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The Invariant Extended Kalman filter as a stable
observer

Axel Barrau, Silvère Bonnabel ∗

Abstract

We analyze the convergence aspects of the invariant extended Kalman filter (IEKF),
when the latter is used as a deterministic non-linear observer on Lie groups, for continuous-
time systems with discrete observations. One of the main features of invariant observers
for left-invariant systems on Lie groups is that the estimation error is autonomous. In this
paper we first generalize this result by characterizing the (much broader) class of systems
for which this property holds. Then, we leverage the result to prove for those systems
the local stability of the IEKF around any trajectory, under the standard conditions of
the linear case. One mobile robotics example and one inertial navigation example illus-
trate the interest of the approach. Simulations evidence the fact that the EKF is capable
of diverging in some challenging situations, where the IEKF with identical tuning keeps
converging.

1 Introduction
The design of non-linear observers is always a challenge, as except for a few classes of sys-
tems (e.g., [15]), no general method exists. Of course, the grail of non-linear observer design
is to achieve global convergence to zero of the state estimation error, but this is a very am-
bitious property to pursue. As a first step, a general method is to use standard linearization
techniques, such as the extended Kalman filter (EKF) that makes use of Kalman equations to
stabilize the linearized estimation error, and then attempt to derive local convergence proper-
ties around any trajectory. This is yet a rare property to obtain in a non-linear setting (see,
e.g., [1]), due to the fact that the linearized estimation error equation is time varying, and con-
trarily to the linear case it generally depends on the unknown true state we seek to estimate.
The EKF, the most popular observer in the engineering world, provides an “off the shelf” can-
didate observer, potentially able to deal with the time-varying nature of the linearized error
equation, due to its adaptive gain tuning through a Riccati equation. However, the EKF does
not possess any optimality guarantee, and its efficiency is aleatory. Indeed, its main flaw lies
in its very nature: the Kalman gain is computed assuming the estimation error is sufficiently
small to be propagated analytically through a first-order linearization of the dynamics about
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the estimated trajectory. When the estimate is actually far from the true state variable, the
linearization is not valid, and results in an unadapted gain that may amplify the error. In turn,
such positive feedback loop may lead to divergence of the filter. This is the reason why most
of the papers dealing with the stability of the EKF (see [11, 25, 24, 10]) rely on the highly non-
trivial assumption that the eigenvalues of the Kalman covariance matrix Pt computed about
the estimated trajectory are lower and upper bounded by strictly positive scalars. To the au-
thors’ knowledge, only a few papers deal with the stability of the EKF without invoking this
assumption [19]. It is then replaced by second-order properties whose verification can prove
difficult in practical situations. This lack of guarantee is also due to the fact the filter can
diverge indeed in a number of applications. Note that, beyond the general theory, there are not
even that many engineering examples where the EKF is proved to be (locally) stable.

The present paper builds upon the theory of symmetry preserving observers [8, 7] and
notably the theory of invariant Kalman filtering [6, 9, 23, 5] in a purely deterministic context.
As such, it is a contribution to the theory of non-linear observer design on Lie groups that has
lately attracted considerable interest, notably for attitude estimation, see, e.g., [22, 26, 3, 17,
20, 16, 18]. The detailed contributions and organization of the paper are as follows.

In Section 2, we recall the main contribution of [8, 7] is to evidence the fact that for left-
invariant systems on Lie groups, non-linear observers may be designed in such a way that the
left-invariant estimation error obeys an autonomous equation, a key property for observer de-
sign on Lie groups. We show here this property of the error equation can actually be obtained
for a much broader class of systems, and we characterize this class. Very surprisingly, it turns
out that, up to a suitable non-linear change of variables, the error evolution (in the absence of
measurements) obeys a linear differential equation.

In Section 3, we focus on the invariant extended Kalman filter (IEKF) [6] when applied
to the broad class of systems of Section 2. We consider continuous-time models with discrete
observations, which best suits navigation systems where high rate sensors governing the dy-
namics are to be combined with low rate sensors [14]. We change a little the IEKF equations
to cast them into a matrix Lie group framework, more handy to use than the usual abstract
Lie group formulation of [6]. We then prove, that under the standard convergence conditions
of the linear case [13], applied to the linearized model around the true state, the IEKF is an
asymptotic observer around any trajectory of the system, a rare to obtain property. This way,
we produce a generic observer with guaranteed local convergence properties under natural
assumptions, for a broad class of systems on Lie groups, whereas this property has so far only
been reserved to specific examples on Lie groups. This also allows putting on firm theoretical
ground the good behavior of the IEKF in practice, as already noticed in a few papers, see e.g.,
[3, 5, 2].

In Section 4 we consider a mobile robotics example, where a unicycle robot (or simplified
car) tries to estimate its position and orientation from GPS position (only) measurements, or
alternatively landmarks range and bearing measurements. On this example of engineering
interest, the IEKF is proved to converge around any trajectory using the results of the paper,
which is a contribution in itself. Simulations indicate the IEKF is always superior to the EKF
and may even outperform the latter in challenging situations.

In Section 5 we consider the highly relevant problem of an unmanned aerial vehicle
(UAV) navigating with accelerometers and gyrometers, and range and bearing measurements



of known landmarks. Although the system is not invariant in the sense of [8, 7], it is proved
to fit into our framework so that the autonomous error equation property of [7] holds, a fact
never noticed before to our best knowledge (except in our preliminary conference paper [4]).
The IEKF is shown to converge around any trajectory using the results of the paper, which
is a contribution in itself. Moreover, it is shown to outperform the EKF which even diverges
when, as in high precision navigation, the user has way more trust in the inertial sensors than
in the landmark measurements.

The main contributions can be summarized as follows:

• The class of systems, for which the key result of [7] about the (state) error equation
autonomy holds, is completely characterized, and actually shown to be much broader
than left-invariant systems.

• The autonomy of the error equation is proved to come with a very intriguing property:
a well-chosen non-linear function of the non-linear error is proved to obey a linear
differential equation.

• In turn, this property allows proving that, for the introduced class of systems, the IEKF
used in a deterministic context possesses powerful local convergence guarantees that
the standard EKF lacks.

• Two examples of navigation illustrate the applicability of the results, and simulations
indicate indeed the IEKF is always superior to the EKF, and may turn out to literally
outperform the latter when confronted with some challenging situations - the EKF being
even capable to diverge.

2 A special class of multiplicative systems

2.1 An introductory example
Consider a linear (deterministic) system d

dt xt = Atxt . Consider two trajectories of this system,
say, a reference trajectory (x̄t)t≥0 and another one (xt)t≥0. The discrepancy between both
trajectories ∆xt := xt − x̄t satisfies the linear equation d

dt ∆xt = At∆xt . This is a key property
for the design of linear convergent observers, as during the propagation step, the evolution of
the error between the true state and the estimate does not depend on the true state’s trajectory.

Consider now the following non-linear standard model of the two-dimensional non-holonomic
car. Its state is defined by three parameters : heading θt and position Xt = (x1

t ,x
2
t ). The veloc-

ity ut ∈ R is given by an odometer, the angular velocity ωt ∈ R is measured by a differential
odometer or a gyrometer. The equations read (see, e.g., [12]):

d
dt

θt = ωt ,
d
dt

x1
t = cos(θt)ut ,

d
dt

x2
t = sin(θt)ut .

Now consider a reference trajectory (θ̄t , X̄t) and a second trajectory (θt ,Xt) with different
initial conditions but same inputs. The exact propagation of the “error” (∆θt ,∆Xt) = (θt− θ̄t ,



Xt− X̄t), satisfies:
d
dt

∆θt = 0,

d
dt

∆x1
t =

[
cos(θt)− cos(θ̄t)

]
ut ,

d
dt

∆x2
t =

[
sin(θt)− sin(θ̄t)

]
ut ,

(1)

where we let ∆Xt = (∆x1
t ,∆x2

t ). We see the time derivative of (∆θt ,∆Xt) is not a function of
(∆θt ,∆Xt) only: it also involves θ̄t and θt individually. Moreover, the equation is non-linear.
These features, characteristic of non-linear systems, make the design of observers way more
complicated in the non-linear case. Now, let us introduce the following non-linear error, where
R(θ) = cos(θ)I2+ sin(θ)J2 denotes the planar rotation matrix of angle θ (see definition of J2
below):

ξt :=
(

(θt− θ̄t)
1
2

(
θt− θ̄t

)[
a(θt− θ̄t)I2− J2

]
R(−θ̄t)(Xt− X̄t)

)
,

with J2 =

(
0 −1
1 0

)
and a(s) =

sin(s)
1− cos(s)

,

(2)

which is equal to 0 indeed if and only if both trajectories coincide. We are about to prove by
elementary means a surprising property that will be generalized by Theorem 2.

Proposition 1. Contrarily to the linear error obeying (1), the alternative non-linear error (2)
obeys the following linear and autonomous equation although the system, and the error, are
totally non-linear:

d
dt

ξt =

 0 0 0
0 0 ωt
−ut −ωt 0

ξt . (3)

Proof. We will use the notations δxt =
1
2

(
θt− θ̄t

)[
a(θt− θ̄t)I2− J2

]
R(−θ̄t)(Xt − X̄t). Since

we have d
dt δθt = 0 as in the linear case above, only the two last terms of δxt change over

time. Moreover, J2 commutes with I2, J2 and R(−θ̄t) and d
dt R(−θ̄t) = −J2ωtR(−θ̄t). Thus

we have:

d
dt

δxt =−J2ωtδxt

+
1
2

δθt [a(δθt)I2− J2]R(−θ̄t)
[
R(θt)−R(θ̄t)

]
(ut ,0)T

=− J2ωtδxt

+
1
2

δθt [a(δθt)I2− J2] [(cos(δθt)−1)I2 + sin(δθt)J2] (ut ,0)T

=− J2ωtδxt +δθtJ2(ut ,0)T

=− (ωtJ2)δxt +δθt(0,−ut)
T .

In the second to last equality we used the relation sin(s)2

1−cos(s) = 1 + cos(s). Equation (3) is
proved.



The present section provides a novel geometrical framework - encompassing this example
- to characterize systems on Lie groups for which such a property holds. In turn, such a
property will simplify the convergence analysis of non-linear observers, namely the IEKF,
due to the implied similarities with the linear case.

2.2 Systems on Lie groups with state trajectory independent error prop-
agation property

Let G⊂RN×N be a matrix Lie group whose Lie algebra is denoted g and has dimension dim g.
We consider a class of dynamical systems:

d
dt

χt = fut (χt), (4)

where the state χt lives in the Lie group G and ut is an input variable. Consider two distinct
trajectories χt and χ̄t of (4). Define the left-invariant and right-invariant errors ηL

t and ηR
t

between the two trajectories as:

η
L
t = χ

−1
t χ̄t (left invariant), (5)

η
R
t = χ̄t χ

−1
t (right invariant). (6)

The terminology stems from the invariance of e.g., (5) to (left) multiplications (χ, χ̄) →
(Γχ,Γχ̄) for Γ ∈ G.

Definition 1. The left-invariant and right-invariant errors are said to have a state-trajectory
independent propagation if they satisfy a differential equation of the form d

dt ηt = gut (ηt).

Note that, in general the time derivative of ηt is a complicated function depending on ut
and both χt and χ̄t in a way that does not boil down to a function of ηt , see for instance eq
(1) above. The following result allows characterizing the class of systems of the form (4) for
which the property holds.

Theorem 1. The three following conditions are equivalent for the dynamics (4):

i The left-invariant error (5) is state trajectory independent

ii The right-invariant error (6) is state trajectory independent

iii For all t > 0 and a,b ∈ G we have (in the tangent space at ab):

fut (ab) = fut (a)b+a fut (b)−a fut (Id)b, (7)

where Id denotes the identity matrix. Moreover, if one of these conditions is satisfied we have

d
dt

η
L
t = gL

ut
(ηL

t ) where gL
ut
(η) = fut (η)− fut (Id)η , (8)

d
dt

η
R
t = gR

ut
(ηR

t ) where gR
ut
(η) = fut (η)−η fut (Id). (9)



Proof. Assume we have d
dt ηL

t = gut (η
L
t ) for a certain function gut and any ηL

t = χ
−1
t χ̄t , where

χt and χ̄t are solutions of (4). We have:

gut (χ
−1
t χ̄t) =

d
dt
(χ−1

t χ̄t) =−χ
−1
t [

d
dt

χt ]χ
−1
t χ̄t +χ

−1
t

d
dt

χ̄t

=−χ
−1
t fut (χt)η

L
t +χ

−1
t fut (χ̄t),

i.e. gut (η
L
t ) =−χ

−1
t fut (χt)η

L
t +χ

−1
t fut (χtη

L
t ). (10)

This has to hold for any χt and ηL
t . In the particular case where χt = Id we obtain:

gut (η
L
t ) = fut (η

L
t )− fut (Id)η

L
t . (11)

Reinjecting (11) in (10) we obtain:

fut (χtη
L
t ) = fut (χt)η

L
t +χt fut (η

L
t )−χt fut (Id)η

L
t .

The converse is trivial and the proof is analogous for right-invariant errors.

Remark 1. The particular cases of left-invariant and right-invariant dynamics, or the combi-
nation of both as follows, verify (7). Let fvt ,ωt (χ) = vt χ +χωt . We have indeed:

fvt ,ωt (a)b+a fvt ,ωt (b)−a fvt ,ωt (Id)b
= (vta+aωt)b+a(vtb+bωt)−a(vt +ωt)b
= vtab+abωt = fvt ,ωt (ab).

Remark 2. In the particular case where G is a vector space with standard addition as the
group composition law, the condition (7) boils down to fut (a+ b) = fut (a)+ fut (b)− fut (0)
and we recover the affine functions. We thus see the class of system introduced here appears
as a generalization of the linear case.

In the next section we show that the dynamics of the form (4) with additional property (7)
have striking properties generalizing those of linear systems.

2.3 Log-linear property of the error propagation
In the sequel, we will systematically consider systems of the form (4) with the additional
property (7), i.e. systems on Lie groups defined by

d
dt

χt = fut (χt),

where ∀(u,a,b) fu(ab) = a fu(b)+ fu(a)b−a fu(Id)b.
(12)

For such systems, Theorem 1 proves that the left (resp. right) invariant error is a solution
to the equation d

dt ηt = gut (ηt) where gut is given by (8) (resp. (9)). We have the following
novel and striking property.



Theorem 2. [Log-linear property of the error] Consider the left or right invariant error η i
t as

defined by (5) or (6) between two arbitrarily far trajectories of (12), the superscript i denoting
indifferently L or R. Let Lg and exp(.) be defined as in Appendix A. Let ξ i

0 ∈ Rdim g be such
that initially exp(ξ i

0) = η i
0. Let Ai

ut
be defined by gut (exp(ξ )) = Lg(Ai

ut
ξ )+O(‖ξ‖2). If ξ i

t is
defined for t > 0 by the linear differential equation in Rdim g

d
dt

ξ
i
t = Ai

tξ
i
t , (13)

then, we have for the true non-linear error η i
t , the correspondence at all times and for arbi-

trarily large errors
∀t ≥ 0 η

i
t = exp(ξ i

t ).

The latter result, whose proof has been moved to the Appendix, shows that a wide range of
nonlinear problems (see examples below) can lead to linear error equations provided the error
variable is correctly chosen. We also see the results displayed in the previous introductory
example of Section 2.1 are mere applications of the latter theorem, as the non-holonomic car
example turns out to perfectly fit into our framework (see Section 4) and ξt in eq (2) actually
merely is the Lie logarithm of the left-invariant error. This will be extensively used in Section
3, and in the examples to prove stability properties of IEKFs.

3 Invariant Extended Kalman Filtering
In this section we first recap the equations of the Invariant EKF (IEKF), a variant of the EKF
devoted to Lie groups space states, that has been introduced in continuous time in [6, 9]. We
derive the equations in continuous time with discrete observations here, which has already
been done in a restricted setting in [5], and we propose a novel matrix (Lie group) framework
to simplify the design. We then show that for the class of systems introduced in Section 2,
under observability conditions, and painless conditions on the covariance matrices consid-
ered here as design parameters, the IEKF is a (deterministic) non-linear observer with local
convergence properties around any trajectory, a feature extremely rare to obtain in the field
of non-linear observers, due to the dependency of the estimation error to the true unknown
trajectory. The notions necessary to follow Section 3 are given in Appendix A.

3.1 Full system and IEKF general structure
We consider in this section an equation on a matrix Lie group G⊂ RN×N of the form:

d
dt

χt = fut (χt), (14)

with fu(ab) = a fu(b)+ fu(a)b− a fu(Id)b for all (u,a,b) ∈U ×G×G. This system will be
associated to two different kinds of observations.



3.1.1 Left-invariant observations

The first family of outputs we are interested in write:

Y 1
tn = χtnd1 , ... , Y k

tn = χtndk, (15)

where (di)i≤k are known vectors. The Left-Invariant Extended Kalman Filter (LIEKF) is
defined in this setting through the following propagation and update steps:

d
dt

χ̂t = fut (χ̂t), tn−1 ≤ t < tn, Propagation (16)

χ̂
+
tn = χ̂tn exp

Ln

χ̂
−1
tn Y 1

tn −d1

...

χ̂
−1
tn Y k

tn−dk

 , Update (17)

where the function Ln : RkN → Rdimg is to be defined in the sequel using error linearizations.
A left-invariant error between true state χt and estimated state χ̂t can be associated to this
filter:

η
L
t = χ

−1
t χ̂t . (18)

During the Propagation step, χt and χ̂t are two trajectories of the system (14). Thus, the error
(18) is independent from the true state trajectory from Theorem 1 and eq. (8) ! We have thus

d
dt

η
L
t = gL

ut
(ηL

t ), tn−1 ≤ t < tn. (19)

Consider now the following linear differential equation in Rdim g:

d
dt

ξt = Aut ξt , (20)

where Aut is defined by gL
ut
(exp(ξ )) = Lg(Aut ξ )+O(‖ξt‖2). Theorem 2 implies the unex-

pected result:

Proposition 2. If ξt is defined as a solution to the linear system (20) and ηt is defined as the
solution to the nonlinear error system (19), then if at time tn−1 we have ηtn−1 = exp(ξtn−1)
then the equality ηt = exp(ξt) = expm (Lg(ξt)) is verified at all times tn−1 ≤ t < tn, even for
arbitrarily large initial errors.

Besides, at the update step, the evolution of the invariant error variable (18) merely writes:

(ηL
tn)

+ = χ
−1
tn χ̂

+
tn = η

L
tn exp

Ln

(ηL
tn)
−1d1−d1

...
(ηL

tn)
−1dk−dk

 . (21)

We see that the nice geometrical structure of the LIEKF allows the updated error (ηL
tn)

+ to be
here again only a function of the error just before update ηL

tn , i.e. to be independent from the
true state χtn .



3.1.2 Right-invariant observations

The second family of observations we are interested in have the form:

Y 1
tn = χ

−1
tn d1 , ... , Y k

tn = χ
−1
tn dk, (22)

with the same notations as in the previous section. The Right-Invariant EKF (RIEKF) is
defined here as:

d
dt

χ̂t = fut (χ̂t), (23)

χ̂
+
tn = exp

Ln

χ̂tnY
1

tn −d1

...
χ̂tnY

k
tn−dk

 χ̂tn. (24)

A right-invariant error can be associated to this filter:

η
R
t = χ̂t χ

−1
t . (25)

Once again, Theorem 1 proves the evolution of the error does not depend on the state of the
system. The analog of Proposition 2 is thus easily derived for the error (25) and we skip it due
to space limitations.

At the update step, the evolution of the invariant error variable reads:

(ηR
tn)

+ = χ̂
+
t χ
−1
t = exp

Ln

ηR
tn d1−d1

...
ηR

tn dk−dk

η
R
tn ,

so that the error update does not depend on the true state either.

3.2 IEKF gain tuning
In the standard theory of Kalman filtering, EKFs are designed for “noisy” systems associated
with the deterministic considered system. In a deterministic context, the covariance matrices
Q and N of the noises are left free to tune by the user, and are design parameters for the EKF
used as a non-linear observer. Yet, in the spirit of [25], it is nevertheless convenient to asso-
ciate a “noisy” system with the considered deterministic system consisting of dynamics (14)
with outputs (15) or (22). The obtained error equations can be linearized, and the standard
Kalman equations applied to make this error decrease. This way, the matrices Q and N can
be interpreted as covariance matrices. And in many engineering applications, the character-
istics of the noises of the sensors are approximately known, so that the engineer can use the
corresponding covariance matrices as a useful guide to tune (or design) the non-linear ob-
server, that is here the IEKF. This provides him with (at least) a first sensible tuning of the
parameter matrices, which is consistent with the trust he has in each sensor. Moreover, in the
same spirit, the IEKF viewed as a non-linear observer remedies a common weakness shared
by numerous non-linear observers on Lie groups, as it conveys an information about its own
accuracy through the computed covariance matrix Pt . Although it comes with no rigorous



interpretation in a deterministic context, the information conveyed by Pt may prove useful in
applications.

Note that, in mobile robotics and navigation, the sensors are attached to the earth-fixed
frame (e.g., a GPS) or to the body frame (e.g., a gyrometer). To interpret them as covariance
matrices in the IEKF framework (see below) those matrices Q and N may have to undergo
a change of frame yielding trajectory dependent tuning matrices Q̂ and N̂, such as in the
application examples in the sequel. This does not weaken the results, but however comes at
the price of making the stability analysis a little more complicated.

3.2.1 Associated “noisy” system

To tune the IEKF (16)-(17) or (23)-(24), we associate to the system (14) the following “noisy”
system:

d
dt

χt = fut (χt)+χtwt , (26)

where wt is a continuous white noise belonging to g whose covariance matrix is denoted by
Qt (for a proper discussion on multiplicative noise for systems defined on Lie groups, see e.g.
[5]).

In the same way, we associate to the family of left-invariant observations (15) the following
family of “noisy” outputs:

Y 1
tn = χtn

(
d1 +B1

n
)
+V 1

n , ... , Y k
tn = χtn

(
dk +Bk

n

)
+V k

n , (27)

where the (V i
n)i≤k, (Bi

n)i≤k are noises with known characteristics. To the family of right-
invariant observations (22) we associate the following family of “noisy” outputs

Y 1
tn = χ

−1
tn

(
d1 +V 1

n
)
+B1

n , ... , Y k
tn = χ

−1
tn

(
dk +V k

n

)
+Bk

n. (28)

3.2.2 Linearized “noisy” estimation error equation

As in a conventional EKF, we assume the error to be small (here close to Id as it is equal to Id
if χ̂t = χt) so that the error system can be linearized to compute the gains Ln. By definition,
the Lie algebra g represents the infinitesimal variations around Id of an element of G. Thus
the natural way to define a vector error variable ξt in Rdim g is (see Appendix A):

ηt = exp(ξt) = expm (Lg(ξt)) . (29)

During the Propagation step, that is for tn−1 ≤ t < tn, elementary computations based on
the results of Theorem 1 show that for the noisy model (26) we have

d
dt

η
L
t = gL

ut

(
η

L
t
)
−wtη

L
t ,

d
dt

η
R
t = gR

ut

(
η

R
t
)
−
(
χ̂twt χ̂

−1
t
)

η
R
t .

(30)



Defining ŵt ∈ Rdimg by Lg(ŵt) = −wt in the first case and Lg(ŵt) = −χ̂twt χ̂
−1
t (i.e. ŵt =

−Adχ̂t L
−1
g (wt)) in the second case, and using the superscript i to denote indifferently L or R

we end up with the linearized error equation in Rdimg:

d
dt

ξt = Ai
ut

ξt + ŵt , (31)

where Ai
ut

is defined by gi
ut
(exp(ξ )) = Lg(Ai

ut
ξ )+O(‖ξt‖2) and where we have neglected

terms of order O(‖ξt‖2) as well as terms of order O(‖ŵt‖‖ξt‖). The latter approximation,
as well as the fact that ŵt can be considered as white noise, are approximations that would
require a proper justification in a stochastic setting. However, they are part of the standard
EKF methodology, see e.g., [21] and justifying them is not the object of the present paper.
Besides, the emphasis is put here on deterministic properties of the observer.

Regarding the output, we consider for instance the case of left-invariant observations, and
define ξtn through the exponential mapping (29), i.e. exp(ξtn) = ηL

tn . Moreover, for 1≤ i≤ k
let V̂ i

n denote χ̂
−1
tn V i

n. The error update (21), when the LIEKF update (17) is fed with the
“noisy” measurements (27) becomes(

η
L
tn

)+
= χ

−1
tn χ̂

+
tn

= η
L
tn exp

Ln


(
ηL

tn

)−1 d1−d1 +V̂ 1
n +

(
ηL

tn

)−1 B1
n

...(
ηL

tn

)−1 dk−dk +V̂ k
n +

(
ηL

tn

)−1 Bk
n


 . (32)

To linearize it we proceed as follows. For 1≤ i≤ k we have

(ηtn)
−1di−di +V̂ i

n +(ηL
tn)
−1Bi

n

= expm(Lg(ξtn))
−1 (di +Bi

n
)
−di +V̂ i

n

=
(
Id−Lg (ξ )tn

)(
di +Bi

n
)
−di +V̂ i

n +O‖ξtn‖2

=−Lg(ξ )tndi +V̂ i
n +Bi

n +O
(
‖ξtn‖2)+O

(
‖ξtn‖‖Bi

n‖
)
,

using a simple Taylor expansion of the matrix exponential map. Expanding similarly equation
(32) yields

Id +Lg(ξ
+
tn ) = Id +Lg

Ln

−Lg(ξtn)d
1 +V̂ 1

n +B1
n

...
−Lg(ξtn)d

k +V̂ k
n +Bk

n

+T. (33)

with T terms of order O
(
‖ξtn‖2)+O(‖ξtn‖‖Bn‖). Neglecting them we finally get the follow-

ing linearized error equation in Rdim g

ξ
+
tn = ξtn +Ln

(
Hξtn +V̂n +Bn

)
, (34)

where H ∈ RkN×dimg, V̂n ∈ RkN and Bn ∈ RkN are defined by

Hξ =

−Lg(ξ )d1

...
−Lg(ξ )dk

 , V̂n =

V̂ 1
n
...
V̂ k

n

 , Bn =

B1
n

...
Bk

n

 .



Now, let Q̂t reflect the trusted covariance of the modified process noise ŵt , and N̂n the trusted
covariance of the modified measurement noise V̂n +Bn. Note that, equations (31) and (34)
mimick those of a Kalman filter designed for the following auxiliary linear system with dis-
crete measurements: d

dt xt = Aut xt + ŵt , yn = Hxtn +V̂n+Bn. The standard Kalman theory thus
suggests to compute Ln through the Riccati equation

d
dt

Pt = Aut Pt +PtAT
ut
+ Q̂t , P+

tn = (I−LnH)Ptn,

with Sn = HPtnHT + N̂n, Ln = PtnHT S−1.
(35)

3.3 Summary of IEFK equations
In a deterministic context, the IEKF equations can be compactly recapped as follows

d
dt

χ̂t = fut (χ̂t), tn−1 ≤ t < tn,

χ̂
+
tn = χ̂tn exp

Ln

χ̂
−1
tn Y 1

tn −d1

...

χ̂
−1
tn Y k

tn−dk

 , (LIEKF),

or χ̂
+
tn = exp

Ln

χ̂tnY
1

tn −d1

...
χ̂tnY

k
tn−dk

 χ̂tn, (RIEKF)

(36)

where the LIEKF (resp. RIEKF) is to be used in the case of left (resp. right) invariant outputs.
The gain Ln is obtained in each case through the following Riccati equation

d
dt

Pt = Aut Pt +PtAT
ut
+ Q̂t ,

Sn = HPtnHT + N̂n, Ln = PtnHT S−1, P+
tn = (I−LnH)Ptn.

(37)

As concerns the LIEKF, Aut is defined by gL
ut
(exp(ξ )) = Lg(Aut ξ )+O(‖ξ‖2), and H ∈

RkN×dimg is defined by Hξ =
(
−
(
Lg(ξ )d1)T

, ...,−
(
Lg(ξ )dk)T

)T
. The design matrix pa-

rameters Q̂t , N̂n,V̂n,Bn are freely assigned by the user. When sensor noise characteristics are
known, they can provide the user with a first sensible tuning of those matrices by considering
the associated “noisy” system (26)-(27) of Section 3.2. In this case, the matrices can be inter-
preted in the following way: Q̂t ∈Rdim g×dim g denotes the covariance of the modified process
noise ŵt = −L −1

g (wt) and N̂n the covariance matrix of the noise V̂n +Bn, V̂n and Bn being
defined as: V̂n = (χ̂−1

tn V 1
n , ..., χ̂

−1
tn V k

n )
T , Bn = (B1

n, ...,B
k
n)

T .
As concerns the RIEKF implementation, Aut is defined by gR

ut
(exp(ξ )) = Lg(Aut ξ ) +

O(‖ξ‖2), and H ∈ RkN×dimg by Hξ =
((

Lg(ξ )d1)T
, ...,

(
Lg(ξ )dk)T

)T
. The design matrix

parameters Q̂t , N̂n,V̂n,Bn are freely assigned by the user. Considering the associated “noisy”
system (26)-(28) of Section 3.2 they can be interpreted as follows. Q̂t denotes the covariance
of the modified process noise ŵt =−Adχ̂t L

−1
g (wt) and N̂n the covariance matrix of the noise

Vn + B̂n, Vn and B̂n being defined as: Vn =
(
V 1

n , ...,V
k
n
)T , B̂n =

(
χ̂tnB1

n, ..., χ̂tnBk
n
)T .



3.4 Stability properties
The aim of the present section is to study the stability properties of the IEKF as a determin-
istic observer for the system (14)-(15), or alternatively (14)-(22). We are about to prove the
IEKF has guaranteed (local) stability properties, that rely on the error equation properties the
EKF does not possess. The stability of an observer is defined as its ability to recover from a
perturbation or an erroneous initialization:

Definition 2. Let (x0, t0, t)→ X t
t0(x0) denote a continuous flow on a space X endowed with

a distance d. A flow (z, t0, t)→ X̂ t
t0(z) is an asymptotically stable observer of X about the

trajectory
(
X t

t0(x)
)

t≥t0
if there exists ε > 0 such that:

d (x, x̃)< ε ⇒ d
(
X t

t0(x), X̂
t
t0(x̃)

)
→ 0 when t→+∞.

Theorem 4 below is the main result of the paper . It is a consequence of Theorem 2
of Section 2. J. J. Deyst and C. F. Price have shown in [13] the following theorem, stating
sufficient conditions for the Kalman filter to be a stable observer for linear (time-varying)
deterministic systems.

Theorem 3 (Deyst and Price, 1968). Consider the linear system d
dt xt = Atxt , ytn = Hxtn with

xt ∈ Rp and let Φt
t0 denote the square matrix defined by Φ

t0
t0 = Ip,

d
dt Φt

t0 = AtΦ
t
t0 . If there exist

α1,α2,β1,β2,δ1,δ2,δ3,M such that:

i (Φ
tn+1
tn )T Φ

tn+1
tn � δ1Ip � 0,

ii ∃q ∈ N∗,∀s > 0,∃Gs ∈ Rp×q,Qs = GsQ′GT
s where Q′ � δ2Iq � 0,

iii Nn � δ3I � 0,

iv α1Ip ≤
∫ tn

s=tn−M

(
Φ

tn
s
)

Qs
(
Φ

tn
s
)T ≤ α2Ip,

v β1Ip ≤ ∑
n−1
i=n−M

(
Φ

tn
ti+1

)T HT N−1
n H

(
Φ

tn
ti+1

)
≤ β2Ip.

Then the linear Kalman filter tuned with covariance matrices Q and N is an asymptotically
stable observer for the Euclidean distance. More precisely there exist γmin,γmax > 0 such that
γminI � PtI � γmaxI for all t and (x̂t− xt)

T P−1
t (x̂t− xt) has exponential decay.

The main theorem of the present paper is the extension of this linear result to the non-linear
case when the Invariant Extended Kalman Filter is used for systems of Section 2.

Theorem 4. Consider the system (14)-(15) (respectively (14)-(22)). Suppose the stability
conditions of the linear Kalman filter given in Theorem 3 are verified about the true system’s
trajectory χt (i.e. are verified for the linear system obtained by linearizing the system (14) with
left (resp. right) invariant output about χt). Then the Left (resp. Right) Invariant Extended
Kalman Filter estimate χ̂t defined at eq. (36) is an asymptotically stable observer of χt in
the sense of Definition 2. Moreover, the convergence radius ε > 0 is valid over the whole
trajectory (i.e. is independent of the initialization time t0).



Proof. The full proof is technical and has been moved to Appendix C. The rationale is to
compare the evolution of the logarithmic error ξt defined as ηt = exp(ξt), with its linearization.
For the general EKF, the control of second and higher order terms in the error equation is
difficult because: 1- they depend on the inputs ut 2- they depend on the linearization point χ̂t
3- the estimation error impacts the gain matrices. For the IEKF, the main difficulties vanish
as during the propagation step the IEKF is built for the logarithmic error ξt whose evolution
d
dt ξt = Aut ξt is in fact exact (no higher order terms) due to Theorem 2. At the update step,
due to the specific form of the IEKF update, second order terms can be uniformly bounded
over n. And finally, due to the error equation of the IEKF, the Riccati equation depends on the
estimate only through the matrices Q̂t and N̂t which affect stability in a minor way, as shown
by Theorem 3.

The result displayed in Theorem 4 is in sharp contrast with the usual results available, that
make the highly non-trivial assumption that the linearized system around the estimated tra-
jectory is well-behaved [11, 25, 24, 10]. But this fact is almost impossible to predict as when
the estimate is (even slightly) away from the true state, the Kalman gain becomes erroneous,
which can in turn amplify the discrepancy between estimate and true state so that there is no
reason the assumption should keep holding. On the other hand, when considering an actual
system undergoing a realistic physical motion (see the examples below), if sufficiently many
sensors are available, one can generally assert in advance the linearized system around the
true trajectory possesses all the desired properties. The following consequence proves useful
in practice.

Theorem 5. Assume the system linearized around the true trajectory has the following prop-
erties : the propagation matrix At is constant, there exist matrices B,D such that Q̂ = BQ̄BT

and N̂ = DN̄DT with Q̄ and N̄ upper- and lower-bounded, with (A,H,B,D) detectable and
reachable. Then the conditions of Theorem 4 are satisfied and the IEKF is asymptotically
stable.

4 Simplified car example
The computations require only basic knowledge about matrix Lie groups as recalled in Ap-
pendix A.

4.1 Considered model
Consider a (non-holonomic) car evolving on the 2D plane. Its heading is denoted by an angle
θt ∈ [−π,π] and its position by a vector xt ∈ R2. They follow the classical equations (see,
e.g., [12]):

d
dt

θt = utvt ,
d
dt

x1
t = cos(θt)vt ,

d
dt

x2
t = sin(θt)vt , (38)



where vt is the velocity measured by an odometer and ut (a function of) the steering angle.
Two kinds of observations are considered:

Ȳn = xtn (39)

or Ȳ k
n = R(θtn)

T (xtn− pk), k ∈ [1,K] (40)

where R(θ) is a planar rotation of angle θ . Equation (39) represents a position measurement
(GPS for instance) whereas (40) represents a range-and-bearing observation of a sequence of
known features located at pk ∈ R2 for k ∈ [1,K].

4.2 IEKF gain tuning
To derive and tune the IEKF equations, we follow the methodology of Section 3.2 which
amounts to 1- associate a “noisy ”system to the original considered system, just because it
allows obtaining a sensible tuning of the design matrices from an engineering viewpoint, 2-
transform it into a system defined on a matrix Lie group to make it fit into our framework, 3-
linearize the “noisy” equations, and 4- use the Kalman equations to tune the observer gain.

4.2.1 Associated “noisy” system

Taking into account the possible noise in the measurements we get

d
dt

θt = utvt +wθ
t ,

d
dt

x1
t = cos(θt)(vt +wl

t)− sin(θt)wtr
t ,

d
dt

x2
t = sin(θt)(vt +wl

t)+ cos(θt)wtr
t ,

(41)

with wθ
t the differential odometry error, wl

t the longitudinal odometry error and wtr
t the transver-

sal shift. By letting noise enter the measurement equations we get the following two kinds of
measurements:

Ȳn = xtn +Vn (42)

or Ȳ k
n = R(θtn)

T (xtn− pk)+V̄ k
n , k ∈ [1,K]. (43)

4.2.2 Matrix form

This system can be embedded in the matrix Lie group SE(2) (see Appendix A.1) using the
matrices:

χt =

cos(θt) −sin(θt) x1
t

sin(θt) cos(θt) x2
t

0 0 1

 ,

νt =

 0 −utvt vt
utvt 0 0

0 0 0

 , wt =

 0 −wθ
t wl

t
wθ

t 0 wtr
t

0 0 0

.



The equation (41) governing the “noisy” system evolution writes:

d
dt

χt = χt(νt +wt), (44)

and the observations (42) and (43) respectively have the equivalent form:

Yn =

(
xtn +Vn

1

)
= χtn

(
02×1

1

)
+

(
Vn
0

)
, (45)

Y k
n =

(
R(θ̂tn)

T (xtn− pk)
1

)
+

(
V̄ k

n
0

)
=−χ

−1
tn

(
pk
1

)
+

(
V̄ k

n
0

)
. (46)

The reader can verify relation (7) letting fνt (χt) = χtνt .

4.2.3 IEKF equations for the left-invariant output (39)

The LIEKF equations (36) for the associated “noisy” system (44), (45) write:

d
dt

χ̂t = χ̂tνt , χ̂
+
tn = χ̂tn exp

(
Ln

[
χ̂
−1
tn Yn−

(
02×1

1

)])
.

As the bottom element of
[

χ̂
−1
tn Yn−

(
02×1

1

)]
is always zero we can conveniently use a

reduced-dimension gain matrix L̃n defined by Ln = L̃n p̃ with p̃ = (I2,02,1). To compute the
gains, we write the left-invariant error ηt = χ

−1
t χ̂t whose evolution is:

d
dt

ηt = ηtνt−νtηt−wtηt ,

η
+
tn = ηtn exp

(
L̃n p̃

[
η
−1
tn

(
02×1

1

)
−
(

02×1
1

)
+ χ̂

−1
tn

(
Vn
0

)])
.

(47)

To linearize this equation we introduce the linearized error ξt defined replacing ηt with I3 +
Lse(2)(ξt). Introducing the first-order approximations ηt = I3+Lse(2)(ξt), η

+
t = I3+Lse(2)(ξ

+
t ),

exp(u) = I3 +Lse(2)(u) and η
−1
t = I3−Lse(2)(ξt) in (47) and removing the second-order

terms in ξt , Vn and wt we obtain:

d
dt

ξt =−

 0 0 0
0 0 −utvt
−vt utvt 0

ξt−

wθ
t

wl
t

wtr
t


and ξ

+
tn = ξtn− L̃n

[
(02,1, I2)ξt−R

(
θ̂tn
)T

Vn

]
.

The gains L̃n are thus finally computed using the Riccati equation (37) with:

At =−

 0 0 0
0 0 −utvt
−vt utvt 0

 , H = (02,1, I2),

Q̂t =Cov[(wθ
t ,w

l
t ,w

tr
t )

T ], N̂ = R
(
θ̂tn
)

Cov(Vn)R
(
θ̂tn
)T

.



4.2.4 IEKF equations for the right-invariant output (43)

The RIEKF equations (36) for the associated “noisy” system (44), (46) write:

d
dt

χ̂t = χ̂tνt , χ̂
+
tn = exp

(
Ln

[
χ̂tnY

1
n +

(
p1
1

)
; ...; χ̂tnY

K
n +

(
pK
1

)])
χ̂tn .

As the bottom element of
[

χ̂
−1
tn Y k

n +

(
pk
1

)]
is always zero we can conveniently use a reduced-

dimension gain matrix L̃n defined by Ln = L̃n p̃ with p̃ =

[I2,02,1]
. . .

[I2,02,1]

. To com-

pute the gains L̃n we derive the evolution of the right-invariant error variable ηt = χ̂t χ
−1
t

between the estimate and the state of the associated “noisy” system:

d
dt

ηt =−(χ̂twt χ̂
−1
t )ηt ,

η
+
tn = exp

L̃n p̃


−ηtn

(
p1
1

)
+

(
p1
1

)
+ χ̂tn

(
V 1

n
0

)
...

−ηtn

(
pK
1

)
+

(
pK
1

)
+ χ̂tn

(
V K

n
0

)

ηtn.

(48)

To linearize this equation we introduce the linearized error ξt defined as ηt = I3 +Lse(2)(ξt).
Introducing ηt = I3 +Lse(2)(ξt), η

+
t = I3 +Lse(2)(ξ

+
t ), exp(u) = I3 +Lse(2)(u) and η

−1
t =

I3−Lse(2)(ξt) in (48) and removing the second-order terms in ξt , Vn and wt we obtain:

d
dt

ξt =−

 1 01,2
x̂2

t
−x̂1

t
R(θ̂t)

wθ
t

wl
t

wtr
t

 ,

ξ
+
tn = ξtn− L̃n



(
−(p1)2 1 0
(p1)1 0 1

)
...(

−(pK)2 1 0
(pK)1 0 1

)
ξtn−

R(θ̂tn)V
1
n

...

R(θ̂tn)V
K
n


 .

The gains are thus computed using the Riccati equation (37) with At ,H, Q̂ and N̂ defined as:

At = 03,3, Hn =


(
−(p1)2 1 0
(p1)1 0 1

)
...(

−(pK)2 1 0
(pK)1 0 1

)
 ,

Q̂t =

 1 01,2
x̂2

t
−x̂1

t
R(θ̂t)

Cov

wθ
t

wl
t

wtr
t

 1 01,2
x̂2

t
−x̂1

t
R(θ̂t)

T

,



N̂n =

R(θ̂tn)Cov(N1)R(θ̂tn)
T 0

. . .
0 R(θ̂tn)Cov(NK)R(θ̂tn)

T

 .

4.3 Stability properties of the IEKF viewed as a non-linear observer for
the simplified car

4.3.1 Stability of the IEKF for the left-invariant output (39)

Proposition 3. If there exists vmax,vmin > 0 such that the displacement satisfies ‖xtn+1−xtn‖≥
vmin > 0 and the input velocity satisfies ut ≤ vmax then the LIEKF derived at Section 4.2.4 is
an asymptotically stable observer in the sense of Definition 2 about any trajectory.

The proof is a verification of the hypotheses of Theorem 4 and has been moved to Ap-
pendix D. Note that it seems very difficult to improve on the assumptions: if the car is at the
same place each time its position is measured, the heading θt becomes unobservable, and in
practice an arbitrary high velocity is unfeasible.

4.3.2 Stability of the IEKF for the right-invariant output (40)

Proposition 4. If at least two distinct points are observed then the IEKF is an asymptotically
stable observer in the sense of Definition 2 about any bounded trajectory.

Proof. According to Theorem 5 it is sufficient to show that in this case the observation matrix
H is full-rank, i.e. of rank 3. This is obvious as the position and the heading are easily
computed from the observation of two vectors at known locations.

4.4 Simulations
The IEKF described in Section 4.2 has been implemented and compared to a classical EKF
for the experimental setting described by Figure 1. The car drives along a 10-meter diameter
circle for 40 seconds with high rate odometer measurements (100 Hz) and low rate GPS
measurements (1 Hz).

The equations of the IEKF can be found above. The conventional EKF is based on the

linear error et =

θt− θ̂t
x1

t − x̂1
t

x2
t − x̂2

t

 yielding the linearized matrices Ft =

 0 0 0
−sin(θ̂t)vt 0 0
cos(θ̂t)vt 0 0

 and

Hn =

(
0 1 0
0 0 1

)
. Both filters are tuned with the same design parameters (which can be inter-

preted as odometer and GPS noise covariances) N = I2, and Q = diag((π/180)2,10−4,10−4)
i.e. moderate angular velocity uncertainty and highly precise linear velocity. The simulation
is performed for two initial values of the heading error: 1◦ and 45◦ while the initial position
is always assumed known. The covariance matrix P0 is consistent with the initial error (it
encodes a standard deviation of the heading of 1◦ and 45◦ respectively).

The results are displayed on Figure 1. We see that for small initial errors both filters
behave similarly for a long time, but for larger errors they soon behave differently, and we see



the IEKF, whose design has been adapted to the specific structure of the system, completely
outperforms the EKF.

5 Navigation on flat earth
In this example we estimate the orientation, velocity, and position of a rigid body in space
from inertial sensors and relative observations of points having known locations (the setting
of [26] but with the state including the position). To our knowledge, this is the first time the
invariant observer on Lie groups based approach is applied to this full navigation problem
with landmarks, except for our preliminary conference paper [4]. Indeed, this example does
not fit into the usual framework leading to autonomous errors (unless we discard the position
estimate as in [26]) but thanks to Theorem 1 we see it still leads to an autonomous error
equation. This allows the IEKF observer to possess provable convergence properties. Note the
problem at hand is different from the navigation problems using magnetometers, and velocity
and position measurements of the GPS [17, 16].

Of course, the EKF, to be more precise its appropriate variant the multiplicative (M)EKF
[21], is the state of the (industrial) art for this navigation example, due to its good perfor-
mances, and easy tuning based on sensors’ noise covariances. But to our best knowledge it is
nowhere proved to possess stability properties as a non-linear observer, and simulations below
even indicate it may diverge in some situations whereas the IEKF converges. The computa-
tions require basic formulas recalled in Appendix A.

5.1 Considered model
We consider here the more complicated model of a vehicle evolving in the 3D space and
characterized by its attitude Rt , velocity vt and position xt . The vehicle is endowed with
accelerometers and gyroscopes whose measures are denoted respectively by ut and angular
velocity ωt . The dynamics read:

d
dt

Rt = Rt(ωt)× ,
d
dt

vt = g+Rtut ,
d
dt

xt = vt , (49)

where (ω)× denotes the 3×3 skew-symmetric matrix associated with the cross product with
ω , that is, for any b ∈ R3 we have (ω)×b = ω × b. Observations of the relative position of
known features (using for instance a depth camera) are considered:

(Y 1
n , ...,Y

k
n ) =

(
RT

tn(p1− xtn), ...,R
T
tn(pk− xtn)

)
, (50)

where (p1, ..., pk) denote the (assumed known) position of the features in the earth-fixed
frame.

5.2 IEKF gain tuning
To derive and tune the IEKF equations, we follow the methodology of Section 3.2 which
amounts to 1- associate a “noisy ”system to the original considered system, just because it



allows obtaining a sensible tuning of the design matrices from an engineering viewpoint, 2-
transform it into a system defined on a matrix Lie group to make it fit into our framework, 3-
linearize the “noisy” equations, and 4- use the Kalman equations to tune the observer gain.

5.2.1 Associated “noisy” system

By merely introducing noise in the accelerometers’ and gyrometers’ measurements we obtain
the well-known equations [14]:

d
dt

Rt = Rt(ωt +wω
t )×,

d
dt

vt = g+Rt(ut +wu
t ),

d
dt

xt = vt . (51)

Letting additive noise pollute the observations (the sensor being in the body frame) we get:

(Y 1
n , ...,Y

k
n ) =

(
RT

tn(p1− xtn)+V 1
n , ...,R

T
tn(pk− xtn)+V k

n

)
, (52)

where Vn, V 1
n , ...,V

k
n are noises in R3.

5.2.2 Matrix form

As already noticed in the preliminary work [4], the system (51) can be embedded in the group
of double homogeneous matrices (see Appendix A.2) using the matrices χt , wt and function
fω,u:

χt =

 Rt vt xt
03,1 1 0
03,1 0 1

 , wt =

(wω
t )× wu

t 03,1
01,3 0 0
01,3 0 0

 ,

fω,u :

 R v x
03,1 1 0
03,1 0 1

→
R(ω)× g+Ru v

03,1 0 0
03,1 0 0

 .

The equation of the dynamics becomes:

d
dt

χt = fωt ,ut (χt)+χtwt , (53)

and the observations (52) have the equivalent forms:

(Y 1
n , ...,Y

k
n ) =

χ
−1
tn

p1
0
1

+

V 1
n
0
0

 , ...,χ−1
tn

pk
0
1

+

V k
n
0
0

 . (54)

Proposition 5. The matricial function fωt ,ut is neither left nor right invariant. However the
reader can verify relation (7) which is easy to derive.



5.2.3 IEKF equations

The RIEKF (36) for the associated “noisy” system (53), with right-invariant “noisy” observa-
tions (54) reads:

d
dt

χ̂t = fωt ,ut (χ̂t) , χ̂
+
t = exp

Ln

χ̂tY 1
n

...
χ̂tY k

n

 χ̂t .

As the two last entries of each matrix χ̂
−1
t Y j

n are always zero, one we can conveniently use a

reduced-dimension gain matrix L̃n defined by Ln = L̃n p̃ with p̃ =

[I3,03,2]
. . .

[I3,03,2]

.

The right-invariant error is ηt = χ̂t χ
−1
t and its evolution reads:

d
dt

ηt = fωt ,ut (ηt)−ηt fωt ,ut (I5)− (χ̂twt χ̂
−1)ηt , (55)

η
+
tn = exp


L̃n p̃


ηtn

p1
0
1

+ χ̂tn

(
V 1

n
02,1

)
...

ηtn

pk
0
1

+ χ̂tn

(
V k

n
02,1

)




ηtn . (56)

To linearize this equation we introduce the linearized error ξt by replacing ηt with I3 +
Lse(3),2(ξt). Using the first order approximations ηt = I3+Lse(3),2(ξt), η

+
t = I3+Lse(3),2(ξ

+
t ),

exp(u) = I3 +Lse(3),2(u) and η
−1
t = I3−Lse(3),2(ξt) in (55), (56) and removing the second-

order terms in ξt , Vn and wt we obtain:

d
dt

ξt =

 03,3 03,3 03,3
(g)× 03,3 03,3
03,3 I3 03,3

ξt−

 R̂t 03,3 03,3
(v̂t)×R̂t R̂t 03,3
(x̂t)×R̂t 03,3 R̂t

wt ,

ξ
+
tn = ξtn− L̃n

(p1)× 03,3 −I3
...

(pk)× 03,3 −I3

ξtn−

R̂tnV
1
n

...
R̂tnV

k
n

 .
The gains L̃n are computed using the Riccati equation (37) and matrices At ,H, Q̂ and N̂ defined
as:

At =

 03,3 03,3 03,3
(g)× 03,3 03,3
03,3 I3 03,3

 , H =

(p1)× 03,3 −I3
...

(pk)× 03,3 −I3

 ,

Q̂ =

 R̂t 03,3 03,3
(v̂t)×R̂t R̂t 03,3
(x̂t)×R̂t 03,3 R̂t

Cov(wt)

 R̂t 03,3 03,3
(v̂t)×R̂t R̂t 03,3
(x̂t)×R̂t 03,3 R̂t

T

,



N̂ =

R̂tnCov(V 1
n )R̂

T
tn

. . .
R̂tnCov(V k

n )R̂
T
tn

 .

5.3 Stability properties of the IEKF viewed as a non-linear observer for
the navigation example

Theorem 6. If three non-collinear points are observed, then the IEKF whose equations are
derived in Section 5.2.3 is an asymptotically stable observer for the system (49)-(50) in the
sense of Definition 2 about any bounded trajectory.

Proof. According to Theorem 5 we only have to ensure the couple (A,H) is observable. Inte-
grating the propagation on one step we obtain the discrete propagation matrix

Φ =

 I3 03×3 03×3
t(g)× I3 03×3

1
2t2(g)× tId3×3 I3

 .

The observation matrix is denoted H. We will show that [H;HΦ] has rank 9. We can keep only
the raws corresponding to the observation of three non-collinear features p1, p2, p3 and denote
the remaining matrix by H1. Matrices H2 and H3, obtained using elementary operations on
the columns of H1, have a rank inferior or equal to the rank of H1:

H1 =



(p1)× 03×3 −I3
(p2)× 03×3 −I3
(p3)× 03×3 −I3

(p1)×− 1
2t2(g)× −tI3 −I3

(p2)×− 1
2t2(g)× −tI3 −I3

(p3)×− 1
2t2(g)× −tI3 −I3

 , H2 =



(p1)× 03×3 −I3
(p2)× 03×3 −I3
(p3)× 03×3 −I3
−1

2t2(g)× −tI3 03×3
−1

2t2(g)× −tI3 03×3
−1

2t2(g)× −tI3 03×3

 ,

H3 =


(p1− p3)× 03×3 03×3
(p2− p3)× 03×3 03×3

1
2t2(g)× tI3 03×3
(p3)× 03×3 −I3

 .

The diagonal blocks
(
−(p1− p3)× 03×3
−(p2− p3)× 03×3

)
, tI3 and I3 have rank 3 thus the full matrix has

rank 9.

5.4 Simulations
The IEKF described in Section 5.2.3 has been implemented and compared to a state of the art
multiplicative EKF [21] for the experimental setting described by Figure 2 (top plots). The
vehicle drives a 10-meter diameter circle (green arrows) in 30 seconds and observes three
features (black circles) every second while receiving high-frequency inertial measurements
(100 Hz). The equations of the IEKF have already been detailed. The error variable to be



linearized for the multiplicative (M)EKF is et = (R̂tR−1
t , v̂t − vt , x̂t − xt). As R̂tR−1

t is not a
vector variable, it is linearized using the first-order expansion R̂tR−1

t = I3+(ζt)× ,ζt ∈R3 [21].
The linearized error variable is thus a vector εt = (ζ ,dx,dv)∈R9. Expanding the propagation
and observation steps up to the first order in εt give the classical Ft and Hn matrices used in
the Riccati Equation of the MEKF:

Ft =

 03 03 03
−
(
R̂tut

)
× 03 03

03 I3 03

 ,

Hn =

−R̂T
tn

(
p1− x̂tn

)
× 03 R̂T

tn
. . .

−R̂T
tn

(
pk− x̂tn

)
× 03 R̂T

tn

 .

We use the following design parameters in two distinct simulations, with same N but two
different matrices Q.

N =

10−2I3 03 03
03 10−2I3 03
03 03 10−2I3

 ,

Q1 =

10−8I3 03 03
03 10−8I3 03
03 03 03

 , Q2 =

10−4I3 03 03
03 10−4I3 03
03 03 03

 .

The initial errors are the same for both simulations: 15 degrees for attitude and 1 meter for
position standard deviations. The small “process noise” matrix Q1, although reasonable in the
context of high-precision inertial navigation, has been deliberately chosen to challenge EKF-
like methods: the corresponding gains are small so the errors introduced during the transitory
phase due to non-linearities in the initial errors can never be corrected. Note this would not
be an issue if the system was linear: the estimation errors and filter gains would decrease
simultaneously. The problem is that the error does not decrease as fast as predicted by the
linear Kalman theory. As shown by the plots of the left column of Figure 2 (top plots) it
makes the EKF even diverge! This is probably the simplest way to make the EKF fail in a
navigation problem and this is purely a problem of non-linearity as no noise has been added
whatsoever. Still on the left column, we see the IEKF is not affected by the problem, due to
its appropriate non-linear structure. In particular, the attitude and position errors go to zero in
accordance with Theorem 6.

Usually, engineers get around those convergence problems by artificially inflating the
“process noise” matrix Q (see also [24]). This classical solution, sometimes referred to as
robust tuning, is illustrated here by using Q2 instead. The results are displayed on the right
column of Fig. 2. They illustrate the fact the EKF, as an observer, can be improved through
a proper tuning, although still much slower to converge that the IEKF. But this raises issues:
Q and N have been chosen for a specific trajectory with no guarantee regarding robustness.
Moreover, these matrices admit a physical interpretation (the accuracy of the sensors) and ar-
bitrarily changing them by several orders of magnitude is a renouncement to use this precious
information when available. In turn, this makes the matrix Pt loose its interpretability as an
indication of the observer’s accuracy in response to the sensors’ trusted accuracy. For this



relevant problem, we thus see the IEKF turns out to be a viable alternative to the EKF thanks
to its guaranteed properties, and to its convincing experimental behavior reflecting way better
performances than the EKF, even for challenging choices of Q and N.

6 Conclusion
The Invariant EKF, when used as a deterministic observer for an introduced and well charac-
terized class of problems on Lie groups, is shown to possess theoretical stability guarantees
under the simple and natural hypotheses of the linear case, a feature the EKF has never been
proved to share so far. Simulations confirm the IEKF is an appealing alternative indeed, as it
is always superior to the EKF and outperforms it in challenging situations, while remaining
similar to EKF in terms of tuning, implementation, and computational load.

A Matrix Lie groups useful formulas
A matrix Lie group G is a set of square invertible matrices of size N×N verifying the follow-
ing properties:

Id ∈ G, ∀g ∈ G,g−1 ∈ G, ∀a,b ∈ G,ab ∈ G

If γ(t) is a process taking values in G and verifying γ(0) = Id, then its derivative at t = 0
cannot take any value in the set of squared matrices MN(R). It is constrained to lie in a vector
subspace g of MN(R) called the “Lie algebra of G”. As it proves useful to identify g to Rdimg,
a linear mapping Lg : Rdimg→ g is used in this paper. The vector space g can be mapped to
the matrix Lie group G through the classical matrix exponential expm. As well, Rdimg can be
mapped to G through a function exp defined by exp(ξ ) = expm(Lg(ξ )). For any g ∈ G the
operator Adg : Rdimg→ Rdimg is defined by gLg(ξ )g−1 = Lg(Adgξ ). For any x ∈ Rdimg the
operator Adx : Rdimg→Rdimg is defined by Lg(x)Lg(ξ )−Lg(ξ )Lg(x) =Lg(Adxξ ). These
operators are very handy in practical computations. For all matrix Lie groups considered in
this paper, no matrix exponentiation is actually needed as there exist closed formulas, given
thereafter. We give now a short description of the matrix Lie groups appearing in the present
paper.

A.1 Group of direct planar isometries SE(2)

We have here G = SE(2) and g= se(2), where

SE(2) =
{(

R(θ) x
01,2 1

)
,

(
θ

x

)
∈ R3

}
,

se(2) =


0 −θ u1

θ 0 u2
0 0 0

 ,

θ

u1
u2

 ∈ R3

 ,

Lse(2)

θ

u1
u2

=

0 −θ u1
θ 0 u2
0 0 0

 ,



where R(θ) =
(

cos(θ) −sin(θ)
sin(θ) cos(θ)

)
denotes the rotation of angle θ , and the exponential map-

ping is:

exp
(
(θ ,u1,u2)

T)= (R(θ) x
01,2 1

)
,

where

x =

(
sin(θ)

θ
−1−cos(θ)

θ
1−cos(θ)

θ

sin(θ)
θ

)
.

A.2 Group of double direct spatial isometries SE2(3)

We have here:

G = SE2(3) =


 R v x

01,3 1 0
01,3 0 1

 ,R ∈ SO(3),v,x ∈ R3

 ,

g= se2(3) =


(ξ )× u y

01,3 0 0
01,3 0 0

 ,ξ ,u,y ∈ R3

 .

An isomorphism between R9 and se2(3) is given by Lse2(3)

ξ

u
y

=

(ξ )× u y
01,3 0 0
01,3 0 0

. The

exponential mapping is given by the formula:

exp
((

ξ
T ,uT ,yT)T

)
= I5 +S+

1− cos(||ξ ||)
||ξ ||2

)S2 +
||ξ ||− sin(||ξ ||)

||ξ ||3
S3,

where S = Lse2(3)(ξ ,u,y)
T .

B Further explanation and proof of the log-linear property
The definition of At through gut (exp(ξ )) = Lg(Aut ξ )+O(‖ξt‖2) is very convenient in prac-
tice as shown in Sections 4 and 5, but it requires a quick theoretical explanation as fol-
lows. On an abstract Lie group, vector gut (exp(ξ )) belongs to Texp(ξ )G (tangent space
at exp(ξ )) whereas the image of Lg is g = TIdG. But as gut (Id) = 0 it is true that the
first order terms of gut (exp(ξ )) belong to g ⊂ RN×N . Indeed as exp(ξ )−1 g(exp(ξ )) ∈ g
we have g(exp(ξ )) = expm(Lg(ξ ))Lg(ω(ξ )) for some function ω with ω(0) = 0. Thus
g(exp(ξ )) = (Id +Lg(ξ ))Lg(ω(ξ ))+O(‖ξ‖2) = Lg(ω(ξ ))+O(‖ξ‖2).

The proof of Theorem 2 is based upon the following lemmas.



Lemma 1. Consider the system (12) and let χ̄t denote a particular solution. Consider the
condition

∀(u,a,b) ∈ G gu(ab) = agu(b)+gu(a)b (57)

We have the following properties:

• The function gR
u (η) = fut (η)−η fut (Id) verifies (57) and all the solutions of (12) have

the form χt = ηR
t χ̄t , where ηR

t verifies d
dt ηR

t = gR
ut
(ηR

t ).

• The function gL
ut
(η) = fut (η)− fut (Id)η verifies (57) and all the solutions of (12) have

the form χt = χ̄tη
L
t , where ηL

t verifies d
dt ηL

t = gL
ut
(ηL

t ).

The verification of these two properties is trivial. The functions gut governing the errors
propagation turn out to possess an intriguing property.

Lemma 2. Let Φt be the flow (that is the solution at time t associated to a given initial
condition) associated to the system d

dt ηt = gut (ηt), where gut verifies (57). Then:

∀η0,η
′
0 ∈ G,Φt(η0η

′
0) = Φt(η0)Φt(η

′
0)

Proof. We simply have to see that Φt(η0)Φt(η
′
0) is solution of the system d

dt ηt = gut (ηt):

d
dt
[Φt(η0)Φt(η

′
0)] = gut (Φt(η0))Φt(η

′
0)+Φt(η0)gut (Φt(η

′
0))

= gut

(
Φt(η0)Φt(η

′
0)
)

An immediate recursion gives then:

Lemma 3. We have furthermore

∀η0 ∈ G,∀p ∈ Z,Φt(η
p
0 ) = Φt(η0)

p

Lemmas 2 and 3 indicate the behavior of the flow infinitely close to Id dictates its behavior
arbitrarily far from it, as the flow commutes with exponentiation. The use of the exponential
thus allows deriving an infinitesimal version of the Lemma 3, which is an equivalent formu-
lation of Theorem 2.

Theorem 7. Let Φt be the flow associated to the system d
dt ηt = gut (ηt) satisfying (57). We

have:
Φt(exp(ξ0)) = exp(Ftξ0)

where Ft is the solution of the matrix equation F0 = Id, d
dt Ft = AtFt .

Proof. Thanks to Lemma 3 we have, for any n∈N, Φt

(
eξ0

)
= Φt

([
e

1
n ξ0
]n)

= Φt

(
e

1
n ξ0
)n

=[
e

1
n Ftξ0+rt( 1

n ξ0)
]n

, where Ft = D
(
exp−1 ◦Φt ◦ exp

)∣∣
0 and rt

(1
nξ0
)

is a quadratic term, which

ensures in turn Φt

(
eξ0

)
= eFtξ0+nrt( 1

n ξ0). Letting n→∞ we get Φt

(
eξ0

)
= eFtξ0 . Differentiat-

ing both sides of the latter equality we obtain gut

(
Φt

(
eξ

0

))
=DexpFtξ0

[ d
dt Ftξ0

]
. A first-order

expansion in ξ0 using matrix At gives: Lg (AtFtξ0)+◦(||ξ0||) =Lg

( d
dt Ftξ0

)
+◦(||ξ0||), then

AtFtξ0 =
d
dt Ftξ0 for any ξ0 ∈ Rdimg and finally At =

d
dt Ft .



C Proof of theorem 4

C.1 Proof rationale
We define the rest rn, here for the left-invariant filter only, as follows: exp [(I−LnH)ξn− rn(ξ )]
= exp [ξ ]exp [−LnH(exp[ξ ]b−b)]. We then introduce the flow Ψt

t0 of the linear part of the
equations governing ξt (that is, Ψ

t0
t0 = Id, d

dt Ψt
t0 = Aut Ψ

t
t0 , Ψ

t+
t0 = (I−LnH)Ψt

t0) and de-
compose the solution ξt as:

∀t ≥ 0, ξt = Ψ
t
t0ξ0 + ∑

tn<t
Ψ

t
tnrn(ξtn) (58)

All we have to verify is that the appearance of the second-order terms rn(ξtn) at each update
is compensated by the exponential decay of Ψt

t0 (Theorem 3).

C.2 Review of existing linear results
Consider a linear time-varying Kalman filter and let Ψt

t0 denote the flow of the error variable
ξs. It is proved in [13] that if the parameters of the Riccati equation verify conditions (i) -
(v) then there exist γmax > 0 and γmin > 0 such that γmaxI � Pt � γminI. This pivotal property
allows proving the solution of the linear error equation Ψt

sξs verifies for V (P,ξ ) = ξ T P−1ξ :

V
(

P+
tn+N

,Ψ
tn+N
tn (ξ+

tn )
)
≤V (P+

tn ,ξ
+
tn )−β3||Ψtn+N

tn (ξ+
tn )||

2 (59)

where β3 only depends on α1,α2,β1,β2,δ1,δ2,δ3,N. Of course, the proof given in [13] holds
if the inequalities are only verified on an interval [0,T ]. We will also use the direct conse-
quence:

V
(

P+
tn+1

,Ψ
tn+1
tn (ξ+

tn )
)
<V

(
P+

tn ,ξ
+
tn

)
(60)

C.3 Preliminary lemmas
The proof of Theorem 4 is displayed in the next subsection. It relies on the final Lemma
7, which is proved step by step in this section through lemmas 4, 5 and 6. The time interval
between two successive observations will be denoted ∆t. P̃t will denote the Kalman covariance
about the true state trajectory.

Lemma 4. [modified constants for closeby trajectories] If the conditions (i) to (v) are satisfied
about the true trajectory, then for any k > 1 there exists a radius ε such that the bound ∀s ∈
[0, t], ||ξt0+s||< ε ensures the conditions (i) to (v) are also verified on [t0, t0 + t] about the es-
timated trajectory, with the modified constants δ̂1 = δ1, δ̂2 =

1
k2 δ2, δ̂3 =

1
k2 δ3, α̂1 =

1
k2 α1, α̂2 =

k2α2, β̂1 =
1
k2 β1, β̂2 = k2β2. Moreover, if 1

k P̃t0 ≤ Pt0 ≤ kP̃t0 then 1
k P̃t0+s ≤ Pt0+s ≤ kP̃t0+s holds

on [0, t].

Proof. We consider the LIEKF, the proof works the same way for the RIEKF. Matrices Q̂t
and N̂n depend on the estimate χ̂t , this is why this lemma is needed. So we replace them by
their values: Q̂t =Cov(wt) if the noise term has the form χtwt , Q̂t = Ad

χ̂
−1
t

Cov(wt)AdT
χ̂
−1
t

if



the noise term has the form wt χt , and N̂n = χ̂
−1
tn Cov(Vn) χ̂

−T
tn +Cov(Bn). All these situations

are covered if we assume there exist four (possibly time-dependent) matrices Q1, Q2, N1 and
N2 such that Q̂t = Q1 +Ad

χ̂
−1
t

Q2AdT
χ̂
−1
t

and N̂n = N1 + χ̂
−1
tn N2χ̂

−T
tn . These notations will be

used in the sequel but they hold only for this proof: they are not related to matrices Q1 and Q2
defined in the simulations sections. The Riccati equation computed about the true trajectory
reads:

d
dt

P̃t = At P̃t + P̃tAT
t +Q1 +Adχt Q2AdT

χt
,

P̃+
tn = P̃tn− P̃tnHT (HP̃tnHT +N1 +χ

−1
tn N2χ

−T
tn

)−1
HP̃tn.

The Riccati equation computed on the estimated trajectory is obtained replacing χt with χ̂t .
Recalling the error ηt and the properties of the Ad, the idea of the proof is simply to rewrite
the Riccati equation computed about χ̂t as a perturbation of the Riccati equation computed
about χt :

d
dt

Pt = AtPt +PtAT
t +Q1 +Ad

η
−1
t

[
Ad

χ
−1
t

Q2AdT
χ
−1
t

]
AdT

η
−1
t
,

P+
tn = Ptn−PtnHT (HPtnHT +N1 +η

−1
tn

[
χ
−1
tn N2χ

−T
tn

]
η
−T
tn

)−1
HPtn.

Controlling the perturbation is easy: matrix-valued functions ξ → e−ξ and ξ → Ade−ξ are
continuous and equal to Id for ξ = 0, thus there exists a real ε > 0 depending only on k such

that ||ξt0+s|| ≤ ε ensures 1
k N2�

(
e−ξt0+s

)
N2

(
e−ξt0+s

)T
� kN2 and 1

k Q2�Ad
e−ξt0+s Q2AdT

e−ξt0+s
�

kQ2. It ensures consequently

1
k

(
Q1 +Ad

χ
−1
t0+s

Q2AdT
χ
−1
t0+s

)
� Q1 +Ad

χ̂
−1
t0+s

Q2AdT
χ̂
−1
t0+s
� k
(

Q1 +Ad
χ
−1
t0+s

Q2AdT
χ
−1
t0+s

)
and

1
k

(
N1 +χ

−1
t0+sN2χ

−T
t0+s
)
� N1 + χ̂

−1
t0+sN2χ̂

−T
t0+s � k

(
N1 +χ

−1
t0+sN2χ

−T
t0+s
)
,

and a mere look at the definitions of the constants of Theorem 3 yields the modified constants.
The inequality 1

k P̃t0+s ≤ Pt0+s ≤ kP̃t0+s follows from the matrix inequalities above on the
covariance matrices, by writing the Riccati equation verified by kPt and 1

k Pt and using simple
matrix inequalities.

Lemma 5. [first-order control of growth] Under the same conditions as in Lemma 4 (including
1
k P̃t0 ≤ Pt0 ≤ kP̃t0) and ||ξt0+s|| bounded by the same ε for s ∈ [0,2M∆T ] (i.e. over 2M time
steps, where M is defined as in Theorem 3), there exists a continuous function l1 depending
only on k ensuring ||ξt0+s|| ≤ l1(||ξt0 ||) for any s ∈ [0,2M∆T ] and l1(x) = O(x).

Proof. Using Lemma 4 and then Theorem 3 we know there exist two constants γmin > 0
and γmax > 0 such that γmaxI � Pt � γminI. The non-linear rest rtn(ξ ) introduced in (58) is
defined by exp(ξ )exp(Ln(eξ b−b−Hξ )) = exp((I−LnH)ξ + rtn(ξ )). The Baker-Campbell-
Hausdorff (BCH) formula gives rtn(ξ ) = O(||ξ ||.||Lnξ ||) but Ln is uniformly bounded over



time by γmax||H||
δ3

as an operator. Thus ||rn|| is uniformly dominated over time by a second
order: there exists a continuous function l̃k (depending only on k and on the true trajectory)
such that l̃k(x) = O(x2) and ||rtn(ξ )|| ≤ l̃k(||ξ ||) for any n such that tn ≤ 2M∆T .

Now we can control the evolution of the error using l̃k. The propagation step is linear, thus
we have the classical result d

dtVt(ξt)< 0. It ensures ||ξt0+s||<
√

γmax
γmin
||ξt0|| as long as there is

no update on [t0, t0+s]. At each update step we have V+
tn (ξ

+
tn )

1/2 =V+
tn ([I−LnH]ξtn + rn (ξtn))

1/2

≤ V+
tn ([I−LnH]ξtn)

1/2 +V+
tn (rn(ξtn))

1/2 ≤ Vtn (ξtn)
1/2 +V+

tn (rn(ξtn))
1/2 using the triangular

inequality. Thus: ||ξ+
tn || ≤

√
γmax
γmin

(||ξtn||+ ||rn(ξtn)||) ≤
√

γmax
γmin

(
||ξtn||+ l̃k(||ξtn||)

)
. Reiter-

ating over successive propagations and updates over [0,2M∆T ], we see ||ξt0+s|| is uniformly
bounded by a function l1(||ξt0||) that is first order in ||ξt0||.

Lemma 6. [second-order control of the Lyapunov function] Under the same conditions as
in Lemma 4 (including 1

k P̃t0 ≤ Pt0 ≤ kP̃t0) and for ||ξt0+s|| bounded by the same ε for s ∈
[0,2M∆T ] (2M time steps, see Theorem 3 for the definition of M), there exists a continu-
ous function l2 depending only on k ensuring Vt0+s (ξt0+s) ≤ Vt0+s(Ψ

t0+s
t0 ξt0) + l2(||ξt0||) ≤

Vt0(ξt0)+l2(||ξt0||) for any s∈ [0,2M∆t] with l2(x)=O(x2). We also have Vtn
(
ξ
+
tn

)
≤V+

tn ((Ψ
tn
t0)

+ξt0)+
l2(||ξt0||)≤Vt0(ξt0)+ l2(||ξt0||) for t0 ≤ tn ≤ t0 +2M∆T .

Proof. The result stems from the decomposition (58) as:

Vt0+s(ξt0+s)
1/2 =Vt0+s

(
Ψ

t0+s
t0 ξt0 + ∑

t0<tn<t0+s
Ψ

t0+s
tn rn(ξtn)

)1/2

≤Vt0+s

(
Ψ

t0+s
t0 ξt0+s

)1/2
+ ∑

t0<tn<t0+s
Vt0+s

(
Ψ

t0+s
tn rn(ξtn)

)1/2

(triangular inequality)

≤Vt0+s

(
Ψ

t0+s
t0 ξt0+s

)1/2
+ ∑

t0<tn<t0+s
Vtn (rn(ξtn))

1/2 (using (60))

≤Vt0+s

(
Ψ

t0+s
t0 ξt0+s

)1/2
+ ∑

t0<tn<t0+s

√
γmax

γmin
||rn(ξtn)||1/2

(from the def. of V )

≤Vt0+s

(
Ψ

t0+s
t0 ξt0+s

)1/2
+ ∑

t0<tn<t0+s

√
γmax

γmin
(l̃k ◦ lk

1)(||ξt0||)
1/2

(from Lemma 5).

As we have (l̃k◦lk
1)(x)=O(x2), we obtain the result squaring the inequality and using Vt0+s

(
Ψ

t0+s
t0 ξt0+s

)
≤Vt0 (ξt0)≤

γmax
γmin
||ξt0 || to control the crossed terms.

Lemma 7. [final second order growth control] Under the same conditions as in Lemma 4
(including 1

k P̃t0 ≤ Pt0 ≤ kP̃t0) and for ||ξt0+s|| bounded by the same ε for s ∈ [0, t], there exist



two functions lk
1(ξ ) = O(||ξ ||2) and lk

2 = o(||ξ ||2) and a constant β k ensuring the relation:

Vt0+s(ξt0+s)≤Vt0(ξt0)+ lk
1(ξt0) (61)

−
J−1

∑
i=0

[
β

k||ξtn0+iM∆t ||2− lk
2(ξtn0+iM∆t)

]
+ lk

1(||ξ+
tnmax
||), (62)

where nmax is the last update before t0 + s ( i.e. nmax = max{n, tn ≤ t0 + s}), J is the number
of successive sequences of M updates in [t0 +M∆t, tnmax ] (i.e. J = max

{
j, tnmax− jM ≥ t0

}
−1)

and n0 = nmax− JM. If t0 + s = tnmax the last term can be removed.

Proof. For lk
1 we choose the same function as in Lemma 6. There is nothing more to prove for

s < 2M∆t. Let s≥ 2M∆t. We have Vt0+s(ξt0+s)−V+
t0 (ξ

+
t0 ) =

(
Vt0+s(ξt0+s)−V+

tnmax
(ξ+

tnmax
)
)
+(

V+
tnmax

(ξ+
tnmax

)−V+
tn0
(ξ+

tn0
)
)
+
(

V+
tn0
(ξ+

tn0
)−Vt0(ξt0)

)
. The first and third terms are upper bounded

using Lemma 6. The second term is controlled as follows:

V+
tnmax

(ξ+
tnmax

)−V+
tn0
(ξ+

tn0
)

=
J−1

∑
i=0

[
V+

tn0+(i+1)M
(ξ+

tn0+(i+1)M
)−V+

tn0+iM
(ξ+

tn0+iM
)
]

≤
J−1

∑
i=0

[
V+

tn0+(i+1)M
(Ψ

tn0+(i+1)M+

tn0+iM ξ
+
tn0+iM

)−V+
tn0+iM

(ξ+
tn0+iM

)+ l2(ξ+
tn0+iM

)
]
.

And we conclude using (see [13]):

V+
tn0+(i+1)M

(Ψ
tn0+(i+1)M+

tn0+iM ξ
+
tn0+iM

)−V+
tn0+iM

(ξ+
tn0+iM

)≤

− β̃
k||Ψ

tn0+(i+1)M+

tn0+iM ξ
+
tn0+iM

||2 ≤−β̃
k(

γmin

γmax
δ1)

M||ξ+
tn0+iM

||2,

for a β̃ k depending only on the modified constants of Lemma 4. The last inequality is obtained
using Ψ

tn+
t0 = (P+

n P−1
n )Ψtn

t0 and an obvious recursion over M time steps. We finally set β =

β̃ k( γmin
γmax

δ1)
M.

Remark 3. The control we have obtained on ξt0+s is verified if ||ξt0+s|| is already in a ball of
radius ε over the whole interval [t0, t0 + t]. We now prove the result holds assuming only that
ξt0 is sufficiently small.

C.4 Proof of theorem 4
Applying Lemma 7 with t0 + s = tnmax gives for 1

k P̃t0 ≤ Pt0 ≤ kP̃t0 and ||ξt0+s||< ε on [0, t] :

||ξ+
tnmax
||2 ≤γmax

γmin
||ξt0||

2 + γmaxlk
1(||ξt0||)

− γmax

γmin

J−1

∑
i=0

[
β

k||ξ+
tn0+iM

||2− l2(ξ+
tn0+iM

)
]
.



There exist K > 0 and ε ′ > 0 such that for x < ε ′, we have l2(x) <
β k

2 x and γmaxlk
1(x) < Kx

(as l2(x) = O(x2) and lk
1(x) = O(x2)) which gives: ||ξ+

tnmax
||2 ≤

(
γmax
γmin

+K
)
||ξt0||2. Thus, for

||ξt0||< ε ′√
γmax
γmin

+K
:

||ξt0+s||2 ≤
(

γmax

γmin
+K +K

(
γmax

γmin
+K

))
||ξt0||

2

− γmax

γmin

J−1

∑
i=0

β k

2
||ξ+

tn0+iM
||2, (63)

which finally ensures

||ξt0||<
1
2

ε
′/

(
γmax

γmin
+K +K

(
γmax

γmin
+K

))
⇒ ||ξt0+s|| ≤ ε

′/2

Reducing ε ′ if necessary to have ε ′ ≤ ε , we have obtained ||ξt0+s|| < ε ′ for s ∈ [0, t] ⇒
||ξt0+s|| ≤ ε ′/2 for sufficiently small ||ξt0|| (as Lemma 7 applies). Letting t = inf

{
s, ||ξt0+s|| ≥ 3

4ε ′
}

for sufficiently small ||ξt0||we end up with a contradiction if we suppose t <+∞, which proves
t =+∞. All the previous results thus hold only for sufficiently small ||ξt0||.

Moreover, (63) shows that ∑
J−1
i=0

β k

2 ||ξ
+
tn0+iM ||

2 is bounded and has positive terms thus
||ξ+

tn0+iM ||
2 goes to zero. Note also that ||Pt− P̃t || −→

t→+∞
0 as a byproduct.

D Proof of proposition 3
Only conditions (i) and (v) are non-trivial. Let Φ denote the flow of the dynamics. We have

d
dt

[
(Φt

tn)
T

Φ
t
tn

]
= (Φt

tn)
T

 0 0 −vt
0 0 0
−vt 0 0

Φ
t
tn �−vmax(Φ

t
tn)

T
Φ

t
tn

as the eigenvalues of

0 0 1
0 0 0
1 0 0

 are (1,−1,0). Thus, ∀z ∈ R3, d
dt log

(
zT (Φt

tn

)T
Φt

tnz
)
>

−vmax and finally zT (Φ
tn+1
tn )T Φ

tn+1
tn z > exp(−vmax(tn+1− tn)) ||z||2 as (Φtn

tn)
T Φ

tn
tn = I3. Thus

(Φ
tn+1
tn )T Φ

tn+1
tn � exp(−vmax(tn+1− tn)) I3 and (i) is verified. The difficult part of (v) is the

lower bound. Denoting Cov(Vn) by N we will show:

∃β1,∀n ∈ N, β1I3 ≤ R̂T
tnN−1R̂tn

+(Φ
tn+1
tn )T (01,2 I2

)T R̂T
tn−1

N−1R̂tn−1

(
01,2 I2

)
Φ

tn+1
tn .

That is to say that we want a lower bound on the quadratic form:

M
(

θ

u

)
=

(
θ

u

)T

R̂T
tnN−1R̂tn

(
θ

u

)
+

(
θ

u

)T

(Φ
tn+1
tn )T (01,2 I2

)T R̂T
tn−1

N−1R̂tn−1

(
01,2 I2

)
Φ

tn+1
tn

(
θ

u

)
.



We decompose Φ
tn+1
tn as Φ

tn+1
tn =

(
1 0 0

δVn Tn

)
. To simplify the writing we introduce the

norms ||x||2N = xT N−1x and the associated scalar product 〈., .〉N . There exists α > 0 such

that ∀x ∈ R2, ||x||N ≥ α||x||. For any
(

θ

u

)
∈ R3 we have M

(
θ

u

)
= ||R̂tnu||2N + ||θ R̂tn−1δVn +

R̂tn−1Tnu||2N = ||R̂tnu||2N + θ 2||R̂tn−1δVn||2N + 2θ
〈
R̂tn−1δVn, R̂tn−1Tnu

〉
N + ||R̂tn−1Tnu||2N and for

λ ∈]0,1] we have:

M
(

θ

u

)
=||R̂tnu||2N +(1−λ

2)θ 2||R̂tn−1δVn||2N +λ
2
θ

2||R̂tn−1δVn||2N

+2θ
〈
R̂tn−1δVn, R̂tn−1Tnu

〉
N + ||R̂tn−1Tnu||2N

=||R̂tnu||2N +(1−λ
2)θ 2||R̂tn−1δVn||2N + ||λθ R̂tn−1δVn

+
1
λ

R̂tn−1Tnu||2N +(1− 1
λ 2 )||R̂tn−1Tnu||2N

≥α

[
||R̂tnu||2 +(1−λ

2)θ 2||R̂tn−1δVn||2

+ ||λθ R̂tn−1δVn +
1
λ

R̂tn−1Tnu||2 +(1− 1
λ 2 )||R̂tn−1Tnu||2

]
≥α

[
||u||2 +(1−λ

2)θ 2||δVn||2 +(1− 1
λ 2 )||u||

2
]

≥α

[
(2− 1

λ 2 )||u||
2 +θ

2 +[
1−λ 2

2− 1
λ 2

||δVn||2−1]θ 2

]

≥α(2− 1
λ 2 )

(
||u||2 +θ

2 +[
1−λ 2

2− 1
λ 2

v2
min−1]θ 2

)
.

As 1−λ 2

2− 1
λ2
−→

λ→ 1√
2
−
+∞ there exists λ0 such that: M

(
θ

u

)
≥ α

(
2− 1

λ 2
0

)∣∣∣∣∣∣∣∣θu
∣∣∣∣∣∣∣∣2 and the result is

true for β1 = α(2− 1
λ 2

0
).
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[16] Håvard Fjær Grip, Thor I Fossen, Tor A Johansen, and Ali Saberi. Globally exponen-
tially stable attitude and gyro bias estimation with application to GNSS/INS integration.
Automatica, 51:158–166, 2015.

[17] Minh-Duc Hua. Attitude estimation for accelerated vehicles using GPS/INS measure-
ments. Control Engineering Practice, 18(7):723–732, 2010.

[18] Maziar Izadi and Amit K Sanyal. Rigid body attitude estimation based on the Lagrange–
d- Alembert principle. Automatica, 50(10):2570–2577, 2014.



[19] Arthur J Krener. The convergence of the extended Kalman filter. In Directions in math-
ematical systems theory and optimization, pages 173–182. Springer, 2003.

[20] Ch. Lageman, J. Trumpf, and R. Mahony. Gradient-like observers for invariant dynamics
on a Lie group. Automatic Control, IEEE Transactions on, 55(2):367–377, 2010.

[21] E. J. Lefferts, F Landis Markley, and M. D. Shuster. Kalman filtering for spacecraft
attitude estimation. Journal of Guidance, Control, and Dynamics, 5(5):417–429, 1982.

[22] Robert Mahony, Tarek Hamel, and J-M Pflimlin. Complementary filter design on the
special orthogonal group SO(3). In Decision and Control, 2005 and 2005 European
Control Conference. CDC-ECC’05. 44th IEEE Conference on, pages 1477–1484. IEEE,
2005.

[23] Philippe Martin and Erwan Salaün. Generalized multiplicative extended Kalman filter
for aided attitude and heading reference system. In AIAA Guidance, Navigation, and
Control Conference, page 8300, 2010.

[24] F. Sonnemann Reif, K. and R. Unbehauen. An EKF-based nonlinear observer with a
prescribed degree of stability. Automatica, 34:1119–1123, 1998.

[25] Y.K. Song and J.W. Grizzle. The extended Kalman filter as a local asymptotic observer.
Estimation and Control, 5:59–78, 1995.

[26] J.F. Vasconcelos, R. Cunha, C. Silvestre, and P. Oliveira. A nonlinear position and atti-
tude observer on SE(3) using landmark measurements. Systems Control Letters, 59:155–
166, 2010.



Figure 1: The heading and position of the car are estimated through EKF and IEKF with high
rate odometry and low rate GPS measurements. Top plots illustrate the experimental setting
and display the estimated trajectories, middle plots display the heading errors and bottom
plots the position errors. As the starting point is assumed known in this simulation, the initial
values of the latter are zero. But it increases afterwards due to initial heading error. Left
column: small initial angle error (1◦). We see EKF and IEKF behave similarly (at least for
a long time) as propagation steps are identical. Right column: large initial angle error (45◦).
The behaviors rapidly become different, and the EKF is outperformed. Due to its righteous
use of the system’s non-linearities, the IEKF keeps ensuring rapid estimation error decrease.



Figure 2: Aided inertial navigation based on high rate accelerometers’ and gyrometers’ mea-
surements and low rate observation of known landmarks. We also displayed the orthogonal
projection of the landmarks on the plane containing the trajectory (black crosses) to help
imagining the 3D position of the landmarks. This shows the disposition of the landmarks is
the same in both experiments. Top plots illustrate the experimental setting and display the
EKF and IEKF estimates. Middle plots display the attitude errors and bottom plots the po-
sition errors. Left column: the tuning of Q is tight (Q = Q1) due to highly precise inertial
sensors. This creates robustness issues: the gains of the EKF decrease rapidly during the tran-
sitory phase while the attitude error is not reduced enough due to non-linearities. When the
position estimate is impacted, the gains have become too small to correct the errors, leading
to filter’s divergence. IEKF ensures rapid decrease to 0 of the estimation error with identical
tuning. Right plot: Q is inflated (Q = Q2). This classical engineering trick prevents the EKF
to diverge but IEKF still prevails in terms of time of convergence.
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