the level of prediction error is higher than 

for the case of regional or national wind power predictions where 

there is some spatial smoothing effect. 
 

 
 

Fig. 15.  Parallel evolution of the MRI-index and of the normalized 

prediction error. 
 

Finally, Figure 15 gives a picture of an episode with the evolution 

of the MRI-index and the related prediction error: the period of low 

“meteo-risk” (time in the evaluation set between 200 and 450) 

matches with a period of very low prediction error and periods with 

unstable weather situations (time between 80 and 180 for instance) 

correspond to higher prediction errors. These features, as well as the 

mean prediction error of the model, can be given on-line to the 

operator and help him to assess the prediction risk according to the 

meteorological situation. 

VI.  CONCLUSIONS 

A generic methodology for assessing on-line the prediction risk of 

short-term wind power forecasts is presented. Firstly, confidence 

intervals based on the resampling approach are derived, taking into 

account the prediction horizon, the power class and the cut-off risk. 



 7 

Secondly a new meteorological risk (MRI) index was introduced to 

evaluate the weather stability. The MRI-index can be used either to 

fine-tune the confidence intervals or to give signals to the end-user on 

the probability of outliers. 

The developed methodology was tested over a one-year evaluation 

dataset for five wind farms located in Ireland. The results are 

encouraging and comprise a first step in the development of on-line 

tools that can be used in a complementary way to the prediction model 

itself. 

The developed methods were implemented in the form of on-line 

modules and integrated in the Armines Wind Power Prediction 

System (AWPPS). The prediction modules of AWPPS are integrated 

in the More-Care Energy Management System and installed for on-

line operation in Ireland and other sites such as Crete, Madeira, etc.  
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