Paris-Lille-3D: a large and high-quality ground truth urban point cloud dataset for automatic segmentation and classification - Mines Paris Accéder directement au contenu
Article Dans Une Revue The International Journal of Robotics Research Année : 2018

Paris-Lille-3D: a large and high-quality ground truth urban point cloud dataset for automatic segmentation and classification

Xavier Roynard
Jean-Emmanuel Deschaud
François Goulette

Résumé

This paper introduces a new Urban Point Cloud Dataset for Automatic Segmentation and Classification acquired by Mobile Laser Scanning (MLS). We describe how the dataset is obtained from acquisition to post-processing and labeling. This dataset can be used to learn classification algorithm, however, given that a great attention has been paid to the split between the different objects, this dataset can also be used to learn the segmentation. The dataset consists of around 2km of MLS point cloud acquired in two cities. The number of points and range of classes make us consider that it can be used to train Deep-Learning methods. Besides we show some results of automatic segmentation and classification. The dataset is available at: http://caor-mines-paristech.fr/fr/paris-lille-3d-dataset/.
Fichier principal
Vignette du fichier
dataset_Roynard_2017.pdf (4.34 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01695873 , version 1 (29-01-2018)
hal-01695873 , version 2 (11-04-2018)

Identifiants

Citer

Xavier Roynard, Jean-Emmanuel Deschaud, François Goulette. Paris-Lille-3D: a large and high-quality ground truth urban point cloud dataset for automatic segmentation and classification. The International Journal of Robotics Research, 2018, ⟨10.1177/0278364918767506⟩. ⟨hal-01695873v2⟩
566 Consultations
746 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More