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Abstract. This study is concerned with the intrinsic tempo-
ral scales of the variability in the surface solar irradiance
(SSI). The data consist of decennial time series of daily
means of the SSI obtained from high-quality measurements
of the broadband solar radiation impinging on a horizontal
plane at ground level, issued from different Baseline Sur-
face Radiation Network (BSRN) ground stations around the
world. First, embedded oscillations sorted in terms of in-
creasing timescales of the data are extracted by empirical
mode decomposition (EMD). Next, Hilbert spectral analy-
sis is applied to obtain an amplitude-modulation–frequency-
modulation (AM–FM) representation of the data. The time-
varying nature of the characteristic timescales of variability,
along with the variations in the signal intensity, are thus re-
vealed. A novel, adaptive null hypothesis based on the gen-
eral statistical characteristics of noise is employed in order
to discriminate between the different features of the data,
those that have a deterministic origin and those being real-
izations of various stochastic processes. The data have a sig-
nificant spectral peak corresponding to the yearly variabil-
ity cycle and feature quasi-stochastic high-frequency vari-
ability components, irrespective of the geographical location
or of the local climate. Moreover, the amplitude of this lat-
ter feature is shown to be modulated by variations in the
yearly cycle, which is indicative of nonlinear multiplicative
cross-scale couplings. The study has possible implications on
the modeling and the forecast of the surface solar radiation,
by clearly discriminating the deterministic from the quasi-
stochastic character of the data, at different local timescales.

1 Introduction

The power of the electromagnetic radiation from the Sun
that reaches the surface of the Earth is estimated at around
1017 W. Thus, solar irradiance is the main driver behind
the weather and climate systems on the planet. As such,
the Global Climate Observing System (GCOS) program has
identified the surface solar irradiance (SSI) as an Essen-
tial Climate Variable that helps understand climate evolu-
tion and guides adaptation and mitigation efforts (Bojinski
et al., 2014). Long-term time series of the SSI are instru-
mental in engineering and finance by enabling, for exam-
ple, the optimal determination of geographical sites for solar
power plants and guiding investment decisions, respectively
(Schroedter-Homscheidt et al., 2006). Thus, better knowl-
edge of the SSI and of its temporal variability, as recorded
in long-term time series, is one of the intents of this work.

Temporally, the SSI exhibits a very wide dynamic range.
Its short-term timescales of variability, such as clouds briefly
obscuring the Sun, are observed over seconds. At the op-
posite scale, thousands or even millions of years are to be
used, as related to the change of the orbital parameters of the
Earth–Sun system or to stellar evolution (Beer et al., 2006).
In spite of this large span of characteristic scales of tempo-
ral variability, most of the studies dealing with this physical
quantity have focused primarily on a few selected timescales
of interest. As such, reports have either dealt with global av-
erages and long-term trends (Trenberth et al., 2009; Wahab
et al., 2010; Pachauri et al., 2014; Blanc et al., 2015), have
only scrutinized the short-term, high-frequency variability
(Yordanov et al., 2013; Lauret et al., 2016), or have focused
exclusively on a few intermediate scales (Coskun et al., 2011;
Medvigy and Beaulieu, 2012). Although considerably differ-
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ing in methods, taken together the previously cited studies
add valuable contributions to our knowledge of the SSI. But
is it possible to analyze the variability in the SSI across mul-
tiple timescales in a unitary way?

To do so, first a decomposition of the time series into
uncorrelated sub-constituents with distinct characteristic
timescales should be preferred. Analysis would then ensue in
a like manner for each scale. The timescales, or characteristic
periods of a time series, can be identified with the inverse of
the frequency at which the processes that generate the data
occur. It then follows that methods portraying the changes
of the spectral content of a time series with respect to time
are potentially good candidates. This would enable both the
identification of the periodicities and of the dynamic evolu-
tion of the processes generating the data. A general class of
useful signal processing techniques can thus be identified in
the so-called time-frequency distributions that depict the in-
tensity (or energy) of a signal in the time and the frequency
domains simultaneously (Cohen, 1989). Such methods are
commonly employed for geophysical signal processing (Tary
et al., 2014).

Another factor to be taken into account is the nonlinear and
non-stationary characteristics of the measured solar radiation
data (Zeng et al., 2013). Handling such data issued from the
nonlinear interaction of physical processes, often also found
under the influence of non-stationary external forcings, calls
for an adaptive data analysis approach (Wu et al., 2011).

The study at hand will make use of the Hilbert–Huang
transform (HHT), an adaptive, data-driven analysis technique
designed specifically for investigating nonlinear and non-
stationary data (Huang et al., 1998). The HHT adaptively
decomposes any dataset into basis functions that are de-
rived solely from the local properties of the time series. A
time-frequency-energy representation of the data is then con-
structed from these basis functions. The HHT has seen exten-
sive use in geophysical signal analysis and spectral estima-
tion (Solé et al., 2007; Huang and Wu, 2008; Vecchio et al.,
2010; Lee and Ouarda, 2011; Alberti et al., 2014; Huang and
Shen, 2014; Tary et al., 2014). The HHT has also been pre-
viously employed on SSI datasets (Duffy, 2004; Calif et al.,
2013; Bengulescu et al., 2016a, b). A similar technique has
been independently proposed by Nagovitsyn (1997) for the
analysis of the nonlinear, non-stationary, long-range solar ac-
tivity. In this light, the use of the HHT for the study of the
temporal variability in the SSI appears to be appropriate. The
inner workings of this data processing method are detailed in
a dedicated subsection.

Regardless of the methods used, when analyzing data there
is always the need to discriminate between deterministic sig-
nals and what are assumed to be background stochastic re-
alizations (Rios et al., 2015). The classical way to solve
this when employing the HHT on geophysical signals, such
as the SSI, is to presume some model for the background
power spectrum, against which the identified features are
then compared (Huang and Wu, 2008; Franzke, 2009, 2012).

Table 1. Ground measurement stations listing.

Code Locationa Latitudeb Longitudeb Climatec

BOU Boulder (US) 40.0500 −105.0070 BSk
CAR Carpentras (FR) 44.0830 5.0590 Csa
PAY Payerne (CH) 46.8150 6.9440 Cfb
TAT Tateno (JP) 36.0581 140.1258 Cfa

a Country codes according to ISO 3166-1 alpha-2.
b Positive north for latitude and positive east for longitude, following ISO 19115.
c Köppen–Geiger climate classification according to Kottek et al. (2006).

In contrast, the present study parts with the traditional ap-
proach, by adopting a novel, adaptive null hypothesis intro-
duced by Chen et al. (2013) that requires no a priori knowl-
edge of the nature of the background processes; further dis-
cussion thereof will be presented in due course. A some-
what similar objective can be found in the work of Rios
and de Mello (2016), though their method of discrimina-
tion between stochastic and deterministic components is fun-
damentally different. Kolotkov et al. (2016) also propose
a method for discriminating frequency-dependent stochastic
components by empirically estimating their power law spec-
tral energy distribution and respective confidence bounds.
Approaches for discriminating high-frequency fluctuations
from large timescale modulations are also described by Flan-
drin et al. (2004b) and Alberti et al. (2016).

At this point, the general outline of our study can be
summarized as follows. We analyze measurements of daily
means of SSI at different geographical locations. We fo-
cus on identifying and analyzing the intrinsic modes of the
temporal variability in the SSI, as revealed by the HHT.
We also investigate the physical and statistical significance
of these modes. We show that the HHT is able to dis-
criminate between a deterministic yearly cycle and multiple
high-frequency (quasi-)stochastic components. We also find
a non-null, statistically significant rank correlation between
the amplitude envelopes of the high-frequency scales and the
yearly cycle. We then discuss the possible implications of our
findings on the modeling and forecast of the SSI.

The study is organized as follows. Section 2 discusses the
data sources and the preprocessing. In Sect. 3 the adaptive
data analysis approach is described. Section 4 will present
the results obtained, with the discussion thereof being de-
ferred to Sect. 5. Conclusions and outlook are presented in
Sect. 6. Code and data availabilities are indicated in the Code
and Data availability sections, respectively. Lastly, acknowl-
edgements and a bibliographical list conclude the study.

2 Data sources and preprocessing

The data under scrutiny in this study consist of 10-year time
series of daily means of SSI obtained from high-quality mea-
surements performed at four different locations (Table 1 and
Fig. 1). The measurement stations are part of the Baseline
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Figure 1. The four decennial SSI time series investigated in this
study, spanning 2001 through 2010. From top to bottom: BOU,
CAR, PAY, and TAT. Each point corresponds to a daily mean of SSI.
Time markers on the abscissa indicate the start of the corresponding
year.

Surface Radiation Network (BSRN), a worldwide radiomet-
ric network providing accurate readings of the SSI at 1 min
temporal resolution and with an uncertainty requirement at
5 W m−2 (Ohmura et al., 1998).

The four time series for the period 2001–2010 have been
quality checked according to Roesch et al. (2011). Next,
daily means of SSI were then calculated from these raw time
series only if more than 80 % of the data during daylight were
valid. Lastly, any isolated missing daily means were com-
pleted by linear interpolation applied to the daily clearness
index, KT, which is the ratio between the daily mean of SSI
and the daily mean of the total solar irradiance (TSI) received
on a horizontal surface at the top of atmosphere for the same
geographical coordinates.

Two measuring stations are located in Europe, one in
Japan, and one in North America in order to capture var-
ious climatic conditions. Boulder (hereafter abbreviated as
BOU) experiences a midlatitude steppe, cool type of climate
(Köppen–Geiger: BSk), while at Carpentras (abbreviated as
CAR) the climate is a humid subtropical, Mediterranean one
(Köppen–Geiger: Csa). Both sites experience many sunny
days during the year. As a rule of thumb,KT equal to 0.2–0.3
denotes cloudy, overcast conditions, whileKT around 0.7 in-
dicates sunny conditions. Figure 2 exhibits the histograms of
KT for the four stations. One may observe the high frequen-
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Figure 2. Histograms of the daily clearness index KT over the de-
cennial time span in percent frequency. From top to bottom: BOU,
CAR, PAY, and TAT.

cies of the greatest values of KT for BOU and CAR. The
median K̃T is equal to 0.63 for both BOU and CAR, which
means that half of the days exhibitKT greater than 0.63. The
climate in Payerne (PAY) is classified as a marine west coast,
mild climate (Köppen–Geiger: Cfb), and Tateno (TAT) has a
humid subtropical, east coast climate (Köppen–Geiger: Cfa).
Compared to BOU and CAR, PAY and TAT exhibit more uni-
form histograms, with less days with cloud-free conditions,
and experience more overcast and broken clouds conditions.
The median K̃T is equal to 0.47 for PAY and 0.51 for TAT.
Except for TAT, which is embedded in an urban setting, the
stations are located in rural environments; the local topog-
raphy for BOU and TAT is flat with grassy surfaces, while
for CAR and PAY the area is hilly with cultivated surfaces
(BSRN, 2015).

Any further reference to seasons and seasonal phenomena
shall be understood as occurring in the Northern Hemisphere
since the stations are situated at boreal latitudes.

3 Adaptive data analysis

Ideally, data analysis methods should require that no as-
sumptions be made about the nature of the scrutinized time
series, i.e., neither linearity nor stationarity should be pre-
sumed. This is because the true character of the underlying
processes that have generated the data is usually not known
beforehand. Adaptivity to the analyzed data would also be
a sought-after feature, in the sense of not imposing a set of
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patterns against which data would be decomposed, but rather
letting the data themselves drive the decomposition. This lat-
ter criterion ensures both that the extracted components carry
physical meaning and that the influence of the mathematical
artifacts inherent to the method on the rendered picture of
temporal variability is kept to a minimum (Wu et al., 2011).
Since such a decomposition is only determined by the local
characteristic timescales of the data, its appropriateness to
nonlinear and non-stationary time-series analysis is immedi-
ate (Huang et al., 1998).

3.1 The Hilbert–Huang transform

The Hilbert–Huang transform (HHT) is an adaptive data
analysis technique built with the previous consideration in
mind. It involves two distinct steps – the empirical mode de-
composition (EMD) followed by Hilbert spectral analysis.
In-depth discussion of each step is carried out within the ded-
icated subsections that follow.

3.1.1 The empirical mode decomposition

The first step of the HHT is the empirical mode decomposi-
tion (EMD), an algorithmic procedure in essence, by which
oscillations that present a common local timescale are itera-
tively extracted from the data. These oscillatory components
of the data are called intrinsic mode functions (IMFs). An
IMF is any function that satisfies two criteria: (1) its num-
ber of extrema and zero crossings differs at most by one and
(2) at any data point the mean value of its upper and lower en-
velopes is zero. These two properties ensure that IMFs have a
well-behaved Hilbert transform (Huang et al., 1998). Owing
to the adaptive nature of the EMD, the IMFs represent the ba-
sis functions onto which the data are projected during decom-
position. This is in contrast with the Fourier or wavelet trans-
forms where the basis functions are fixed in advance (Huang
and Wu, 2008). Once all the IMFs have been extracted, all
that is left of the time series is a residue, or trend, which
cannot be mathematically thought of as an oscillation at the
span of the data. A sketch of the EMD algorithm is provided
in Algorithm 1.

Lines 6–12 of the EMD algorithm represent the so-called
“sifting loop” which has a two-fold purpose – to discard any
riding waves and to render the IMFs more symmetric. The
stoppage criterion for the sifting loop is closely related to
how the latter controls the filter character of the EMD. On
the one hand, an infinite number of sifting iterations would
asymptotically approach the result of the Fourier decomposi-
tion (i.e., constant amplitude envelopes) (Wang et al., 2010).
On the other hand, several studies performed on time series
of pure noise (Flandrin and Gonçalvès, 2004; Flandrin et al.,
2004a; Wu and Huang, 2004) have shown the decomposition
behaves like an adaptive “wavelet-like” dyadic filter if the
number of sifting iterations is kept small, around 10, which
also assures maximum component separation and minimum

leakage (Wu and Huang, 2010). This stoppage criterion of 10
sifting iterations is currently the recommended one for prac-
tical applications (Wu and Huang, 2009, 2010) and is also
the one employed in the study.

Algorithm 1 EMD

Require: x(t) ∈ R
1: Initialize IMF counter: k← 0
2: Initialize residual: r(t)← x(t)
3: while r (t) is not monotonic do
4: Increment IMF counter: k← k+ 1
5: (Re)process residual: h(t)← r(t)
6: while h(t) is not an IMF? do
7: Find minima and maxima of h(t)
8: Interpolate minima to find lower envelope: L(t)
9: Interpolate maxima to find upper envelope: U(t)

10: Find mean of envelopes: m(t)← (L(t) +U(t))/2
11: Remove mean of envelopes: h(t)← h(t)−m(t)
12: end while
13: Store IMF: ck(t)← h(t)
14: Update residual: r(t)← r(t)− ck(t)
15: end while
16: return c1...N (t), r(t)
? See text for the definition of IMF. This "sifting" loop should be run approximately 10
times (Wu and Huang, 2009, 2010).

It also worth noting that the preferred interpolation method
in the EMD, i.e., lines 8 and 9 of Algorithm 1, are cubic
splines (Rilling et al., 2003). Because of oscillations of these
interpolating splines edge effects may appear in the EMD but
are usually contained within a half-period of a component at
data boundaries (Wu et al., 2011).

One of the drawbacks of the original EMD is that it may
introduce a phenomenon known as “mode mixing”. This is
the manifestation of oscillations with dissimilar timescales
in the same IMF or the presence of oscillations with sim-
ilar timescales in different IMFs. A workaround was pro-
posed by Wu and Huang (2009) with ensemble empirical
mode decomposition (EEMD). The idea was to run the de-
composition over an ensemble of copies of the original sig-
nal to which white Gaussian noise has been added, with the
final result obtained by averaging. Although the EEMD im-
proved the mode-mixing problem, the different sums of sig-
nal and noise produced different numbers of modes, mak-
ing the final averaging somewhat difficult. Added to this,
the reconstructed signal still contained some residual noise
and thus was not identical to the original. To overcome
this situation, Torres et al. (2011) have proposed another
iteration of the EMD, the complete EEMD with adaptive
noise (CEEMDAN). This method also decomposes the white
noise into modes, along with the signal, such that at each
stage of the decomposition a particular noise is added and a
unique residue is computed to obtain each mode. However,
the modes of CEEMDAN still contain some residual noise
and sometimes spurious modes appear in the early stages
of the decomposition. The next iteration of the method, the
improved complete ensemble EMD (ICEEMD or ICEEM-
DAN), overcomes these issues by fixing the signal-to-noise
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Figure 3. The eight IMFs obtained by decomposing the BOU time
series; from top to bottom: IMF1–IMF8. The panels plot SSI (or-
dinate) versus time (abscissa). Time markers on the horizontal axes
indicate 1 January of the corresponding year. The zero-centered os-
cillatory nature of the modes can be clearly seen. Also apparent is
the local timescale increase with mode number.

ratio for all stages of the decomposition process (Colomi-
nas et al., 2014). The ICEEMD method is that used in this
study. In addition, a fast EMD routine provided by Wang
et al. (2014) has been used to decrease the computation time.

To illustrate the workings of the EMD, the eight IMFs of
the BOU time series are presented in Fig. 3 in the order they
were obtained, from top to bottom. As EMD operates in the
time domain, the IMFs have the same temporal support as
the original data and, by construction, upper and lower am-
plitude envelopes that are symmetrical with respect to zero.
It can be observed in Fig. 3 that, as the decomposition pro-
gresses, the timescale of the IMFs increases; i.e., the intrin-
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Figure 4. The power spectral density (PSD) of the eight IMFs for
BOU (solid line) on a logarithmic scale normalized with respect to
the power of the highest spectral peak. The period, or inverse fre-
quency, runs on the abscissa in a base-2 logarithm. The individual
spectra are shown in the same colors as the IMFs from Fig. 3; from
left to right: IMF1–IMF8. The Fourier estimates of the median pe-
riods, marked along the dash-dotted lines, are seen to increase with
mode number. Notable features are the prominent spectral peak of
IMF6 at ∼ 365 days corresponding to the yearly cycle and the ap-
parent dyadic repartition of the timescales for IMF1–IMF5.

sic oscillations are getting further spaced apart with increas-
ing IMF number. Another view of this is brought by Fig. 4,
where the power spectral density (PSD) and a Fourier esti-
mate of the mean period of each IMF are plotted. To aid the
reader, the colors used to portray the individual IMF spec-
tra are the same as for the time-domain representation from
Fig. 3. The spectral shapes of the IMF1–IMF5 are similar in
form, i.e., bell curves, and their median periods roughly fol-
low a dyadic scale, i.e., doubling with increasing IMF num-
ber as 3.1 days → 7.3 days → 13.9 days → 30.5 days →
54.0 days. This doubling of the timescale for these first five
IMFs is the hallmark output of an efficient dyadic filter. Sub-
sequently, it is shown that this dyadic repartition is pertinent
to identifying deterministic signals from random realizations
of quasi-stochastic background processes. This finding is
even more interesting, since the median periods have been
estimated with a Fourier-based method, which measures the
period globally over the whole time range of the IMFs. In
contrast, a measure of the local period in the Hilbert sense is
a much better estimate, since it has an accuracy as low as a
quarter wavelength of temporal resolution with respect to the
average timescale of the IMF (Huang et al., 2009).

3.1.2 Hilbert spectral analysis

Once the empirical mode decomposition is completed, the
second and last step of the HHT consists in the Hilbert spec-
tral analysis of the previously obtained IMFs. Each IMF and
its Hilbert transform are used to construct a complex analytic
signal, described by an amplitude-modulation–frequency-
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modulation (AM–FM) model. This decomposition into two
time-varying parts corresponding, respectively, to instanta-
neous amplitude and instantaneous frequency is very useful
for the purpose of this study. It enables the identification, in
a time-varying sense, of how much power (i.e., the square
of amplitude) occurs at which timescale (i.e., the inverse of
frequency).

The Hilbert transform of each real-valued IMF ck(t) can
be written as

σk (t)=H (ck (t))=
1
π
P

∞∫
−∞

ck(τ )

t − τ
dτ, (1)

where subscript k designates the kth IMF and P indicates
the Cauchy principal value. From each IMF and its Hilbert-
transformed version, a unique complex-valued analytic sig-
nal can be obtained (Gabor, 1946):

zk(t)= ck(t)+ i · σk (t)= ak(t) · e
i·θk(t), (2)

in which

ak(t)=

√
c2
k(t)+ σ

2
k (t) (3)

is the instantaneous amplitude and

θk(t)= tan−1
(
σk(t)

ck(t)

)
(4)

is the instantaneous phase. The instantaneous frequency is
the first time derivative of the instantaneous phase:

ωk(t)=
1

2π
dθk(t)

dt
. (5)

Figure 5 provides a visual guide to this concept by illus-
trating the AM–FM decomposition of IMF5 for the BOU
time series. The top panel (IMF5) of the figure reproduces
the mode function, which is also the real part of the ana-
lytic signal from Eq. (2). The amplitude of the latter (AM),
given in Eq. (3), which is the envelope of the original signal,
is then extracted and plotted in the second panel. This am-
plitude is not a constant, but rather a time-dependent func-
tion. Next, by removing the AM component from the signal
through simple division, the frequency modulation compo-
nent is obtained, i.e., the complex exponential in Eq. (2);
the real part of this component (FM) is plotted in the third
panel. The FM is a trigonometric function with a phase argu-
ment that is a time-dependent function, as seen from Eq. (4).
The local frequency is then just the first temporal derivative
of this phase, as defined in Eq. (5). The inverse of the local
frequency, i.e., the local timescale of the signal, is depicted
in the bottom panel (timescale), where its temporal variabil-
ity can be clearly distinguished. Owing to their time-varying
character, the amplitude and frequency are usually encoun-
tered in the literature under the terms instantaneous ampli-
tude and instantaneous frequency, respectively.

Figure 5. Hilbert spectral analysis of the fifth IMF of the BOU time
series. The intrinsic mode function (IMF5 panel) is the product of its
constituent slowly varying amplitude-modulation part (AM panel)
and of its rapidly changing frequency-modulation component (FM
panel). The time-varying local timescale, extracted from the FM
component, is also depicted (timescale panel). Time markers on the
abscissa denote the beginning of the corresponding year.

The original time-series x(t) can then be expressed as a
sum of AM–FM signals riding onto the EMD trend, r(t), as
follows:

x(t)= Re

[
N∑
k=1

ak(t) · e
i
∫
ωk(τ ) dτ

]
+ r(t). (6)

The square of the instantaneous amplitude and the instan-
taneous frequency of the IMFs can then be used to repre-
sent the data as an energy density distribution overlaid on
the time-frequency space, as in Eq. (7). This representation,
called the Hilbert energy spectrum, is defined by Huang et al.
(2011) as “the energy density distribution in a time-frequency
space divided into equal-sized bins of1t×1ωwith the value
in each bin summed and designated as a2(t) at the proper
time, t , and proper instantaneous frequency, ω”.

S(ω, t)=

N∑
k=1

a2
k (t) · e

i
∑
ωk(t) (7)

Nonlin. Processes Geophys., 25, 19–37, 2018 www.nonlin-processes-geophys.net/25/19/2018/



M. Bengulescu et al.: Intrinsic timescales of surface solar radiation 25

BOU

Time
20

01
20

02
20

03
20

04
20

05
20

06
20

07
20

08
20

09
20

10

Pe
rio

d
(d

ay
s)

2048

1024

512

256

128

64

32

16

8

4

2

Log-power scale
2− 1 21 23 25 27 29 211

Pe
rio

d
(d

ay
s)

2048

1024

512

256

128

64

32

16

8

4

2

× 105 (

W 2 m− 4)
0 1 2 3

(a) (b)

Figure 6. The Hilbert spectrum (a) of the 10-year time series of SSI for BOU, spanning 2001 through 2010. Pixel color encodes power
(logarithmic-scale color bar on top) at each instant (abscissa) and each scale (ordinate). Time markers on the horizontal axis denote the start
of the corresponding year. The whited-out area indicates the regions where edge effects become significant. The Hilbert marginal spectrum
in the panel (b) is the time-integrated version, i.e., line-by-line sum, of the Hilbert spectrum and indicates the amount of power at each scale.

The time-integrated version of Eq. (7), the Hilbert
marginal spectrum SM(ω), is similar, but not identical, to the
traditional Fourier spectrum:

SM(ω)=

T∫
0

S(ω, t)dt. (8)

An example of Hilbert spectral representation is given in
Fig. 6a where the BOU time series is shown as an energy
density distribution over-imposed on a time-frequency space
as in Eq. (7). Each pixel in the Hilbert spectrum is identified
by three attributes – color, abscissa, and ordinate – through
which it denotes the local power (color, log scale) of the cor-
responding time series, at a certain time (abscissa) and at a
certain timescale (ordinate, log scale). For the sake of read-
ability, the spectrum is binned in time, scale, and color space
and has been smoothed. Hence, some aliasing may occur.
Some features may be represented as continuous lines while
others are rendered as point-like, especially where rapid fre-
quency modulation takes place, such as in the high-frequency
bands.

Interpretation of Hilbert spectral features at data bound-
aries must be done with care due to possible oscillations of

the spline interpolants used in the EMD (see Algorithm 1).
This effect is similar to the “cone of influence” in the popu-
lar wavelet transform (Torrence and Compo, 1998). With the
EMD, edge effects are usually contained within a half-period
of a component at data boundaries (Wu et al., 2011). In Fig. 6
this region has been whited out.

The plot in Fig. 6b is the Hilbert marginal spectrum, or
the time-integrated variant of the image at its left, indicating
the amount of power at each timescale. This time-agnostic
representation is comparable, but not identical, to the Fourier
spectrum of the same time series. It should be once again
emphasized that the Hilbert marginal spectrum is obtained
from local features of the data, with its components having
instantaneous amplitude and instantaneous frequency, as op-
posed to the global outlook of the Fourier spectrum whose
constituents have constant amplitude and constant frequency
throughout the whole domain.

3.2 Adaptive background null hypothesis

Which confidence can be attributed to the information ex-
tracted by the EMD? More specifically, how can one ascer-
tain that a certain IMF is the result of a real physical process
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as opposed to it possibly being a stochastic manifestation of
background processes?

In the past, several investigations have been carried out
in order to identify the effects of the EMD when applied
to time series issued from various models, such as white,
red, or fractional Gaussian noise, (Huang et al., 2003; Flan-
drin and Gonçalvès, 2004; Flandrin et al., 2004a, 2005; Wu
and Huang, 2004; Rilling et al., 2005; Schlotthauer et al.,
2009; Colominas et al., 2012). As a result, it has been consis-
tently shown that, irrespective of the assumed noise model,
the EMD acts as an efficient wavelet-like dyadic filter, de-
composing the stochastic inputs into IMFs having the same
spectral shape but that are shifted in the frequency domain.

Nevertheless, the rejection of a null hypothesis based on an
a priori assumed model of the background does not preclude
the probability that the now statistically significant deemed
signals originate from a stochastic process of a different kind.
Furthermore, as the EMD is an adaptive, data-driven decom-
position, it would be desirable to also employ a null hypoth-
esis that shares the same characteristics, making no before-
hand assumptions about the character of the background pro-
cesses.

Following P. Flandrin (personal communication, 2015)
and Chen et al. (2013) this study will make use of the robust
statistical properties of the EMD with respect to a wide class
of background models in order to adaptively contrast poten-
tial signals against presumed stochastic realizations, as de-
tailed hereafter. Owing to its dyadic filter character, the EMD
decomposes noise time series into IMFs having similar spec-
tral shape but that are translated to roughly the next lower
octave in the spectral domain. When the sampling step is in-
creased, i.e., the sampling frequency is reduced by fraction-
ally resampling the input, these components cannot preserve
their original locations in the spectral domain and are instead
shifted towards lower frequencies. Hence, significance test-
ing of IMFs is done by verifying if the IMF remains un-
changed in the time-frequency representation of the signal
during fractional resampling of the latter.

A Hilbert marginal spectrum SMk
(ω) is first constructed

for each IMF from its instantaneous amplitude ak(t) and
instantaneous frequency ωk(t). Next the spectrum-weighted
mean frequency (SWMF) ωk of each IMF is computed (Chen
et al., 2013):

ωk =

∫
SMk

(ω)ωdω∫
SMk

(ω)dω
. (9)

Then, the time series is fractionally resampled by making the
original sampling rate 1t progressively larger, i.e., the time
spacing of the data points becomes

1tl =1t · l, l ∈ {1.1,1.2, . . .,1.9} . (10)

For each sampling rate l and for each IMF k, the SWMFs
are then recomputed, obtaining a set ωk,l . To enhance the
visibility of the evolution of frequency as a function of the

resampling rate, normalization is performed as in

ω̂k,l =
ωk,l

ωk,1
, (11)

with ωk,1 being the SWMFs of the modes of the data hav-
ing the original sampling rate. Therefore, the normalized
SWMFs for the IMFs of the original data will be unity, i.e.,
ω̂k,1 = 1,∀k.

Since the EMD is an efficient dyadic filter, frequency de-
viation from the unity line will occur for IMFs generated by
stochastic processes. It follows that when ω̂k,l ' 1,∀l, the
null hypothesis that mode k is the realization of stochastic
processes can be rejected.

4 Results

The IMFs obtained from the BOU time series from Fig. 3
have already served as an illustrative example on the op-
eration of the EMD. The IMFs for the other datasets (not
shown) are very similar and are discussed in the following. It
must be noted that, like BOU, the CAR time series is decom-
posed into 8 IMFs, while the PAY data have 9, and 10 IMFs
are obtained for TAT. Besides the IMFs, for each time se-
ries the decomposition also yields a residual, or trend (also
not shown). With respect to the decennial time span of the
analysis (10 years), the trend can be thought of as a low-
pass approximation of the data (Moghtaderi et al., 2013), but
not as an oscillation. Since this work focuses mostly on the
characteristic scales of temporal variability, the EMD trends
along with their statistical significance and physical meaning
do not fall within the scope of the study; for such discussion,
see for example Franzke (2012).

From the Fourier spectra of the IMFs in Fig. 4 it can be
seen that, owing to its median period of 364.8 days, IMF6
can be unambiguously associated with the yearly cycle, as
dictated by the orbital parameters of the Earth–Sun system.
IMF6 also accounts for the most prominent visual feature in
the original data (Fig. 1a: BOU), with its maxima and minima
denoting summer and winter, respectively. Further evidence
is brought by the spectral shape of IMF6, distinguished by a
sharp peak that has the largest power in Fig. 4. Also notewor-
thy is that IMF6 seems to modulate the previous five IMFs,
as these latter seem to exhibit amplitude excursions that are
approximately in phase with the amplitude of IMF6, a phe-
nomenon that is most visually distinguishable in Fig. 3 for
the first three IMFs during the year 2005.

Finally, the last two components, IMF7 and IMF8, hav-
ing median periods of 783.3 and 1457.4 days (Fig. 4), re-
spectively, are seen to exhibit only slight amplitude deviation
from zero in their temporal representation. Moreover, these
fluctuations in amplitude occur at the end of the signal for
IMF7 and at the front edge for IMF8. Interpretation of these
components should, thus, be done with care, since edge ef-
fects for the EMD are known to be usually contained within
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Figure 7. Box plot of the instantaneous timescales of the IMFs for the four stations. The top and the bottom edges of the boxes represent
the first (Q1) and, respectively, the third (Q3) quartiles. The bars inside boxes denote the second quartile (Q2), i.e., the median. The whisker
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deviations, or equivalently v 99 % of the data, assuming normal distribution. The median for each box is expressed numerically above the
lower whiskers. Outliers are omitted. Numeric values for all the statistical descriptors are shown in Table 2.

a half-period of a component at data boundaries (Wu et al.,
2011), i.e., approximately 1 year for IMF7 and 2 years for
IMF8.

With the FM components obtained, it becomes possible to
illustrate the frequency contents of each time series in terms
of its individual IMFs, as shown in Fig. 7, where by means
of box plots the distribution of the local timescale of each
mode is conveyed. This box plot representation is somehow
incomplete, as it only accounts for the period distribution of
the modes and does not take into account either the amplitude
or the temporal localization of the events. For readability, the
characteristic period of each IMF with its range of variability
is also shown numerically in Table 2. The box plots of the
instantaneous amplitude of each IMF are given in Fig. 8.

For all time series, IMF1–IMF5 have very similar me-
dian periods (Fig. 7) that approximate the dyadic sequence:
3.5 days→ 7 days→ 14 days→ 28 days→ 56 days. This
dyadic repartition of their median timescales is worthy of at-
tention since, as it is apparent in Sects. 3.2 and 5.1, it plays
a major role in discriminating which IMFs can be attributed
to deterministic phenomena as opposed to being the output
of random realizations of background processes. Moreover,
besides the notable similarity among the medians of these
modes, for all the datasets both the interquartile ranges and
the total ranges of these first five modes exhibit approxi-
mately the same variability. Added to this, IMF6 for BOU,

CAR, and PAY, as well as IMF7 for TAT, whose median pe-
riods are, respectively, 368.2, 364.3, and 356.6, as well as
366.6 days, can clearly be associated with the yearly cycle
given by the revolution of the Earth around the Sun. This
yearly component is very similar for BOU, CAR, and to a
lesser extent TAT, with an interquartile range that is con-
centrated around almost the same median value and with the
only minor difference being the slightly extended range for
TAT of 300 days as opposed to 200 days for the other two.
The PAY yearly mode differs from those of the other stations,
with its interquartile range and foremost its range being much
larger, the latter even overlapping the interquartile ranges of
IMF5 and IMF4. This is a result of the mode-mixing phe-
nomenon described in Sect. 3.1 that may arise with the EMD,
i.e., the coexistence or mixing of different timescales in the
same IMF, mainly related to the intermittence of signal and to
contamination with noise (Huang et al., 2003). Nevertheless,
the spectral part of IMF6 which overlaps IMF5 and IMF4
has very low power (Bengulescu et al., 2016b); thus, this phe-
nomenon does not influence the validity of the analysis. With
this in mind, one notes that for BOU and CAR no spectral
components are present in the 100- to 300-day band. Further-
more, TAT is the only dataset that has a transitional mode of
143.2 days, with the median period in between the first five
IMFs common to all stations and the yearly cycle.
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Table 2. Statistical descriptors of the instantaneous timescales of the IMFs, expressed in days.

Station Descriptor∗ IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10

BOU Lower whisker 2.0 2.9 4.3 6.9 18.1 288.1 319.6 1435.5
First quartile 2.5 5.5 11.2 21.6 42.5 342.9 405.4 1476.0
Second quartile 3.1 6.6 13.8 27.4 51.6 368.2 724.7 1531.5
Third quartile 3.9 8.7 18.1 36.0 68.1 393.7 807.6 1611.1
Upper whisker 6.0 13.4 28.3 57.3 106.3 469.5 1192.1 1710.9

CAR Lower whisker 2.1 2.9 3.7 8.2 12.4 299.7 328.6 916.4
First quartile 2.7 5.7 11.6 21.8 46.6 337.0 367.6 1165.4
Second quartile 3.2 6.9 14.1 26.8 55.7 364.3 469.5 1305.1
Third quartile 4.1 9.0 17.7 33.7 69.8 388.9 716.2 2062.3
Upper whisker 6.3 13.8 26.7 51.4 104.4 443.0 1031.8 2212.8

PAY Lower whisker 2.0 3.1 4.1 7.9 10.2 28.9 328.8 573.7 1493.0
First quartile 2.5 5.7 11.6 22.7 44.4 231.5 378.1 658.0 1637.0
Second quartile 3.1 7.0 14.5 27.4 53.5 356.6 413.6 707.5 1668.6
Third quartile 3.9 9.0 19.4 36.7 67.3 447.4 477.2 772.9 1733.5
Upper whisker 6.0 14.0 31.0 57.7 101.5 755.0 625.3 918.9 1757.2

TAT Lower whisker 2.1 2.4 5.0 7.5 16.4 48.3 215.4 378.8 742.8 1908.4
First quartile 2.6 5.9 11.8 23.7 48.9 105.6 328.7 522.8 1196.3 2169.2
Second quartile 3.3 7.1 14.3 28.3 61.8 143.2 366.6 609.0 1440.3 2402.6
Third quartile 4.2 9.4 18.5 34.6 81.1 181.3 404.7 795.0 1687.8 2831.9
Upper whisker 6.5 14.7 28.5 51.1 129.0 294.6 513.9 1145.5 1837.4 3029.0

∗ A box plot illustration of the statistical descriptors is shown in Fig. 7.

At this point, the Hilbert frequency distribution of the
IMFs for BOU may be compared to the Fourier one from
the PSD in Fig. 4. As previously mentioned, the Hilbert es-
timates are based on local features of the data and thus are
more accurate than the Fourier ones when applied to non-
stationary signals. This can be seen especially when compar-
ing the range of the first five high-frequency IMFs, which
is upper bounded to about 100 days in Fig. 7, whereas in
the PSD from Fig. 4 the spectra of the same components are
seen to span the whole timescale range. This also holds for
IMF6, which has very narrow Hilbert period range, whose
Fourier analogue is the sharp peak in the PSD of the same
mode. Similar statements can be made for IMF7 and IMF8.
To sum up, it is found that, while the Hilbert period dis-
tributions of the modes have compact supports, the Fourier
representations of the same components span the whole fre-
quency range. Nevertheless, most of the power in the Fourier
PSD is assigned to a frequency band that closely corre-
sponds to the Hilbert range. Owing to the global nature of the
Fourier transform, however, additional spectral coefficients
are needed to provide a complete mathematical description
of the data.

Resuming the discussion of the IMF timescales from
Fig. 7, it can be observed that the low-frequency, i.e., greater
than 1 year, variability in the data, trend notwithstanding, is
assigned into slightly overlapping (within the same time se-
ries) IMFs that span the spectrum starting from the 1-year
mark. For BOU and CAR time series, there are only two

modes extending beyond 1 year. First, IMF7 can be seen to
span approximately the same range for both these stations,
from about 1 year to slightly more than 3 years. For BOU,
however, the interquartile range and especially the median
period is shifted towards higher periods, i.e., 724.7 days vs.
469.5 days for CAR. The last modes of IMF8 of these sta-
tions are very different, with a very narrow range around the
median of 1531.5 days for BOU, as well as a range of 900
to over 2000 days and a median of 1305.1 days for CAR.
For the PAY data, the low-frequency components have nar-
rower spectral support, with two IMFs (IMF7 and 8) that
cover the band from 1 to 2.5 years and median periods of
413.6 and 707.5 days, as well as the IMF9 around 4.5 years
(v 1668 days) with a very narrow range. It must also be noted
that IMF7 for BOU, CAR, and PAY has the same lower-end
support, and that the couple (IMF7, IMF8) of PAY taken to-
gether somehow emulates IMF7 for BOU and CAR. Lastly,
TAT is the only dataset whose the low-frequency variability
is expressed by three components, IMF8–IMF10, with mean
periods of 609, 1440.3, and 2402.6 days. While the first quar-
tile of IMF9 coincides with the upper range of IMF8, the
upper range of IMF9 is slightly below the lower range of
IMF10; hence, the last two modes do not overlap at all. By its
range, IMF8 of TAT approximates IMF7 for BOU and CAR,
but there is no proximity in terms of median or interquar-
tile range. Similarly, the IMF9 of TAT resembles the IMF8
of CAR in terms of range, but their medians are not in close
agreement and their interquartile ranges even less so.
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With the scrutiny of these low-frequency components, the
discussion of the timescale distribution of the IMFs from
Fig. 7 can now be concluded. However, as previously men-
tioned, this particular illustration, although instructive, is in-
complete. First, the box plot representation does not take the
instantaneous variations in frequency into account, but ren-
ders global aggregates instead – much like the traditional
Fourier methods, with the interquartile range spread in ad-
dition. This is done on purpose, with the intent of making it
easier for the readership not accustomed to the HHT to cre-
ate analogies with the more familiar methods (e.g., Fourier
analysis, wavelets). Second and last, this particular represen-
tation is totally devoid of any information pertaining to the
local amplitude, or power, or variance, of the data. With these
considerations in mind, the Hilbert spectrum, a true time-
frequency representation for nonlinear and non-stationary
data, is discussed next. Since the goal of this exercise is to
lay the groundwork for the forthcoming discussion, only the
spectrum for the BOU data is provided as an example.

The BOU Hilbert spectrum from Fig. 6 exhibits a high-
frequency feature between 2 and v 100 days, which corre-
sponds to first five IMFs of the time series. The instantaneous
timescales of these modes overlap (Fig. 7), hence the appear-
ance on the Hilbert spectrum of a continuum instead of dis-
tinct bands. This spectral feature has relatively low power,
which decreases with increasing period, as can be inferred
from the sloped dent in the marginal Hilbert spectrum cor-
responding to this region. In the 2- to 32-day band, ampli-
tude modulation by the yearly cycle can be inferred from
the periodic change in color, with yellow–green tones, oc-

curring mostly during the high irradiance regime of sum-
mer, that turn blue during the winterly minima. Next, in the
band between 100 and 300 days, a gap in the spectrum is
apparent, as can also be inferred from the lack of support
in this region for any of the BOU IMFs in Fig. 7. The yel-
low trace, corresponding to IMF6, exhibits frequency mod-
ulation around the 1-year period, seen as oscillations in the
range of 300 to 450 days, which is also the support of this
mode in Table 2. The color of this IMF indicates that it has
the highest power of all the components, as can also be in-
ferred from the large peak on the marginal spectrum. The cor-
responding timescale fluctuations are centered in 365 days,
and frequency modulation is greatest during 2003 through
2005. From 2006 onwards, however, frequency modulation
is less pronounced – perhaps capturing the low solar activity
around the 2008 minimum in the 11-year cycle solar cycle
(Hathaway, 2015). The final two low-frequency, blue–green
traces on the spectrum correspond to IMF7 and IMF8. For
IMF7, mode mixing is apparent through the occasional shar-
ing of the yearly timescale band with IMF6, between mid-
2003 and 2005. IMF7 has such low power that it fails to
leave an imprint on the marginal spectrum and it seems to
suddenly spring into existence during summer 2003, which
is in perfect agreement with its temporal representation from
Fig. 3 (panel IMF7), whence it can be seen to have negligi-
ble amplitude during the first 2.5 years. Also in agreement
with its temporal depiction from Fig. 3 (panel IMF8), IMF8
starts out in light-green hues and slowly vanishes during mid-
2007. Although this last BOU mode manages to register on
the marginal spectrum through two very slight indentations
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around 1500 days (which is about the median period of this
mode from Figs. 4 and 7), most of its power lies within edge
effect territory, hence interpretation of these slight bumps is
ambiguous at best.

Thus far, all time series have been shown to share a high-
frequency constituent between 2 and 100 days composed of
five IMFs with mean periods following a dyadic sequence,
and an IMF around 365 days that captures the yearly vari-
ability. For BOU, CAR, and PAY, a low-power region can
be found in the 100- to 300-day band. Beyond the 1 year
timescale, the low-frequency variability in the 1.5- to 6-year
band is captured by another two (BOU and CAR) or three
(PAY and TAT) components. The TAT data are the only time
series that has an IMF in the low-power band between the
high-frequency feature and the yearly cycle (median period
143.2 days).

5 Discussion

The previously identified features of the SSI time series will
now be discussed in terms of their intrinsic temporal scales
of variability and physical statistical meaning.

5.1 Discriminating deterministic signals from
stochastic components in the IMFs

At this point, having identified the spectral characteristics
of the SSI time series by means of the HHT, a question
arises with regard to their physical and statistical signifi-
cance, namely how can one ascertain which features repre-
sent the expression of real, deterministic physical phenom-
ena and which ones can be attributed to random realizations
of background processes. Such a method, proposed by Chen
et al. (2013), is described in Sect. 3.2. The procedure was
applied to the first eight IMFs of all the time series and the
results are presented in Fig. 9 (from top to bottom: BOU,
CAR, PAY, and TAT). First, each time series was resam-
pled with a fractional sampling rate up to a factor of 2; i.e.,
the original uniform time spacing of the data, 1t , was pro-
gressively made larger and larger, as described in Eq. (10):
1tl =1t · l, where l ∈ {1.1, 1.2, . . ., 1.9} is the resampling
rate and runs along the horizontal axis. Next, the HHT was
used to decompose the resulting time series into IMFs and to
compute their spectrum-weighted mean frequencies, follow-
ing Eq. (9). In order to emphasize the effects of the fractional
resampling on the spectral contents of the IMFs, these latter
frequencies were then normalized by the SWMF of the orig-
inal, non-resampled data as per Eq. (11). For each dataset,
this ratio is indicated on the y axis, as ω̂k,l , with k ∈ {1. . .8}
indicating the IMF number. It then becomes possible to fol-
low the evolution of the normalized SWMF of each indi-
vidual IMF as a function of the fractional resampling rate
(Fig. 9). As the EMD is an efficient wavelet-like dyadic fil-
ter, it follows that the IMFs of time series of random pro-

cesses undergo a translation towards lower frequencies un-
der fractional resampling. Therefore, for those IMFs whose
SWMFs are not downshifted during resampling, the null hy-
pothesis that they are purely stochastic can be rejected, i.e.,
they represent meaningful signals. Stated otherwise, an IMF
k is deemed not to be stochastic in nature if its normalized
SWMFs ω̂k,l stay close to the unity line for all l. From Fig. 9
it can be observed that for all the stations the only compo-
nent that maintains a quasi-constant frequency under frac-
tional resampling is the mode representative of the yearly
variability, i.e., IMF6 for BOU, CAR, and PAY, as well as
IMF7 for TAT. All the other IMFs experience the previously
described frequency downshifting; hence, for them the null
hypothesis that they are purely stochastic in nature cannot be
rejected. Since the normalized SWMFs of the yearly compo-
nents clearly stray from the black dashed line in Fig. 9, the
result that they are not stochastic in nature is unambiguous.
This also indicates that the signal-to-noise ratio of these com-
ponents is well above the minimum value of 0.2–0.3 required
to reveal potential signals (Chen et al., 2013).

At this point, several precautionary notes are compulsory.
First, the rule of inference used here is modus tollens; i.e.,
the results from Fig. 9 do not imply that the modes which
experience downshift in their SWMFs are made up of pure
noise. It is subsequently shown that, for the first five IMFs
at least, this is indeed the case; although (quasi-)stochastic in
nature, they are not completely devoid of information. Sec-
ond, the result is mostly qualitative, since it is difficult to de-
fine a confidence interval owing to the adaptive nature of the
null hypothesis that can account for different types of mod-
els of the stochastic background. Third and last, the approach
is best applied only to the high-frequency modes, with re-
spect to the data length and sampling, since by resampling
spurious low-frequency oscillation may inadvertently be in-
troduced (Chen et al., 2013). This is further supported by the
fact that, as the IMF number progresses, the region where the
influence of edge effects becomes important gets larger and
larger, hence only adding uncertainty to the interpretation of
the results. This is also the reason why this type of analysis
was only carried out on the first eight IMFs of each dataset.

5.2 Amplitude modulation through nonlinear
cross-scale coupling

This section investigates whether the first five IMFs can be
modeled as purely uncorrelated, random noise or whether
they also contain any other form of information. To test this,
the rank correlation between the yearly and sub-yearly IMFs
and their envelopes, e.g., the AM part in the middle panel of
Fig. 5, has been computed for each SSI time series. Kendall’s
rank correlation coefficient, τ , a statistical measure of ordinal
association describing how similar the orderings of the data
are when ranked (Kendall, 1938), is employed here to estab-
lish whether each pair of the two variables, AMx and IMFy
with x,y ∈ {1. . .7}, may be regarded or not as independent.
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Figure 9. The drift of normalized SWMF ω̂k, l (ordinate) of IMF
k, with k ∈ {1. . .8}, as a function of the resampling rate l (abscissa)
for the four time series. From top to bottom: BOU, CAR, PAY, and
TAT. The black dashed diagonal depicts the behavior of a pure noise
time series under an ideal dyadic filter. For all datasets, the only
mode that maintains a quasi-constant frequency under fractional re-
sampling is the IMF associated with the yearly cycle, i.e., IMF6
for BOU, CAR, and PAY and IMF7 for TAT. In all the other IMFs
quasi-stochastic behavior is apparent through frequency downshift-
ing towards the next lower octave, approximately following the
dashed line.

τ = 1 indicates perfect agreement between rankings, while
τ =−1 denotes perfect disagreement – i.e., one ranking is
the reverse of the other; for τ = 0 the two variables are sta-
tistically independent.

The resulting rank correlation coefficients and the associ-
ated p values, are presented in Fig. 10. For each panel, the

columns denote the EMD modes (IMFx) and the rows the
amplitudes of their envelopes (AMy). The background color
of each cell (AMx, IMFy) indicates the rank correlation τ
between IMFy and the AM part of IMFx within the same
dataset. The legend of the color encoding is found on the
color bar at the bottom of the figure. The associated p values
are presented numerically in each cell for the sake of com-
pleteness and transparency (Wasserstein and Lazar, 2016).
For BOU, CAR, and PAY, IMF6 accounts for the yearly vari-
ability in the time series; hence, the correlation matrices are
6×6 in size. For TAT, the yearly mode is IMF7; thus, in this
case the correlation matrix has a size of 7× 7. Two conclu-
sions can be drawn from Fig. 10.

Values of τ significantly different from zero, shown in red,
are recorded in the last column for all stations. These demon-
strate a modulation of the amplitude of the components hav-
ing sub-year timescales, i.e., AM1 to AM5 (and AM6 for
TAT), by the yearly IMF, at a statistically significant level
(p ∼ 0). The effect is most pronounced for PAY, as inferred
from the darker red shades (larger rank correlation coeffi-
cients).

For the BOU and CAR datasets the first row (AM1) ex-
hibits blue and dark blue cells for IMF3–IMF5 at the statis-
tically significant level. This indicates a negative rank corre-
lation. Similar, but lighter, amplitude modulation is observed
on the second row (AM2), but only by IMF4 and IMF5. For
the PAY series, this negative rank correlation is greatly re-
duced for the first row (light blue tones) and is absent in the
second row. For TAT no such correlation can be observed.
At this point it is interesting to note that, in a similar way
to the discussion from Sect. 5.4, the different features of the
datasets from Fig. 10 also enable a classification of the local
climate experienced by the measuring stations.

It should be mentioned that the amplitude modulation of
high-frequency components by lower frequency ones is also
found in the sunspots number time series (Chen et al., 2013)
and in multiple solar proxies (Kolotkov et al., 2015). The
short-term intrinsic periodicities in the solar proxies appear
to be indicative of “randomly distributed dynamical pro-
cesses in the solar atmosphere” that are closely related to
the 11-year solar activity and therefore, unsurprisingly, the
high-frequency modes are found to be modulated by this lat-
ter cycle (Kolotkov et al., 2016). But this phenomenon is not
limited to solar activity signals and has also been identified
in surface air temperature records (Paluš, 2014), and time se-
ries of the sea level (Liu et al., 2007), and may indicate cross-
scale nonlinear couplings (Paluš, 2014; Huang et al., 2016).

5.3 The intrinsic timescales of variability in the SSI

Firstly, the median periods of the IMFs composing the high-
frequency band are revisited. It is shown in Fig. 7 that
they follow a dyadic repartition that approximates the series
dyadic sequence: 3.5, 7, 14, 28, and 56 days. Such a doubling
in frequency in IMFs has been previously reported in astro-
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physical and geophysical signals. When investigating three
independent datasets of satellite observations of the (extrater-
restrial) total solar irradiance, Lee et al. (2015) consistently
find a similar dyadic-scale progression of modes at 13.5, 27,
and 54 days, statistically significant within the 95 % level,
that correspond to the 27-day solar rotation period and its
(sub-)harmonics. Kolotkov et al. (2015) find intrinsic period-
icities having an average of 25+7

−2 and 44+10
−5 days in five dif-

ferent solar proxy signals. The mean periods and the associ-
ated error bars in (sub-)superscript, estimated at the half-level
width of the corresponding probability histogram, were ob-
tained by analyzing the sunspot area for the whole Sun, and
for the northern and southern solar hemispheres taken sepa-
rately, the 10.7 cm radio flux intensity, and the helioseismic
frequency shift. Emery et al. (2011) also find periodicities
of 5, 7, 9, 13.5, and 27 days in different radiation belt, solar
wind, geomagnetic, and auroral parameters. Compelling as it
may seem, nevertheless, the imprint of a solar rotation signa-
ture on ground measurements of the SSI is highly unlikely,
as it would imply the existence of hitherto unknown physi-
cal mechanisms in Earth’s atmosphere (Gerard Thuiller, per-
sonal communication, 2015). The amplitudes of the IMFs of
the TSI time series and those of the IMFs in the SSI data dif-
fer at times by 2 orders of magnitude (e.g., compare Fig. 3
with Fig. 1 in Lee et al., 2015). If the solar rotation signature
were to be seen in the IMFs of the SSI this would require
the existence of amplifying processes. Stott et al. (2003) and
Lockwood and Fröhlich (2007) have studied the possibility
of such a mechanism and have concluded that, irrespective
of the mechanisms invoked and of the amplification of the
solar variability, for the past decades solar forcing is only a
minor contributor and thus not able to account for most of
the global warming observed in the second half of the 20th
century, which could be better explained by an increase in
greenhouse gases. Further proof is provided subsequently,
this time from a signal theoretical point of view, in support
of the view that it is unlikely that the solar rotation signature
is captured in measurements of the SSI.

Secondly, in the 100- to 300-day band, two of the sta-
tions, BOU and CAR, do not exhibit any variability. For
PAY, the support of yearly IMF6 protrudes in this region, al-
though its first quartile rests well below the 200-day mark.
As mentioned before, the power of the portion of this IMF
that extends into the high-frequency range is very small
(not shown). Hence, while not totally devoid of spectral fea-
tures, this band contains negligible power. A distinct mode
is present at TAT in this band, whose median period of
143.2 days somehow seems to continue the dyadic sequence
of the previous five modes. Since a similar transitional mode
has also been found for two locations in Europe (Bengulescu
et al., 2017), presently no explanation in terms of physical
processes, such as monsoon rainy seasonality, can be pro-
posed for IMF6 of TAT. These findings are important for
the modeling and forecasting of the SSI, as follows. On the
one hand, models for BOU and CAR should not contain any

power in this band, or should at least filter it out. For TAT, on
the other hand, any model attempting to reconstruct the SSI
should ensure that the 100- to 300-day region is not a spec-
tral void. In Sect. 5.1, evidence is presented that the spectral
band spanning from 2 to 300 days seems to be composed
mostly of random realizations of stochastic background pro-
cesses, which can be modeled following, e.g., Flandrin et al.
(2004a), Rilling et al. (2005), Welter and Esquef (2013), and
Kolotkov et al. (2016).

Thirdly, the median periods detected around the 1-year
mark in all the datasets can be explained by the revolution
of the Earth around the Sun and the associated orbital pa-
rameters. The interpretation of these components is unam-
biguous, with one notable exception for the PAY time series,
whose IMF6 exhibits mode mixing; i.e., it has a total range
that overlaps some of the modes in the high-frequency band.
Nevertheless, it will be subsequently shown that it is indeed
these components that account for variability at the 1-year
timescale.

Lastly, the components indicative of low-frequency vari-
ability on timescales greater than 1 year are discussed. The
intrinsic timescales found in these IMFs seem to match once
more those pertaining to the so-called quasi-biennial os-
cillations (QBOs) that have been observed in solar activi-
ties and proxies with periodicities between 0.6 and 4 years
(Bazilevskaya et al., 2015; Kolotkov et al., 2015; Vecchio
et al., 2012), as well as in meteorological data like Harri-
son (2008) who identifies a 1.68-year peak in cloud cover
or high-latitude stratospheric temperatures and geopotential
heights (Labitzke and Loon, 1988). Nevertheless, within the
scope of the current analysis, the interpretation of these low-
frequency variability components as a real, possibly QBO-
like, signal is uncertain.

5.4 The local climate imprint in the IMFs

It is shown in Sect. 2 that the four measuring stations expe-
rience different climates and exhibit differences in terms of
KT. Figure 7 shows that the high-frequency band composed
of the first five IMFs is very much alike for all stations. This
section investigates the possible relationship between local
climate and dissimilarities in terms of the repartition of the
IMFs with mode number 6 and higher.

It can be noted that the IMF6 for both BOU and CAR has
a well-defined period (Fig. 7), with a median of, respectively,
368.2 and 364.3 days and very narrow interquartile range. In
addition, for both stations, the IMF6 is the mode having the
greatest amplitude, and by far, compared to the other modes
(Fig. 8). The IMFs 7 and 8 for CAR have less marked peri-
ods, i.e., the interquartile ranges are greater than for IMF6,
and the amplitude of each IMF is very small. These obser-
vations may be related to the high frequency of cloud-free
days seen in Fig. 2 because, in absence of clouds, the vari-
ability in the daily mean of SSI is predominantly driven by
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Figure 10. Rank correlations between IMFs and their AM components for BOU (a), CAR (b), PAY (c), and TAT (d). Kendall’s rank
correlation coefficient τ is color-coded according to the color bar on the bottom. IMFs run vertically, along the columns, and their AM
components run horizontally, along the rows. The numeric values within the cells are the associated p values.

the variability in the solar irradiance received at the top of the
atmosphere during the year.

PAY and TAT need four IMFs to account for the low-
frequency variability, i.e., one IMF more than BOU and
CAR. IMF6 in PAY has a median period of 356.6 days, close
to 1 year (Fig. 7) with a large interquartile range. The median
amplitude of the IMF6 is approximately half of that of BOU
or CAR (Fig. 8) and the amplitude exhibits large variations.
The median amplitude of the IMF7 is similar to that of IMF6
while the period of the IMF7 is well marked with a narrow in-
terquartile range. This may be related to the abundance of the
presence of broken clouds that render the SSI signal highly
intermittent. This intermittence of the signal could, in turn,
explain the mode mixing observed in IMF6 (Huang et al.,
2003).

Similar to PAY, TAT also has a low median clearness in-
dex K̃TAT

T = 0.51, which helps explain the presence of a
sixth IMF (median period: 143.2 days) between the high-
frequency components and the yearly IMF7 (median period:

366.6 days). In other words, the amplitudes of the stochastic
components in the sub-year band are higher at TAT than at
PAY, or, conversely, there is a lower signal-to-noise ratio of
the yearly cycle. Hence, this high power of the background
drives the EMD to assign a dedicated intrinsic mode for this
region, as opposed to PAY, where the signal in this spectral
band is assigned to the yearly IMF through mode mixing.

6 Conclusion and outlook

To sum up, the HHT analysis of decennial time series of
daily means of measurements of the SSI from distinct BSRN
stations has revealed the following: the presence of a high-
frequency band (2–100 days) consisting of quasi-stochastic
IMFs that have been shown to be amplitude modulated by the
yearly cycle; a low-power spectral band in the 100- to 300-
day region; a well-defined spectral peak at the 1 year mark
accounting for the yearly variability; and multiple QBO-like
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components whose character has been, inconclusively, at-
tributed to quasi-stochastic random processes.

This separation of the (quasi-)periodic components of the
signal from the apparently random realizations of a stochas-
tic background has been shown to significantly augment ac-
curacy in time-series modeling (Rios and de Mello, 2013).
Our findings can be thus directly used to improve models for
estimating SSI from satellite images or forecasts of the SSI.

We have shown that the adaptive Hilbert–Huang transform
is a versatile tool in analyzing SSI datasets, exhibiting sig-
nificant nonlinearity and non-stationarity. First, we have em-
ployed it to extract the intrinsic modes of variability in the
SSI at distinct timescales. Second, the HHT has been used
to discriminate between the deterministic yearly cycle and
the quasi-stochastic high-frequency components. The same
methodology could also be employed on different geophys-
ical signals, such as wind speed time series and river dis-
charge datasets.

When modeling climate processes as dynamical systems
with low-frequency oscillations and noise effects, Chekroun
et al. (2011) have shown that “even the ‘approximately right’
noise can help, rather than hinder”. Here, we have provided
a recipe not only for extracting, but also for characterizing
the stochastic high-frequency constituents of long-term time
series of the SSI. Indications with respect to modeling these
quasi-stochastic components have also been provided. With
respect to SSI forecast models, it is exactly this spectral re-
gion that is the focus of attention (Ehnberg and Bollen, 2005;
Hoff and Perez, 2010; Marquez and Coimbra, 2013). Inman
et al. (2013) venture as far as stating that “the accuracy of
the solar irradiance forecasting models depends almost ex-
clusively on the ability to forecast the stochastic component”.
In this light, the recipe for discriminating the realizations of
random background processes that we have put forth can be
seen as one of the more significant contributions of our paper.

We have also proposed that a classification of the measur-
ing stations according to climate and/or solar insolation con-
ditions may be possible, based on the Hilbert spectral fea-
tures of the data. Thus, one future research pathway could
consist in creating a catalogue of the variability in the solar
resource, at different timescales, on a global scale via satel-
lite estimates of the SSI. Current meteorological reanalyses
are too noisy in their estimates of the SSI to form the ba-
sis for such a catalogue (Boilley and Wald, 2015). In terms
of solar power production, the low-frequency variability data
would aid with policy and investment decisions, while short-
term variability would be of interest from a monitoring, op-
erations, and engineering perspective.

Code availability. The software used for this study, comprising
general EMD and Hilbert spectral analysis routines, is publicly
available online.

– The fast EMD routine used in this study is provided by Wang
et al. (2014) and can be downloaded at
http://rcada.ncu.edu.tw/FEEMD.rar.

– Methods pertaining to Hilbert spectral analysis are part of a
general HHT toolkit provided by Wu and Huang (2009) and
can be downloaded at
http://rcada.ncu.edu.tw/Matlab%20runcode.zip.

– The code for the ICEEMD(AN) algorithm (Colominas et al.,
2014) is provided by María Eugenia Torres on her personal
web page and can be downloaded at
http://bioingenieria.edu.ar/grupos/ldnlys/metorres/metorres_
files/ceemdan_v2014.m.

Data availability. The raw BSRN datasets employed in this study
are made available by König-Langlo et al. (2015). Zip archives
containing the data can be found at https://doi.pangaea.de/10.1594/
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