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Abstract. This paper addresses the drone tracking problem, using a model based
on the Frenet-Serret frame. A kinematic model in 2D, representing intrinsic co-
ordinates of the drone is used. The tracking problem is tackled using two recent
filtering methods. On the one hand, the Invariant Extended Kalman Filter (IEKF),
introduced in [1] is tested, and on the other hand, the second step of the filtering
algorithm, i.e. the update step of the IEKF is replaced by the update step of the
Unscented Kalman Filter (UKF), introduced in [2]. These two filters are com-
pared to the well known Extended Kalman Filter. The estimation precision of all
three algorithms are computed on a real drone tracking problem.
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1 Introduction

Very few works have been done on drone tracking using radars rather than computer
vision technologies such as the use of cameras. In this paper, we will apply algorithms
devoted to more usual targets for radars, such as planes or missiles, to the problem of
drone tracking. Indeed, more and more drones are used, for military applications as well
as for civilian applications, and it is crucial to track them so that they do not interfere
with regular air traffic operations, especially when they are close to an airport. The
challenge is different from that of regular target tracking. The drones are much smaller
and behave differently as aircrafts, they fly slower, which is also a challenge for radars.
The filtering algorithms used for aircrafts thus have to be robustified.

The model chosen in this paper is based on the Frenet-Serret frame in 2D, which
is attached to the drone, and which represents some intrinsic parameters of the motion,
such as the curvature of the trajectory (through the angular velocity of the target). The
use of such intrinsic models has already been addressed in [3] and is applied here to
drone tracking.

There are a large variety of filters designed to perform state estimation, the most
well-known being the Kalman Filter [4], and its most widespread extension to nonlin-
ear models, the Extended Kalman Filter (EKF), presented in [5]. However, the EKF
is unstable when confronted to large initial errors and highly nonlinear evolution or
measurement functions, so we opt here for more evolved filtering techniques, such as
the Invariant Extended Kalman Filter (IEKF) and the Unscented Kalman Filter (UKF).



These filters are much more stable than the EKF, and more appropriate to the model
formulation we have chosen. However, contrary to previous use of Kalman filtering
on Lie groups to perform robot localization, we do not have access to any odometer
measurements, and we have to extend the theory presented in [6], to the case when the
angular and tangential velocities are unknown. Another type of filters used to perform
estimation are the particle filters, as in [7], or the Rao-Blackwell particle filter, see [8],
however, we do not want to use any particles for this study, due to the computational
cost they induce.

This paper is organized as follows. In Section 2 the kinematic model is presented. In
Section 3 we recall the IEKF equations for this model, as described in [9]. In Section 4
we develop the UKF update step and adapt it to fit our IEKF propagation step, the filter
obtained will be called the left-UKF. Finally, in Section 5 we compare the precision of
these two filters, and of the Extended Kalman Filter when applied to some real drone
tracking problems.

2 Kinematic model

A drone is controlled by some commands activated either automatically or by a human
being. It seems thus natural to consider these control commands piecewise constant.
These commands are expressed in a frame attached to the drone, and are called in-
trinsic coordinates. This was already proposed for instance in [3]. Drone positions are
known only in range and bearing coordinates (the radar does not give accurate altitude
measurements for this type of target). We thus need to use a 2D model to derive the
evolution equation of the drone. They are presented in [9] for instance, and they read:

d
dt

θt = ωt +wθ
t ,

d
dt

x(1)t = (ut +wx
t )cos(θt),

d
dt

x(2)t = (ut +wx
t )sin(θt)

d
dt

ωt = 0+wω
t ,

d
dt

ut = 0+wu
t

(1)

where θt is the direction of the drone,
(

x(1)t ,x(2)t

)
is its cartesian position, ωt is the an-

gular velocity and ut is the tangential velocity (also called the norm of the velocity). All
these parameters form the state vector of the drone. wθ

t ,w
x
t ,w

ω
t ,w

u
t are white gaussian

noises. The measurement equation writes:

Yn = (rn,αn)+vn = h(x(1)tn ,x(2)tn )+vn =

(√
(x(1)tn )2 +(x(2)tn )2,arctan

(
x(2)tn

x(1)tn

))
+vn (2)

rn is called the range coordinate and αn the bearing coordinate. vn is a white Gaussian
noise, with covariance N.

We cast the angle θt in a rotation matrix R(θt)=

(
cosθt −sinθt
sinθt cosθt

)
, which enables us

to work on the matrix Lie group SE(2) with the partial state matrix χt and the evolution



matrix νt , as in (3).

χt =

cosθt −sinθt x(1)t

sinθt cosθt x(2)t
0 0 1

 ,νt =

 0 −ωt ut
ωt 0 0
0 0 0

 (3)

The model evolution thus writes in a more compact way:

d
dt

χt = χt(νt +wχ

t ),
d
dt

ωt = 0+wω
t ,

d
dt

ut = 0+wu
t (4)

This kinematic model is used to design two different filters, the Invariant Extended
Kalman Filter, presented in the next Section, and an innovative UKF, called the left-
UKF, explained in Section 4.

3 Invariant Extended Kalman Filter equations

We apply to this model the methodology of the IEKF, as explained in [1] and [10] for
instance. The method for the particular model (1) is also developed in [9].

We call exp the exponential of the Lie group SE(2), so we have exp: se(2)→ SE(2),
with se(2) the Lie algebra of SE(2), for more precision on Lie groups, see [11]. We also
need to define the matrices (5).

At =


0 0 0 1 0
0 0 ω̂t 0 1
ût −ω̂t 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,Hn = ∇hx̂tn R(θ̂tn)

(
0 1 0 0 0
0 0 1 0 0

)
(5)

The IEKF equations are summarized below.

1. Propagation step:

d
dt

θ̂t = ω̂t ,
d
dt

x̂t =

(
cos θ̂t

sin θ̂t

)
ût ,

d
dt

ω̂t = 0,
d
dt

ût = 0

d
dt

Pt = AtPt +PtAt +Qt

(6)

2. Update step:

Kn = PtnHn(HnPtnHT
n +N)−1

zn = R(θ̂tn)
T (Yn− x̂tn)

e = Knzn, let us call e = (e1,e2,e3,e4,e5)
T

χ̂
+
tn = χ̂tn exp(e1,e2,e3), ω̂

+
tn = ω̂tn + e4, û+tn = ûtn + e5

(7)



The strength of the IEKF is that in a perfect theoretical setting, the linearizations
(they intervene in the equations as At for the propagation step and as Hn for the update
step) do not depend on the predicted state (χ̂t , ω̂t , ût). In the previous equations however,
we see that with our model, the matrices At and Hn depend on the predicted state. For
the propagation step, this does not seem too preoccupying, since At only depends on ω̂t
and ût , and not directly on the position. However, for Hn the problem is different, since
it depends on (x̂(1)t , x̂(2)t ), and we have the same approximation and stability problems
as for the EKF. We then need to find another method to avoid computing the Jacobian
of h. The UKF update step seems appropriate for this (see [12]), we present it in the
next section.

4 Left-UKF filter

The Unscented Kalman Filter (UKF), see for instance [2], allows to approximate the
posterior (Gaussian) distribution p(X |Y ) thanks to the use of so-called sigma-points.
This UKF is adapted here as in [6] to suit the model formulation, this adaptation is
called the left-UKF (l-UKF). We combine the prediction step of the IEKF with the
update step of the left-UKF.

Instead of performing a linearization of the nonlinear model, the unscented trans-
form is used to pick a minimal set of sigma points around the mean state. These sigma
points are updated through the nonlinear function h, and a new mean and covariance
are derived from this update.

The idea is to increase the dimension of the state and of its covariance. Let us call
χ̄ the mean of the whole state put in matrix form, that is:

χ̃ =


cos θ̄ −sin θ̄ x̄(1) 0 ū
sin θ̄ cos θ̄ x̄(2) ω̄ 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (8)

Let us define the augmented covariance as Pa
n = diag(Pn,N).

We then construct a set of 2L+1 sigma points (in our model L = 7, it is the dimen-
sion of the augmented state) as in (9), and where λ is a scaling factor.

ᾱ = [0T ,vT ], α
0
n = ᾱ, α

i
n = ᾱ +

(√
(L+λ )Pa

n

)
i
, i = 1, . . . ,L

α
i
n = ᾱ−

(√
(L+λ )Pa

n

)
i
, i = L+1, . . . ,2L

(9)

We denote [ξi,vi] = α i
n, and our state at time n is χ̄ . Then these sigma points go through

the measurement function h:

yi = h(χ̄ expξi)+ vi, i = 0, . . . ,2L

The measure is thus ȳ = ∑
2L
i=0 W i

s yi. The values for the weights W i
s can be found

explicitly in [6].



The state and covariance are then updated as:

Pyy =
2L

∑
i=0

W i
c(yi− ȳ)(yi− ȳ)T , Pαy =

2L

∑
i=0

W i
c(αi− ᾱ)(yi− ȳ)T

[ξ̄ T ,∗]T = PαyP−1
yy (y− ȳ), χ

+ = χ̄ exp(ξ̄ )

P+ = P−Pαy(PαyP−1
yy )T

(10)

The final filter, that we call the l-UKF (left-Unscented Kalman Filter), is composed
of the propagation step of the IEKF (equations (6)) and of the left-UKF update step
(equations (9) to (10)). This does not interfere with the consistency properties of the
IEKF in the optimal setting, but this allows to get around the approximations of the
measurement functions linearization.

5 Application on real drone flights

In this section, we present results obtained on real drone flights. The data come from
GPS measurements. We have thus added noise by hand, with amplitude similar to that
of real radar noise. The drone positions are only known in 2D, so our 2D model is well
suited for these positions. The IEKF and l-UKF algorithms can be adapted to 3D range,
bearing and elevation measurements. The 3D IEKF for the target tracking problem is
for example presented in [13]. In the model (1), the tangential and angular velocities
(u and ω) were supposed constant. However, it is not exactly the case in practice, as
they are only piecewise constant. The process noise tuning thus has to be adapted to the
amplitude of the variations of these parameters.

We have compared the EKF with the IEKF and the l-UKF on three different drone
trajectories. The trajectories are presented on figure 1, without measurement noise for
better readability. The trajectories were obtained with different types of drones: a quad-
copter drone, a hexacopter drone, and a flying wing drone. Position estimations and
RMSE for the EKF, the IEKF and the l-UKF respectively are presented on figures 2, 3
and 4. The results for the IEKF and the l-UKF are more precise than that of the EKF. It
is mostly visible on the RMSE figures.

Fig. 1. Three different drone trajectories

We have computed the Root Mean Squared Errors (RMSE) of each parameter for
each trajectory, with the same initialization for an EKF, an IEKF and a l-UKF. The



process noises used for each filtering algorithm and each trajectory were optimzed by
maximising the measurement likelihood, as in [14]. The same measurement noises are
used for all three trajectories. These RMSE results are presented in table 1. As we
have already seen with the position RMSE plots, the position estimation precision is
better for the IEKF and the l-UKF than for the EKF. But what is more remarquable
is the orientation θ precision. Indeed, it is notably better for the IEKF and the l-UKF
filters. We can also notice that the l-UKF performs overall slightly better than the IEKF,
especially on orientation, angular and tangential velocities. For the radar application,
the orientation precision is very important, indeed, the orientation parameter gives the
direction of the velocity of the target, and this is needed to refresh the beam of the
radar. This estimation is thus of great impact, and it is very valuable to have a precise
orientation estimation.

Algorithm Parameter Trajectory 1 Trajectory 2 Trajectory 3

EKF x(1)(m) 4.6 11 6.0
x(2)(m) 1.9 3.4 2.3

θ (RMSE for 1− cosθ ) 0.45 0.22 0.38
ω(rad/s) 0.34 0.45 0.96
u(m/s) 3.6 3.6 1.7

IEKF x(1)(m) 4.5 7.2 5.3
x(2)(m) 1.9 2.3 2.2

θ (RMSE for 1− cosθ ) 0.34 0.17 0.21
ω(rad/s) 0.30 0.43 0.95
u(m/s) 2.7 3.6 1.4

l-UKF x(1)(m) 4.1 7.6 6.8
x(2)(m) 2.2 2.9 2.8

θ (RMSE for 1− cosθ ) 0.29 0.17 0.23
ω(rad/s) 0.25 0.42 0.95
u(m/s) 2.5 3.2 1.2

Table 1. RMSE for each parameter on 100 Monte Carlo, for each one of the three trajectories,
and for the three algorithms

6 Conclusion

We have considered the drone tracking problem, with 2D range and bearing measure-
ments. Different filters were tested on three different real drone flights. The drones
were of different types, and we see that the model designed is suited to all these types
of drones. We have shown the l-UKF gives overall better results than the IEKF, but most
important, both filters give better results than the EKF for the orientation and velocities
estimations. The issue of noise tuning is very important, and the process noise tuning
wanted depends on the application. Indeed, one can be interested in very precise posi-
tion estimations or on very precise velocity estimation, or on a balance of the two. For



Fig. 2. Estimation and RMSE of the position for the EKF algorithm

Fig. 3. Estimation and RMSE of the position for the IEKF algorithm

Fig. 4. Estimation and RMSE of the position for the l-UKF algorithm



this study, we have optimized the noises on each trajectory for each filter to compare
the filters with equal treatment. A more robust solution for the noise tuning is to use the
Castella method, see [15], which can be used for all kind of filters. This method is used
to adapt the process noise in real time. The position estimation is thus more precise,
however, this is at the cost of a lesser velocity estimation precision.
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