The anisotropic compressive mechanical properties of the rabbit patellar tendon
Résumé
In this study, we examine the transverse and longitudinal compressive mechanical behavior of the rabbit patellar tendon. The anisotropic compressive properties are of interest, because compression occurs where the tendon attaches to bone and where the tendon wraps around bone leading to the development of fibro-cartilaginous matrices. We quantified the time dependent viscoelastic and anisotropic behavior of the tendon under compression. For both orientations, sections of patellar tendon were drawn from mature male white New Zealand rabbits in preparation for testing. The tendons were sequentially compressed to 40% strain at strain rates of 0.1, 1 and 10% strain(s) using a computer-controlled stepper motor driven device under physiological conditions. Following monotonic loading, the tendons were subjected to stress relaxation. The tendon equilibrium compressive modulus was quantified to be 19.49±11.46 kPa for the transverse direction and 1.11±0.57 kPa for the longitudinal direction. The compressive modulus at applied strain rates of 0.1, 1 and 10% strain(s) in the transverse orientation were 13.48±2.31, 18.24±4.58 and 20.90±8.60 kPa, respectively. The compressive modulus at applied strain rates of 0.1, 1 and 10% strain/s in the longitudinal orientation were 0.19±0.11, 1.27±1.38 and 3.26±3.49 kPa, respectively. The modulus values were almost significantly different for the examination of the effect of orientation on the equilibrium modulus (p=0.054). Monotonic loading of the tendon showed visual differences of the strain rate dependency; however, no significant difference was shown in the statistical analysis of the effect of strain rate on compressive modulus. The statistical analysis of the effect of orientation on compressive modulus showed a significant difference. The difference shown in the orientation analysis validated the anisotropic nature of the tendon.