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An Innovative Nonlinear Filter for Radar Kinematic Estimation of Maneuvering Targets in 2D

In this paper we consider the problem of tracking a target in a 2D space whose model is based on a constant velocity assumption (up to a process noise) in the Frenet-Serret frame (or intrinsic coordinates). This model is particularly suited to straight lines and coordinated turn motions. Then, we adapt the Invariant Extended Kalman Filter (I-EKF), as in [1], a novel variant of the EKF on Lie groups, to suit this dynamical model. Numerical experiments inspired by real fighter trajectories confirm the validity of our approach.

Introduction

In radar tracking, assuming we have a proper plot-track association, the aim of filtering is to recover the velocity of the target, essentially to guide the beam of the radar at the next step, see for example [START_REF] Jeauneau | Radar tasks scheduling for a multifunction phased array radar with hard time constraint and priority[END_REF]. At the same time, the position must be estimated as well (i.e., filtering the noisy measurements). The challenge of filter design is two fold: first a probabilistic model of the target evolution must be chosen with the process noise assessed, and then a non-linear estimator must be designed. In the present paper, we address both challenges.

Regarding the choice of a model, recent work [START_REF] Godsill | Variable rate particle filters for tracking applications[END_REF] has advocated the case of intrinsic coordinates based models. Indeed, it looks intuitive that the commands of the plane be piecewise constant in a frame attached to the target (the Frenet-Serret frame) although it is not a widespread approach in the literature. For instance, the coordinated turn model can be easily expressed with intrinsic coordinates. In this paper, we opt for such a model. Then, there are various filters to perform nonlinear estimation (Extended Kalman Filter (EKF) [START_REF] Frühwirth | Application of kalman filtering to track and vertex fitting[END_REF], Unscented Kalman Filter (UKF) [START_REF] Julier | Unscented filtering and nonlinear estimation[END_REF], particle filters [START_REF] Gustafsson | Particle filters for positioning, navigation, and tracking[END_REF], Interacting Multiple Model (IMM) filters [START_REF] Bar-Shalom | Tracking a maneuvering target using input estimation versus the interacting multiple model algorithm[END_REF] which is the most widespread, but which relies on banks of EKFs), see [START_REF] Daum | Nonlinear filters: beyond the kalman filter[END_REF] for a general view on nonlinear filtering. The tracking of maneuvering targets is a well-known problem and extensions of the Kalman filter, or Kalman-Bucy filter to nonlinear target evolution equations have been widely studied, see for example [?] or [START_REF] Grewal | Kalman filtering[END_REF]. However convergence properties are rarely shown, expecially with the most widely used extension of the Kalman filter, the Extended Kalman Filter (EKF). This filter is not stable when the system is highly nonlinear, see [START_REF] Ljung | Asymptotic behavior of the extended kalman filter as a parameter estimator for linear systems[END_REF]. Convergence properties are derived assuming the error is sufficiently small, for example [START_REF] Boutayeb | Convergence analysis of the extended kalman filter used as an observer for nonlinear deterministic discrete-time systems[END_REF] or [START_REF] Bonnabel | A contraction theory-based analysis of the stability of the deterministic extended kalman filter[END_REF], but this assumption is not valid for highly maneuvering targets. Recently, a methodology for extended kalman filtering emerged, namely the Invariant Extended Kalman Filter (IEKF), see e.g. [START_REF] Barrau | The invariant extended kalman filter as a stable observer[END_REF]. This method guarantees convergence for some theoretically pure cases, when the model perfectly fits the theory. Such convergence results do not exist for the EKF. Moreover, the IEKF is suited to coordinates related to the Frenet frame. We extend the method to a case that is not encompassed in the framework of [START_REF] Barrau | The invariant extended kalman filter as a stable observer[END_REF].

This paper is organized as follows: Section 2 briefly recalls the equations of the EKF, Section 3 explains the principle of the IEKF, based on the description in [START_REF]Navigating with highly precise odometry and noisy GPS: a case study[END_REF], for some known parameters and cartesian measurements, Section 4 extends the use of this filter to the case where the angular velocity and the norm of the velocity are unknown and to polar measurements. Section 5 provides a radar application example inspired by a real fighter trajectory, and a comparison between the EKF and the IEKF for a given trajectory.

The Extended Kalman Filter

In this section, we introduce the EKF equations in a general case, to point out why this filter is not stable. More detailed equations can be found in [START_REF] Frühwirth | Application of kalman filtering to track and vertex fitting[END_REF]. The evolution model is supposed to be nonlinear. X n is the state of the system at time instant n, f and h are nonlinear functions, w n and v n are gaussian white noises. In the general case, the evolution is described by [START_REF] Barrau | Invariant particle filtering with application to localization[END_REF].

X n = f (X n-1 , w n ) Y n = h(X n ) + v n (1) 
The propagation phase of the algorithm is Xn|n-1 = f ( Xn-1|n-1 , 0), and the error is defined by e n|n-1 = X n -Xn|n-1 , e n-1|n-1 = X n-1 -Xn-1|n-1 . The linearization of this error takes the following form:

e n|n-1 = ∂ ∂X f ( Xn-1|n-1 , 0)e n-1|n-1 + ∂ ∂w f ( Xn-1|n-1 , 0)w n (2) 
We define F n and G n , the matrices used for the Riccati equation, so that

F n e n-1|n-1 + G n w n = e n|n-1 (3) 
The problem is that these matrices depend on the predicted state Xn|n-1 .

For the update phase of the algorithm, we use the linearization of the measurement function

H n = ∂ ∂X h( Xn|n-1 ).
We then use a standard Kalman filter to compute the error estimate: the Kalman gain K n can be derived thanks to the Riccati equation. For the derivation of the Kalman gain, see for instance [START_REF] Kalman | New results in linear filtering and prediction theory[END_REF]. As K n z n (with z n = Y n -h( Xn|n-1 )) is an estimate of e n|n , we have Xn|n = Xn|n-1 + K n z n .

The Invariant Extended Kalman Filter

In this section, we recall the equations of the Invariant Extended Kalman Filter (IEKF) as presented in [START_REF] Barrau | The invariant extended kalman filter as a stable observer[END_REF] on a specific example, that we will broaden in the next section. We do not give any proof of convergence, they can be found in [START_REF] Barrau | The invariant extended kalman filter as a stable observer[END_REF]. We assume here the evolution model of the system is described with equations (4). It is the equations of the movement of a non-holonomous car, which means the car cannot slide. The evolution is here in continuous time. However, the measures are in discrete time [START_REF] Julier | Unscented filtering and nonlinear estimation[END_REF].

d dt θ t = ω t + w θ t , d dt x (1) t = (u t + w x t ) cos(θ t ), d dt x (2) t = (u t + w x t ) sin(θ t ) (4) 
Y n = (x (1) 
tn , x

tn ) T + v n ( (2) 
) 5 
θ t is the direction of the object, (x

(1) t , x (2) 
t ) its cartesian position. In this section, the angular velocity, ω t , and the norm of the velocity of the target, u t are supposed to be known. We shall see later how we can estimate these parameters. The measurement noise v n and the process noises w θ t and w x t are white gaussian noises. In this paper, we will use this model to describe the movement of a maneuvering target in two dimensions.

The main idea of this method is to express the equations in matrix form, as in [START_REF] Bar-Shalom | Tracking a maneuvering target using input estimation versus the interacting multiple model algorithm[END_REF], to use the (left) invariance of the system. To do so, we introduce the state matrix:

χ t =    cos θ t -sin θ t x (1) t sin θ t cos θ t x (2) t 0 0 1    (6) 
   dχt dt = χ t (ν t + w t ) Y n = x tn + v n 1 = χ tn 0 2×1 1 + v n 0 (7) 
with [START_REF] Murray | A mathematical introduction to robotic manipulation[END_REF].

ν t =   ω t u t 0   ∧ =   0 -ω t u t ω t 0 0 0 0 0   and w t =   0 -w θ t w x t w θ t 0 0 0 0 0   . The notation   ω u 1 u 2   ∧ =   0 -ω u 1 ω 0 u 2 0 0 0   , can be found in
The space the state matrix lives in is called a matrix Lie group, namely SE(2), the group of planar isometries. Elements of this group are written G ∈ SE(2) =⇒ G = R(θ) x 0 1,2 1 with R(θ) a rotation matrix in dimension 2. A Lie algebra is associated to each Lie group, it corresponds to the tangent space at the neutral element of the group. Here, the Lie algebra is se(2), and its elements are of the form g ∈ se(2

) =⇒ g =   0 -θ u 1 θ 0 u 2 0 0 0   ,   θ u 1 u 2   ∈ R 3 .
The difference with the EKF is the definition of the error: it is called η, and it is a multiplication with a matricial inversion η t = χ -1 t χt and no longer a difference (which would be χt -χ t ). The computations in [START_REF] Barrau | The invariant extended kalman filter as a stable observer[END_REF] show that the linearized error (ξ t ∈ R 3 , such that η

t ≈ I 3 + ξ ∧ t ) evolution is:          d dt ξ t = -A t ξ t -   w θ t w x t 0   ξ + tn = ξ tn -Kn (0 2,1 , I 2 )ξ t -R( θtn ) T v n (8) if we let A t =   0 0 0 0 0 ω t u t -ω t 0
  , and the gain K n = Kn p with p = (I 2 , 0 2,1 ). K n can be computed with the Riccati equation dPt dt = A t P t + P t A t + Qt , and S n = HP tn H T + Nn ,

K n = P tn H T S -1 , P + tn = (I -L n H)P tn , with H = 0 1 0 0 0 1 , N = R( θtn )Cov(v n )R( θtn ) T and Qt = Cov[(w θ t , w x t , 0) T ].
Note that with isotropic measurement noise, i.e. Cov(v n ) = αI 2 , the gain does not depend on the estimated state, and thus the filter presents some quite strong convergence properties. This is due to the fact that the evolution of the linearized error does not depend on the estimated state. For more information, see [START_REF] Barrau | The invariant extended kalman filter as a stable observer[END_REF].

Angular velocity and norm of the velocity estimation

In the previous section, ω t and u t were supposed to be known. For radar application this is obviously not the case. So we have to estimate these parameters. We include them in the state vector. Here we will not have the same guarantees of convergence as in the previous section, but the filter should still be quite stable since the dependance of the error on the predicted state is reduced to parameters derived from the position (it is only dependent on angular velocity and on the norm of the velocity, but not on the position itself). We keep the same notations as in Section 3. We deal with both linear and nonlinear measurements.

Evolution equations and linearization

We want to estimate ω and u along with the position and the angle. The state vector is now

X t = (θ t , x (1) 
t , x (2) 
t , ω t , u t ) T . The dynamics are as follows: 

d dt χ t = χ t (ν t + w t ), d dt κ t = w ω t w u t (9) if we keep χ t =    cos θ t -sin θ t x ( 
=        cos θ t -sin θ t x (1) t 0 u t sin θ t cos θ t x (2) t ω t 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1        :=     χ t 0 u t ω t 0 0 2×3 I 2     (10) 
Define the state error as ηt = χ-1 t χt . To linearize it, we have decomposed the state into two parts (as in ( 9)): χ t and κ t . The error is also decomposed into two parts: η t = χ -1 t χt and γ t = κt -κ t .

We have the following equation for the evolution of the error η t :

d dt η t = η t νt -ν t η t -w t η t (11) 
To perform the linearisation, let R 

ζ t =      w ω t w u t 0   ∧    ζ t .
A mere analogy with the results of section II shows that the linearized equation writes:

d dt ξ t = -A t ξ t + ζ t 0 -   w θ t w x t 0   (12) 
with A t defined as in [START_REF] Daum | Nonlinear filters: beyond the kalman filter[END_REF]. This gives:

d dt ξt = -Ãt ξt -       w θ t w x t 0 w ω t w v t       (13) 
where

Ãt =       0 0 0 -1 0 0 0 ωt 0 -1 ût -ω t 0 0 0 0 0 0 0 0 0 0 0 0 0       .

Position measurements in cartesian coordinates

In this paragraph, the measures are cartesian:

Y n = (x (1) tn , x (2) 
tn ) T + v n . This gives the measurement matrix Hcart n = 0 1 0 0 0 0 0 1 0 0 . Applying standard Kalman equations to the obtained linearized model yields the following algorithm:

1. Propagation:

d dt θt = ω t , d dt xt = cos θt sin θt u t , d dt ωt = 0, d dt ût = 0 (14) 
d dt P t = Ãt P t + P t Ãt + Qt (15) 
2. Update:

K n = P tn Hcart T n ( Hcart n P tn Hcart T n + N ) -1 (16) 
z n = R( θtn ) T (Y n -xtn ) (17) 
e = K n z n (18) 
R( θ+ tn ) x+ tn 0 1,2 1 = R( θtn ) xtn 0 1,2 1 exp m (e(1 : 3) ∧ ), ω+ tn = ωtn + e(4), û+ tn = ûtn + e(5) (19) 
with exp m the matrix exponential.

Range and bearing measurements

If the measures are expressed in range and bearing, called r and α respectively, the measurement function then becomes nonlinear. Its expression is

Y n = (r n , α n ) = h(x (1) tn , x (2) 
tn ) = (x (1) tn ) 2 + (x (2) tn ) 2 , arctan x (2) tn x (1) tn 
. In order to compute the Kalman gain, Hpol n , the linearization of the function h must be computed. Hpol n should only depend on X =

  θ x (1) x(2) 
  .

Simple computations show that

Y n -Ŷn = Y n -h(x (1) 
tn , x

tn ) = Hpol n ξtn + O || ξ|| 2 (2) 
and

Hpol n = ∇h xR( θ) 0 1 0 0 0 0 0 1 0 0 (21) 
Apart from the definition of the innovation, modified as in ( 22), the update step is the same.

z n = Y n -h( χtn ) (22) 
The equations are the same than the ones in the cartesian case, see equations ( 14) to (19), except that step ( 17) is replaced by ( 22) and Hcart n is replaced by Hpol n .

Tracking application

The aim is to apply the IEKF to target tracking. For the evolution model of the target, we use The trajectory of the target is presented on Fig. 1. The amplitude of the measurement noise is visible on this figure. The results are presented for a measurement noise close to real measurement noises, and thus the measures are in polar coordinates. The angle θ is modulo 2π. On Fig. 2, the results are presented for an EKF with the same model as the one described for the IEKF, and on Fig. 3 the results are presented for the IEKF. The process noises are optimized for this particular trajectory by maximizing the measurement likelihood, as in [START_REF] Abbeel | Discriminative training of kalman filters[END_REF]. Indeed, in the model, ω t and u t are supposed to be constant, so we need to add some sufficiently high process noise to these variables to account for their variations. The RMSE for each parameter are presented on Tab. 1. We did three experiments: two for the IEKF, with hand-tuned process noises or optimized process noises, and one for the EKF with optimized process noises. The optimal noise tuning brings mostly better velocity and angle estimations, we could also optimize the tuning to favor some parameters, depending on the importance of each parameter. For the optimal tuning experiments, we see that the results for the IEKF are better than the results for the EKF, for all parameters. 

Conclusion

We have proposed an evolution model expressed in intrinsic coordinates, along with a filter that can cope with high nonlinearities in these particular evolution equations, this method is thus suitable for highly maneuvering targets. The filter is moreover compatible with realistic measurement noise. This study shows that the IEKF should be more stable than the EKF for other nonlinear systems that can be expressed in the same matricial framework, like targets with high lateral accelerations. The optimization of the noise tuning was done using only one trajectory. One should also compare results with one tuning for a bench of trajectories. To this aim, the tool MYRIAD, developed by Thales Research & Technology has been developed, it is based on Choquet's integral [START_REF] Labreuche | Multi-criteria aggregation for adaptive multifunction radar resource management performances evaluation[END_REF]. This tool is designed to perform multi-criteria decision analysis to balance resources between algorithms, such as tracking algorithms and search patterns algorithms, as in [?]. Future work will also consist in developing further this method and in writing an 
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Figure 1 :

 1 Figure 1: Trajectory followed by the target, with measurement noise

Figure 2 :

 2 Figure 2: Trajectory (top left), θ (top right), ω (bottom left) and u estimated for the EKF

Figure 3 :

 3 Figure 3: Trajectory (top left), θ (top right), ω (bottom left) and u estimated for the optimized noises IEKF

Table 1 :

 1 RMSE for each parameter on 100 Monte-Carlos and on the whole trajectory for a hand-tuned IEKF, an optimized IEKF and an optimized EKF

	1)	36.6	34.2	36.2
	x (1)	23.4	23.9	24.1
	θ (RMSE for 1 -cos θ)	0.0097	0.0090	0.0099
	ω	0.0221	0.0226	0.0226
	u	2.26	1.73	2.71