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Abstract: In this paper we consider the problem of tracking a target in a 2D space whose
model is based on a constant velocity assumption (up to a process noise) in the Frenet-
Serret frame (or intrinsic coordinates). This model is particularly suited to straight lines
and coordinated turn motions. Then, we adapt the Invariant Extended Kalman Filter (I-
EKF), as in [1], a novel variant of the EKF on Lie groups, to suit this dynamical model.
Numerical experiments inspired by real fighter trajectories confirm the validity of our
approach.

1. Introduction

In radar tracking, assuming we have a proper plot-track association, the aim of filtering is to
recover the velocity of the target, essentially to guide the beam of the radar at the next step,
see for example [2]. At the same time, the position must be estimated as well (i.e., filtering the
noisy measurements). The challenge of filter design is two fold: first a probabilistic model of the
target evolution must be chosen with the process noise assessed, and then a non-linear estimator
must be designed. In the present paper, we address both challenges.

Regarding the choice of a model, recent work [3] has advocated the case of intrinsic coordinates
based models. Indeed, it looks intuitive that the commands of the plane be piecewise constant in
a frame attached to the target (the Frenet-Serret frame) although it is not a widespread approach
in the literature. For instance, the coordinated turn model can be easily expressed with intrinsic
coordinates. In this paper, we opt for such a model.

Then, there are various filters to perform nonlinear estimation (Extended Kalman Filter (EKF)
[4], Unscented Kalman Filter (UKF) [5], particle filters [6], Interacting Multiple Model (IMM)
filters [7] which is the most widespread, but which relies on banks of EKFs), see [8] for a
general view on nonlinear filtering. The tracking of maneuvering targets is a well-known prob-
lem and extensions of the Kalman filter, or Kalman-Bucy filter to nonlinear target evolution
equations have been widely studied, see for example [?] or [9]. However convergence proper-
ties are rarely shown, expecially with the most widely used extension of the Kalman filter, the
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Extended Kalman Filter (EKF). This filter is not stable when the system is highly nonlinear,
see [10]. Convergence properties are derived assuming the error is sufficiently small, for ex-
ample [11] or [12], but this assumption is not valid for highly maneuvering targets. Recently,
a methodology for extended kalman filtering emerged, namely the Invariant Extended Kalman
Filter (IEKF), see e.g. [13]. This method guarantees convergence for some theoretically pure
cases, when the model perfectly fits the theory. Such convergence results do not exist for the
EKF. Moreover, the IEKF is suited to coordinates related to the Frenet frame. We extend the
method to a case that is not encompassed in the framework of [13].

This paper is organized as follows: Section 2 briefly recalls the equations of the EKF, Section
3 explains the principle of the IEKF, based on the description in [14], for some known param-
eters and cartesian measurements, Section 4 extends the use of this filter to the case where the
angular velocity and the norm of the velocity are unknown and to polar measurements. Section
5 provides a radar application example inspired by a real fighter trajectory, and a comparison
between the EKF and the IEKF for a given trajectory.

2. The Extended Kalman Filter

In this section, we introduce the EKF equations in a general case, to point out why this filter is
not stable. More detailed equations can be found in [4]. The evolution model is supposed to be
nonlinear. Xn is the state of the system at time instant n, f and h are nonlinear functions, wn
and vn are gaussian white noises. In the general case, the evolution is described by (1).{

Xn = f(Xn−1, wn)

Yn = h(Xn) + vn
(1)

The propagation phase of the algorithm is X̂n|n−1 = f(X̂n−1|n−1, 0), and the error is defined by
en|n−1 = Xn − X̂n|n−1, en−1|n−1 = Xn−1 − X̂n−1|n−1. The linearization of this error takes the
following form:

en|n−1 =
∂

∂X
f(X̂n−1|n−1, 0)en−1|n−1 +

∂

∂w
f(X̂n−1|n−1, 0)wn (2)

We define Fn and Gn, the matrices used for the Riccati equation, so that

Fnen−1|n−1 +Gnwn = en|n−1 (3)

The problem is that these matrices depend on the predicted state X̂n|n−1.

For the update phase of the algorithm, we use the linearization of the measurement function
Hn = ∂

∂X
h(X̂n|n−1). We then use a standard Kalman filter to compute the error estimate: the

Kalman gainKn can be derived thanks to the Riccati equation. For the derivation of the Kalman
gain, see for instance [15]. As Knzn (with zn = Yn−h(X̂n|n−1)) is an estimate of en|n, we have
X̂n|n = X̂n|n−1 +Knzn.
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3. The Invariant Extended Kalman Filter

In this section, we recall the equations of the Invariant Extended Kalman Filter (IEKF) as pre-
sented in [13] on a specific example, that we will broaden in the next section. We do not give
any proof of convergence, they can be found in [13]. We assume here the evolution model of the
system is described with equations (4). It is the equations of the movement of a non-holonomous
car, which means the car cannot slide. The evolution is here in continuous time. However, the
measures are in discrete time (5).

d

dt
θt = ωt + wθt ,

d

dt
x
(1)
t = (ut + wxt ) cos(θt),

d

dt
x
(2)
t = (ut + wxt ) sin(θt) (4)

Yn = (x
(1)
tn , x

(2)
tn )T + vn (5)

θt is the direction of the object, (x(1)t , x
(2)
t ) its cartesian position. In this section, the angular

velocity, ωt, and the norm of the velocity of the target, ut are supposed to be known. We shall
see later how we can estimate these parameters. The measurement noise vn and the process
noises wθt and wxt are white gaussian noises. In this paper, we will use this model to describe
the movement of a maneuvering target in two dimensions.

The main idea of this method is to express the equations in matrix form, as in (7), to use the
(left) invariance of the system. To do so, we introduce the state matrix:

χt =

cos θt − sin θt x
(1)
t

sin θt cos θt x
(2)
t

0 0 1

 (6)


dχt

dt
= χt(νt + wt)

Yn =

(
xtn + vn

1

)
= χtn

(
02×1
1

)
+

(
vn
0

)
(7)

with νt =

ωtut
0

∧ =

 0 −ωt ut
ωt 0 0

0 0 0

 and wt =

 0 −wθt wxt
wθt 0 0

0 0 0

. The notation

ω

u1
u2

∧ =

0 −ω u1
ω 0 u2
0 0 0

, can be found in [16].

The space the state matrix lives in is called a matrix Lie group, namely SE(2), the group of

planar isometries. Elements of this group are written G ∈ SE(2) =⇒ G =

(
R(θ) x

01,2 1

)
with R(θ) a rotation matrix in dimension 2. A Lie algebra is associated to each Lie group, it
corresponds to the tangent space at the neutral element of the group. Here, the Lie algebra is

se(2), and its elements are of the form g ∈ se(2) =⇒ g =

0 −θ u1
θ 0 u2
0 0 0

 ,

 θ

u1
u2

 ∈ R3.
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The difference with the EKF is the definition of the error: it is called η, and it is a multiplication
with a matricial inversion ηt = χ−1t χ̂t and no longer a difference (which would be χ̂t−χt). The
computations in [13] show that the linearized error (ξt ∈ R3, such that ηt ≈ I3 + ξ∧t ) evolution
is: 

d
dt
ξt = −Atξt −

wθtwxt
0


ξ+tn = ξtn − K̃n

[
(02,1, I2)ξt −R(θ̂tn)Tvn

] (8)

if we let At =

 0 0 0

0 0 ωt
ut −ωt 0

, and the gain Kn = K̃np̃ with p̃ = (I2, 02,1). Kn can be

computed with the Riccati equation dPt

dt
= AtPt + PtAt + Q̂t, and Sn = HPtnH

T + N̂n,

Kn = PtnH
TS−1, P+

tn = (I − LnH)Ptn , with H =

(
0 1 0

0 0 1

)
, N̂ = R(θ̂tn)Cov(vn)R(θ̂tn)

T

and Q̂t = Cov[(wθt , w
x
t , 0)

T ].

Note that with isotropic measurement noise, i.e. Cov(vn) = αI2, the gain does not depend on
the estimated state, and thus the filter presents some quite strong convergence properties. This is
due to the fact that the evolution of the linearized error does not depend on the estimated state.
For more information, see [13].

4. Angular velocity and norm of the velocity estimation

In the previous section, ωt and ut were supposed to be known. For radar application this is
obviously not the case. So we have to estimate these parameters. We include them in the state
vector. Here we will not have the same guarantees of convergence as in the previous section,
but the filter should still be quite stable since the dependance of the error on the predicted state
is reduced to parameters derived from the position (it is only dependent on angular velocity and
on the norm of the velocity, but not on the position itself). We keep the same notations as in
Section 3. We deal with both linear and nonlinear measurements.

4.1. Evolution equations and linearization

We want to estimate ω and u along with the position and the angle. The state vector is now
Xt = (θt, x

(1)
t , x

(2)
t , ωt, ut)

T . The dynamics are as follows:

d

dt
χt = χt(νt + wt),

d

dt
κt =

(
wωt
wut

)
(9)

if we keep χt =

cos θt − sin θt x
(1)
t

sin θt cos θt x
(2)
t

0 0 1

 and if we let κt =

(
ωt
ut

)
. wωt and wut are white

gaussian noises.
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The matricial form of the state is now

χ̃t =


cos θt − sin θt x

(1)
t 0 ut

sin θt cos θt x
(2)
t ωt 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 :=

 χt
0 ut
ωt 0

02×3 I2

 (10)

Define the state error as η̃t = χ̃−1t ˆ̃χt. To linearize it, we have decomposed the state into two parts
(as in (9)): χt and κt. The error is also decomposed into two parts: ηt = χ−1t χ̂t and γt = κ̂t−κt.

We have the following equation for the evolution of the error ηt:

d

dt
ηt = ηtν̂t − νtηt − wtηt (11)

To perform the linearisation, let R2 3 ζt =
(
ω̂t
ût

)
−
(
ωt
ut

)
the linearization of γt. Then νt =

ν̂t −
(
ζt
0

)∧
. The global linearized error is defined as ξ̃t =

(
ξt
ζt

)
with ξt the linearization of ηt.

Equation (11) becomes d
dt
ηt = ηtν̂t − ν̂tηt +

[(
ζt
0

)∧]
ηt − wtηt, and d

dt
ζt =


wωtwut

0

∧
 ζt.

A mere analogy with the results of section II shows that the linearized equation writes:

d

dt
ξt = −Atξt +

(
ζt
0

)
−

wθtwxt
0

 (12)

with At defined as in (8). This gives:

d

dt
ξ̃t = −Ãtξ̃t −


wθt
wxt
0

wωt
wvt

 (13)

where Ãt =


0 0 0 −1 0

0 0 ω̂t 0 −1
ût −ω̂t 0 0 0

0 0 0 0 0

0 0 0 0 0

.
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4.2. Position measurements in cartesian coordinates

In this paragraph, the measures are cartesian: Yn = (x
(1)
tn , x

(2)
tn )T + vn. This gives the measure-

ment matrix H̃cart
n =

(
0 1 0 0 0

0 0 1 0 0

)
. Applying standard Kalman equations to the obtained

linearized model yields the following algorithm:

1. Propagation:

d

dt
θ̂t = ωt,

d

dt
x̂t =

(
cos θ̂t
sin θ̂t

)
ut,

d

dt
ω̂t = 0,

d

dt
ût = 0 (14)

d

dt
Pt = ÃtPt + PtÃt + Q̂t (15)

2. Update:

Kn = PtnH̃
cartT
n (H̃cart

n PtnH̃
cartT
n + N̂)−1 (16)

zn = R(θ̂tn)
T (Yn − x̂tn) (17)

e = Knzn (18)(
R(θ̂+tn) x̂+tn
01,2 1

)
=

(
R(θ̂tn) x̂tn
01,2 1

)
expm(e(1 : 3)∧), ω̂+

tn = ω̂tn + e(4), û+tn = ûtn + e(5)

(19)

with expm the matrix exponential.

4.3. Range and bearing measurements

If the measures are expressed in range and bearing, called r and α respectively, the measure-
ment function then becomes nonlinear. Its expression is Yn = (rn, αn) = h(x

(1)
tn , x

(2)
tn ) =(√

(x
(1)
tn )2 + (x

(2)
tn )2, arctan

(
x
(2)
tn

x
(1)
tn

))
. In order to compute the Kalman gain, H̃pol

n , the lineariza-

tion of the function h must be computed. H̃pol
n should only depend on X̂ =

 θ̂

x̂(1)

x̂(2)

.

Simple computations show that

Yn − Ŷn = Yn − h(x(1)tn , x
(2)
tn ) = H̃pol

n ξ̃tn +O
(
||ξ̃||2

)
(20)

and

H̃pol
n = ∇hx̂R(θ̂)

(
0 1 0 0 0

0 0 1 0 0

)
(21)
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Apart from the definition of the innovation, modified as in (22), the update step is the same.

zn = Yn − h(χ̂tn) (22)

The equations are the same than the ones in the cartesian case, see equations (14) to (19), except
that step (17) is replaced by (22) and H̃cart

n is replaced by H̃pol
n .

5. Tracking application

The aim is to apply the IEKF to target tracking. For the evolution model of the target, we use

Figure 1: Trajectory followed by the target, with measurement noise

exactly the same model as presented above, expressed in intrinsic coordinates. We present the
results of a numerical experiment on a synthetic trajectory inspired from a real fighter trajectory
recorded by Thales. The measurements are in meters and give the cartesian coordinates, and the
radar is centered at the origin. The measures were manually transformed in range and bearing
coordinates with the function h. The measurement noise in range and bearing was also added
by hand, as an additive noise.

The trajectory of the target is presented on Fig. 1. The amplitude of the measurement noise
is visible on this figure. The results are presented for a measurement noise close to real mea-
surement noises, and thus the measures are in polar coordinates. The angle θ is modulo 2π. On
Fig. 2, the results are presented for an EKF with the same model as the one described for the
IEKF, and on Fig. 3 the results are presented for the IEKF. The process noises are optimized
for this particular trajectory by maximizing the measurement likelihood, as in [17]. Indeed, in
the model, ωt and ut are supposed to be constant, so we need to add some sufficiently high
process noise to these variables to account for their variations. The RMSE for each parameter
are presented on Tab. 1. We did three experiments: two for the IEKF, with hand-tuned process
noises or optimized process noises, and one for the EKF with optimized process noises. The op-
timal noise tuning brings mostly better velocity and angle estimations, we could also optimize
the tuning to favor some parameters, depending on the importance of each parameter. For the
optimal tuning experiments, we see that the results for the IEKF are better than the results for
the EKF, for all parameters.
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Figure 2: Trajectory (top left), θ (top right), ω (bottom left) and u estimated for the EKF

Parameter Hand-tuned IEKF Optimized IEKF noises Optimized EKF noises

x(1) 36.6 34.2 36.2
x(1) 23.4 23.9 24.1

θ (RMSE for 1− cos θ) 0.0097 0.0090 0.0099
ω 0.0221 0.0226 0.0226
u 2.26 1.73 2.71

Table 1: RMSE for each parameter on 100 Monte-Carlos and on the whole trajectory for a hand-tuned IEKF, an
optimized IEKF and an optimized EKF

6. Conclusion

We have proposed an evolution model expressed in intrinsic coordinates, along with a filter that
can cope with high nonlinearities in these particular evolution equations, this method is thus
suitable for highly maneuvering targets. The filter is moreover compatible with realistic mea-
surement noise. This study shows that the IEKF should be more stable than the EKF for other
nonlinear systems that can be expressed in the same matricial framework, like targets with high
lateral accelerations. The optimization of the noise tuning was done using only one trajectory.
One should also compare results with one tuning for a bench of trajectories. To this aim, the
tool MYRIAD, developed by Thales Research & Technology has been developed, it is based on
Choquet’s integral [18]. This tool is designed to perform multi-criteria decision analysis to bal-
ance resources between algorithms, such as tracking algorithms and search patterns algorithms,
as in [?]. Future work will also consist in developing further this method and in writing an
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Figure 3: Trajectory (top left), θ (top right), ω (bottom left) and u estimated for the optimized noises IEKF

Interacting Multiple Filter algorithm compatible with the Lie group structure used in the IEKF.
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