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An Algorithm for Supervised Driving of
Cooperative Semi-Autonomous Vehicles (Extended)

Florent Altché, Xiangjun Qian, and Arnaud de La Fortelle,

Abstract—Before reaching full autonomy, vehicles will gradu-
ally be equipped with more and more advanced driver assistance
systems (ADAS), effectively rendering them semi-autonomous.
However, current ADAS technologies seem unable to handle
complex traffic situations, notably when dealing with vehicles
arriving from the sides, either at intersections or when merging
on highways. The high rate of accidents in these settings
prove that they constitute difficult driving situations. Moreover,
intersections and merging lanes are often the source of important
traffic congestion and, sometimes, deadlocks. In this article, we
propose a cooperative framework to safely coordinate semi-
autonomous vehicles in such settings, removing the risk of
collision or deadlocks while remaining compatible with human
driving. More specifically, we present a supervised coordination
scheme that overrides control inputs from human drivers when
they would result in an unsafe or blocked situation. To avoid
unnecessary intervention and remain compatible with human
driving, overriding only occurs when collisions or deadlocks are
imminent. In this case, safe overriding controls are chosen while
ensuring they deviate minimally from those originally requested
by the drivers. Simulation results based on a realistic physics
simulator show that our approach is scalable to real-world
scenarios, and computations can be performed in real-time on a
standard computer for up to a dozen simultaneous vehicles.

Index Terms—Semi-autonomous driving, safety, supervisor,
supervised driving.

I. INTRODUCTION

ADVANCED driver assistance systems (ADAS) are be-
coming increasingly complex as they spread across

the automotive market. Although adaptive cruise control
(ACC) [1] and automated emergency braking (AEB) [2] are
the best-known examples of such systems, applications of
ADAS have been broadened and now include pedestrian [3],
traffic light [4] or obstacle detection [5] as well as lane keeping
assistance [6]. The development of this new equipment allows
drivers to delegate part of the driving task to their vehicles. As
these systems keep getting more efficient and able to handle
more complex situations, vehicles will gradually progress
towards semi-autonomous driving, where drivers remain in
charge of their own safety, while their errors can be seamlessly
corrected to prevent potential accidents.

One of the challenges of semi-autonomous driving lies in
efficiently handling vehicles on conflicting paths, for instance
at an intersection or a highway entry lane. Traffic rules such as
priority to the right can help determine whether to pass before
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Blaise Pascal, 77455 Champs-sur-Marne, France.

or after another vehicle; however, many situations require
driving experience to be handled efficiently. Learning-based
approaches may eventually prove able to transfer driving ex-
perience to a computer, but such knowledge is very hard to im-
plement in a safety system. In this article, we consider another
possible solution, consisting in using vehicle-to-vehicle or
vehicle-to-infrastructure communication for cooperative semi-
autonomous driving. In this setting, vehicles negotiate with one
another, or receive instructions from a centralized computer,
allowing them to drive safely and efficiently.

In this article, we consider a method to ensure the safety of
multiple semi-autonomous vehicles on conflicting paths, for
instance crossing an intersection or entering a highway, while
remaining compatible with the presence of human drivers. To
this end, and inspired by earlier work in [7], [8], we propose a
so-called Supervisor which monitors control inputs from each
vehicle’s driver, and is able to override these controls when
they would result in an unsafe situation. More specifically, the
role of the supervisor is twofold: first, knowing the current
states of the vehicles, the supervisor should determine if the
controls requested by the drivers would lead the vehicles into
unsafe inevitable collision states [9]. In this case, the second
task of the supervisor is to compute safe controls – maintaining
the vehicles in safe states – which are as close as possible to
those actually requested by the drivers. We say that such a
control is minimally deviating.

This paper provides two main contributions: from a prac-
tical standpoint, we design and implement a mathematical
framework allowing to simultaneously perform the safety
verification of target control inputs, and the computation of
minimally deviating safe controls if target inputs are unsafe.
From a theoretical standpoint, we formally prove that verifying
safety over a finite time horizon is enough to ensure infinite
horizon safety, and we provide a sufficient condition on the
verification horizon for this property to hold. Unlike previous
work focusing on specific situations such as intersections [7],
[8], our framework can be applied to a wide variety of
driving scenarios including intersections, merging lanes and
roundabouts.

The rest of the article is structured as follows: in Section II,
we provide a review of the related literature. In Section III,
we present our modeling of semi-autonomous vehicles and
introduce the Supervision problem of verifying the safety of
drivers control inputs and finding a minimally deviating safe
control if necessary. In Section IV, we present an infinite
horizon formulation based on constraints programming to
solve this problem. In Section V, we derive a finite horizon
formulation which we prove is equivalent to the infinite
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horizon one. In Section VI, we use computer simulations
to showcase the performance of the proposed supervisor in
various driving situations. In Section VII, we present possible
methods for real-world implementations of our approach.
Finally, Section VIII concludes the study.

II. RELATED WORK

In the last decade, a lot of research has been focused on
coordinating fully autonomous vehicles in challenging settings
such as crossroads, roundabouts or merging lanes, with the
ambition of improving both safety and traffic efficiency. Nau-
mann et al. [10], followed by Dresner and Stone [11] have
seemingly pioneered the work of adapting traffic intersections
management methods to fully autonomous vehicles, designing
so-called autonomous intersection management algorithms.
They propose that each approaching autonomous vehicle re-
serves a time interval to cross the intersection; collisions are
prevented by ensuring that conflicting vehicles are assigned
non-overlapping crossing times. Subsequent studies on this
particular problem have led to other approaches. In [12],
vehicles choose their control inputs based on navigation
functions which include a collision avoidance term, allowing
vehicles to react to maneuvers from other traffic participants.
In [13], collision avoidance is ensured by assigning relative
crossing orders to incoming vehicles; each vehicle then uses
model predictive control to plan collision-free trajectories
respecting these priorities. Other authors have considered
different driving situations for autonomous vehicles, such as
cooperative merging on a highway [14]–[16], or entering a
roundabout [17].

By contrast, relatively little work has considered semi-
autonomous driving assistance, possibly because the presence
of human drivers brings a lot of additional complexity. The
goal of a semi-autonomous driving assistant is to help the
driver avoid collisions, either by notifying of a potential
danger [18] or by taking over vehicle control in dangerous
situations [19]–[21]. To be accepted by human drivers, such
systems should be as unobtrusive as possible, and in particular
should only intervene when necessary. Most of the currently
existing literature on semi-autonomous driving mostly focuses
on highway driving [19]–[21], which presents relatively low
difficulty as vehicles trajectories remain mostly parallel. The
aim of this article is to bring semi-autonomy one step fur-
ther, to allow cooperative driving between semi-autonomous
vehicles in more complex conflict situations.

Some of these more complex problems have already been
studied in the literature. In [22], the authors consider semi-
autonomous driving at an intersection and propose that human
drivers let an automated system control their vehicle while
crossing said intersection. However, this scheme is rather
intrusive as drivers completely relinquish control for a time,
and handing back controls to a potentially distracted driver
poses problems by itself. Colombo et al. [7], [8] introduced the
idea of a supervisory instance (called supervisor) tasked with
preventing the system of vehicles from entering undesirable
states by overriding the controls of one or several vehicles.
In this more human-friendly approach, overriding only occurs

when necessary, i.e. if an absence of intervention would result
in a crash. The question of determining whether overriding is
needed or not, called verification problem, is NP-hard [23];
under several simplifying assumptions, it is shown in [7] to
be equivalent to a scheduling problem. In this reformulation,
vehicles are each assigned a time slot during which they are
allowed inside the intersection, and assigned slots are mutually
disjoint. If, due to vehicle dynamics, no feasible schedule
exists, the initial state is deemed unsafe. This allows the
authors to design a so-called least restrictive supervisor, which
verifies the safety of the desired inputs and overrides them if
necessary. However, the proposed supervisor is only suitable
to simple intersection geometries with a single conflict point.
Moreover, no additional property is required from the safe
controls used for overriding, which can widely deviate from
the desired ones.

Several variations have been proposed based on the equiva-
lence demonstrated in [7]. Reference [24] designs a supervisor
which is robust to bounded uncertainties by adding safety mar-
gins. Reference [25] leverages job-shop scheduling to develop
a supervisor that considers several possible conflict points
inside the intersection; however, vehicle dynamics are only
modeled as first-order integrators, which is not realistic in a
real-world setting. Campos et al. [8] proposed a Pareto-optimal
supervisor leading to a minimally deviating formulation by
recursively finding the most constrained vehicle, reserving its
optimal crossing time, and scheduling the crossing of the
remaining vehicles using the previous schedule as constraints.
This method allows to minimize the deviation between the
overridden and desired controls, but may be computationally
intensive. Indeed, one of the major difficulties of performing
optimization in this context lies in the necessity to consider
all the possible orderings of the vehicles.

This problem is highly combinatorial; it has been shown
that there exists up to 2n(n−1)/2 orderings for n vehicles [26].
Moreover, it is generally ignored by most authors studying
motion planning problems, who either use simple heuristics
such as first-come, first-served [11], [27] or rely on exhaustive
search [8], [28]. A possible method to handle the combinatorial
explosion is to use pruning techniques such as branch-and-
bound, which avoid exploring branches of the decision tree
that would provably yield suboptimal results. These methods
are commonly used in mixed-integer linear (see, e.g., [29], [30]
for applications to motion planning) or quadratic programming
(see, e.g., [31]) problems, which combine continuous and
discrete optimization. More general nonlinear methods have
also been used in motion planning [32], [33], although their
high computational difficulty generally requires linearization
for effective resolution, as illustrated in [34]. To the best of the
authors’ knowledge, branch-and-bound methods have never
been applied to semi-autonomous driving.

This article significantly differs from references [7], [8],
[25]. Instead of using a scheduling approach, we formulate the
supervision problem as a Mixed Integer Quadratic Program-
ming (MIQP) problem, which can handle various geometries
with multiple collision points such as multi-lane intersections,
merging lanes or roundabouts. Our formulation only requires
to consider a small, finite planning horizon, while previous
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approaches [7], [8], [25] needed to schedule the crossing of
all the considered vehicles. Furthermore, the MIQP formula-
tion is highly flexible, allowing to take into account various
constraints (e.g., maximal turning speed) and different cost
functions. Finally, the resolution of MIQP can leverage highly-
optimized solvers [35], allowing real-time implementations
even for a relatively large number of vehicles.

This article expands the results presented in the conference
paper [36]; among the significant improvements made in this
extension, we now give a more comprehensive model of our
vision of semi-autonomous vehicles and adjust the modeling
of the problem to handle bounded control errors. We provide
a detailed discussion on how complex road geometries with
multiply-intersecting paths can be handled, leading to a very
versatile framework. Finally, we extend the theoretical results
to continuous arrivals of vehicles, and provide possible ways
for actual implementation as a roadside unit.

III. SUPERVISION PROBLEM

We consider the problem of safely coordinating multiple
semi-autonomous vehicles on the road, in order to prevent
collisions and deadlock situations where no vehicle is able
to move forward. Since vehicles are human-driven, a form
of outside supervision is necessary to prevent undesirable
situations. This section presents our formulation of a so-called
Supervision problem generalizing the work of Colombo et
al. [7]; solving this problem yields a provably safe control,
as close as possible to the original intentions of the drivers.

A. Modeling

1) Supervision area: We consider an isolated portion of a
road infrastructure used by semi-autonomous vehicles, where
some form of coordination is required to ensure vehicles
safety. For instance, this could be a classical road intersection,
a roundabout or an entry or weaving lane on a highway.
We call this bounded portion of infrastructure the supervision
area and we assume that vehicles can travel safely outside
of the collision area using only their ACC capacities. In a
real-world setting, different critical portions of infrastructure
which are far enough apart can be considered individually,
but need to be treated jointly if traffic from one can influence
another. Figure 1 shows examples of roads configurations and
the corresponding possible choice for a supervision area.

In this article, we present an embodiment of a Supervisor
working over a spatially static supervision area over time, that
can be thought of as a dedicated computer on the infrastructure
or in the cloud. Vehicles are assumed to establish a connection
to the supervisor when they enter the supervision area (using,
for instance, V2I communication), and maintain it until they
exit this region. We denote by Nt the set of vehicles currently
inside the supervision area at a time t.

2) Semi-autonomous vehicles: We consider semi-
autonomous vehicles equipped with advanced driver assistance
systems, many of which are already commercially available,
and Vehicle to Infrastructure (V2I) communication capacities.
In particular, vehicles are assumed to have advanced cruise
control, automated braking and lane keeping assistance

(a) Crossroads

(b) Roundabout (c) Highway merging

Fig. 1. Examples of considered road configurations, and corresponding
supervision areas (interior of the dotted rectangles).

systems such that accelerating, braking and steering can be
actuated by an on-board computer. Moreover, we suppose
that vehicles have access to reliable cartographic data and
are capable of precisely measuring their current position,
orientation and velocity with reference to a unique global
frame, for instance using GNSS and inertial navigation.

Since the vehicles are not assumed to have advanced
environment-sensing capacities, for instance based on LIDAR
data, they are not able to handle all situations and still require
a human driver to safely navigate, for instance in the case of
on-road obstacles or loss of GNSS signal. Moreover, lateral
collisions or deadlock situations can happen due to human
error, justifying the need for supervision.

3) Parametrization: In the remainder of this article, we
only consider the two-dimensional kinematics and dynamics
of the vehicles. We denote by Ei a bounding polygon for the
shape of vehicle i ∈ Nt, and by ci the center of Ei.

We assume that the geometry and lane markings of the roads
inside the supervision area define a finite number of reference
paths across this region, as exemplified in fig. 2. Due to the
presence of a lane keeping assistance system, we assume that
every vehicle is able to follow one of these reference paths
with a small bounded lateral error. Noting γi the reference
path of a vehicle i, we assume that the distance of ci from
γi is bounded from above by ξi ≥ 0. Moreover, we assume
that γi is at least C2-continuous, and that ξi is small enough
to ensure, for all x ∈ R2,

d(x, γi) ≤ ξi ⇒ ∃! y ∈ γi, ||x− y|| = d(x, γi). (1)

This condition allows to use the curvilinear position of the
point of γi closest to ci to uniquely encode the longitudinal
position of vehicle i along γi. We denote by si this curvilinear
position, with the convention that si = 0 when the front
bumper of i first enters the supervision area and increases
when i goes forward; we let souti be the longitudinal position
at which the rear bumper of i fully exits the supervision area.

4) Vehicle dynamics: In this article, we mostly focus on
the longitudinal dynamics of the vehicles, and we let xi =
(si, vi)

T be the state of vehicle i, where si and vi are re-
spectively its longitudinal position and longitudinal speed. We
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assume that vehicles follow second-order integrator dynamics
with a bounded longitudinal error, and that the control input
ui corresponds to the longitudinal acceleration as:

ẋi = Axi +Bui, (2)

where A = ( 0 1
0 0 ) and B = ( 0

1 ). Since we mostly consider
situations with conflicting vehicles, we assume that human
drivers maintain a relatively low speed (compared to the cur-
vature of their path), which allows neglecting lateral dynamics
and slip [37].

To account for speed limitations on the vehicles, each
vehicle i is supposed to have a bounded non-negative velocity,
so that vi ∈ [0, vi] (with vi > 0) at all times. Moreover, we
assume that the acceleration ui of each vehicle is bounded
as ui ∈ [ui, ui], with ui < 0 < ui. These bounds can
differ between vehicles, thus allowing heterogeneous vehicle
performance. At a given time t, we let Ut =

∏
i∈Nt [ui, ui]

be the set of admissible accelerations for the vehicles of Nt.
We denote bt boldface x = (xi)i∈Nt and u = (ui)i∈Nt the
state and control for the system of vehicles.

In what follows, we let vmax > 0 be a global upper bound
for vi, ua > 0 a lower bound for ui and ub < 0 an upper bound
for ui such that for all t ≥ tκ and all i ∈ Nt, vi ≤ vmax and
ui ≤ ub < 0 < ua ≤ ui. Therefore, all vehicles are capable
of braking with ub and accelerating with ua; finally, we let
umax be a global upper bound for ui.

5) Collision regions: Finally, we assume that the angle
between the orientation of vehicle i and the tangent to γi at
its point closest to ci is also bounded. With these hypotheses,
for any pair of vehicles (i, j), we can compute the bounded
set Cij of curvilinear positions (si, sj) ⊂ [0, souti ] × [0, soutj ]
for which a collision could happen between i and j. Note
that these sets are “inflated” to take into account the bounded
control errors. We call Cij the collision region between i and
j; fig. 2 shows examples of paths and corresponding computed
collision regions for different driving situations. Note that
collision regions can be empty or have one or multiple
connected components. If Cij 6= ∅, we say that vehicles i and j
are conflicting; when Cij has multiple connected components,
we denote by Cpij its p-th component, using the convention
Cpij = Cpji.

6) No-stop regions: To prevent creating deadlock situa-
tions, vehicles are not allowed to stop when doing so would
block traffic in other directions. To this extent, we define a
no-stop region (see fig. 3) Di for each vehicle i ∈ Nt as the
smallest interval Di = [s⊥i , s

⊥
i ] containing all min

(
ΠsiCpij

)
for all t′ ≥ t, j ∈ Nt′ and all p such that (0, 0) /∈ Cpij ;
in this formula, Πsi is the projection operator on the first
coordinate. The no-stop region corresponds to the part of the
supervision area where a vehicle may have to yield to another;
if Cpij contains (0, 0), then either i or j enters the supervision
area behind the other, in which case the relative ordering of
the vehicles is given and the Cpij does not count in Di.

Note that, although this definition theoretically requires
knowledge of all future vehicles, Di can be computed off-line
as a finite intersection of intervals provided that there only
exists a finite number of possible paths inside the supervision
area. In what follows, we let vmin > 0 be a minimum allowed

γi

γj

Cij

si

s j

(a) Simple orthogonal intersection situation with example vehicle shapes

γi

γj

C1
ij

C2
ij

si

s j

(b) Roundabout situation with multiple connected components in Cij

γi

γj

Cij

si

s j

(c) Highway merging situation

Fig. 2. Examples of paths (left) and corresponding collision regions (right)
for vehicles with the polygonal shape shown in fig. 2a.

i

j1

j2 jn

. . .

Cij1 Cij2 Cijn

DiAi

Fig. 3. Illustration of the no-stop region Di and acceleration region Ai inside
the supervision area (dotted rectangle).

speed for any vehicle inside its no-stop region, and we assume
that vmin ≤ vi for all vehicles.

For a no-stop region Di, we define the corresponding accel-
eration region Ai = [sacci , s⊥i ] such that, if vehicle i is stopped
at sacci , it can reach a speed vmin before reaching s⊥i . More
specifically, we require that 0 ≤ sacci ≤ s⊥i − vmin

2

2ua
for all

i. Inside the acceleration region, vehicles are only allowed to
accelerate; this condition prevents vehicles from stopping right
before the entrance of the no-stop region, leaving them unable
to proceed forward due to the minimum speed requirement.
Figure 3 illustrates an example of the no-stop regions and the
corresponding acceleration regions.

7) Time discretization: Drivers continuously change the
control input of their vehicle; however, due to computational



5

and communication constraints, it is impractical to handle
functions of a continuous variable. In the remainder of this
article, we choose a constant time step duration τ > 0, and we
assume that all vehicles use piecewise-constant controls with
step τ , typically 0.5 s. To simplify the formulation, we further
assume that vehicles update their control simultaneously at
times tκ = κτ for κ ∈ N, and we denote by Uτ (tκ) the set of
piecewise-constant admissible controls for the vehicles of Ntκ .
By definition, for all t ≥ tκ and all u ∈ Uτ (tκ), u(t) ∈ Utκ .

B. Problem statement

Before presenting the so-called supervision problem, we
first define the safety criterion for the vehicles inside the
supervision area at a given time.

Definition 1 (Safe state). We say that the supervision area
is in a safe state xκ at time tκ if there exists an admissible
piecewise-constant control u ∈ Uτ (tκ) defined over [tκ,+∞[
such that, under this control and starting from xκ, for all
t ≥ tκ and all i, j ∈ Ntκ , (si(t), sj(t)) /∈ Cij . Such a control
is said to be a safe control.

With this definition, the supervision area is in a safe state
when all the vehicles inside this area can apply a dynamically
admissible, infinite horizon control without a risk of collision.
This safety condition corresponds to a contraposition of the
notion of “inevitable collision state” proposed by Fraichard et
al. [9]. In what follows, we denote by Usafeτ (tκ) the set of
safe and dynamically admissible piecewise-constant controls
for the vehicles in Ntκ ; by definition, a control u ∈ Usafeτ (tκ)
is a piecewise-constant function from [tκ,+∞[ to Utκ . We
now define the safety condition for vehicles entering the
supervision area.

Definition 2 (Safe entry). Consider a safe state xκ at time tκ
and let t1 > tκ be the first time at which a new vehicle enters
the supervision area. We say that the vehicles of Nt1 \ Ntκ
safely enter the supervision area with a margin τ if t1 ≥ tκ+τ ,
or if any safe control u ∈ Usafeτ (tκ):
• keeps the system of the vehicles of Nt1 safe at time tκ+τ

and
• remains safe over [tκ,+∞[ for the vehicles of Ntκ ,

regardless of the control applied by the vehicles of Nt1 \Ntκ
over [t1, t1 + τ ].

This definition ensures that a safe control computed for the
vehicles of Ntκ remains safe after new vehicles enter, i.e.
the entry of new vehicles does not invalidate previously safe
controls. Moreover, we assume that we can safely exclude
vehicles departing the supervision area from the safety ver-
ification problem, i.e. that drivers are able to safely follow
the previously departed vehicles without supervision. We will
show in Section IV-C that these hypotheses allow discrete-time
supervision with continuous vehicle arrival.

In the remainder of this article, we consider a centralized
supervisor working in discrete time steps of duration τ , and we
assume that new vehicles always enter safely with a margin τ .
At the beginning of each time step κ, the supervisor receives
an information about the desired longitudinal control of each

vehicle for the next time step, denoted by uκi,des. The collection
of these desired controls for the vehicles of Ntκ defines a
constant desired system control uκdes defined over [tκ, tκ+ τ [.

This control may, or may not, lead the system of vehicles
into an unsafe state. The supervisor is tasked with preventing
the system from entering an unsafe state, by overriding the
desired control if necessary. To remain compatible with human
drivers, it is desirable that the supervisor has several properties,
namely being least restrictive and minimally deviating. Letting
Usafeτ,κ (tκ) be the restriction of the functions of Usafeτ (tκ) to
[tκ, tκ+τ [, we define the least restrictive supervision problem:

Definition 3 (Least restrictive supervision). Consider a safe
state xκ at time tκ = κτ , a desired system control uκdes and
assume that all new vehicles enter the supervision area safely
with a margin τ . The least restrictive supervision problem
(SP ) is that of finding a control uκsafe ∈ Usafeτ,κ (tκ) such
that uκsafe = uκdes if uκdes ∈ Usafeτ,κ (tκ).

Note that this definition corresponds to that of [7] in
our generalized setting. Such a supervisor is least restrictive
because overriding only occurs if the initially requested control
would lead the vehicles in an unsafe state. However, it is also
desirable that the control used for overriding is chosen close
to the drivers’ desired control. Extending the work in [8], we
define the minimally deviating supervision problem as follows:

Definition 4 (Minimally deviating supervision). Consider a
safe state xκ at time tκ = κτ , a desired system control uκdes
and assume that all new vehicles enter the supervision area
safely with a margin τ . The minimally deviating supervision
problem (SP ∗) is that of finding a constant control u∗κsafe
such that:

u∗κsafe = arg min
u∈Usafeτ,κ (tκ)

||uκ − uκdes|| (3)

where || · || is a norm defined over Utκ .

Note that, from this definition, any solution to SP ∗ is a
solution to SP .

This concept of minimally deviating supervision follows a
different fail-safety paradigm that could be found in, e.g., rail
transportation where all trains in an area should perform an
emergency braking when an incident occurs. The reasoning
behind definition 4 is that, to improve efficiency without
sacrificing safety, intervention is only performed on vehicles
which are actually at risk, and does not necessarily result
in a full stop. However, at individual vehicle level, the safe
overriding control u∗κsafe may differ greatly from the driver’s
input, e.g. braking instead of accelerating.

IV. INFINITE HORIZON FORMULATION OF THE
SUPERVISION PROBLEM

In this section, we present an extension of the work in [36]
allowing to reformulate the generalized minimally deviating
supervision problem using mixed-integer quadratic program-
ming (MIQP) in Section IV-A. As the supervisor works in
discrete time steps of duration τ , we consider the beginning
of a step κ, corresponding to a time tκ = κτ and formulate
an infinite-horizon MIQP problem. Assuming the initial state
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is safe, we will show in Section IV-B that this formulation
can be used to find a minimally deviating safe control for
the vehicles in Ntκ . We will show in Section IV-C that, if
the vehicles of Ntκ follow the corresponding control, our
formulation expressed at tκ+1 = (κ + 1)τ remains feasible
for the vehicles of Ntκ+1

, provided that all new vehicles enter
safely with a margin τ . These properties ensure that our infinite
horizon MIQP formulation can be solved in a receding horizon
fashion, to ensure safety for all future vehicles.

A. Model variables and constraints

In what follows, we present the variables and constraints
used in our model. Unless specified otherwise, these con-
straints are enforced at all time steps k ≥ κ, and for all
vehicles of Ntκ .

1) Vehicle dynamics: When they evolve inside the super-
vision area, vehicles use a piecewise-constant control, which
is updated every τ seconds. For a vehicle i ∈ Ntκ at step k,
we introduce the variables ski , vki ∈ [0, vi] and uki ∈ [ui, ui],
respectively denoting its curvilinear position and longitudinal
speed at tk, and longitudinal acceleration over [tk, tk+τ [. The
following constraints enforce vehicle dynamics:

sk+1
i − ski =

1

2

(
vki + vk+1

i

)
τ (4)

vk+1
i − vki = uki τ (5)

2) Logical constraints: In [38], we showed that it is pos-
sible to enforce logical constraints on continuous and integer
variables with linear inequalities using a “big-M” formulation.
More specifically, if b is a binary variable and x a continuous
or integer variable bounded so that |x| < M , then the logical
constraint: (b = 0 ⇒ x ≤ a) is equivalent to the linear
inequality constraint x ≤ a + bM . This method can be
used to define indicator binary variables for a given semi-
infinite interval: for a continuous variable x and a constant
a ∈ R, we denote by b = χ[a,+∞[(x) the constraints
(b = 0 ⇒ x ≤ a) ∧ (b = 1 ⇒ x ≥ a), where ∧ denotes the
binary conjunction; we use ¬ to denote the binary negation.

3) Collision avoidance: As presented in Section III-A3, the
collision region between two vehicles i, j ∈ Ntκ , Cij , can be
computed off-line. As it was already presented in [38], it is
possible to compute a minimal bounding convex polygon for
each connected component Cpij of Cij . A good compromise be-
tween accuracy and complexity is to use a bounding hexagon
with edges either parallel to the si = 0, si = sj or sj = 0
lines; such a polygon is uniquely defined by six parameters,
as shown in fig. 4.

To ensure that vehicles do not enter any of the collision
regions, we introduce a set of binary variables to encode the
discrete decisions arising from the choice of an ordering of
vehicles, as presented in [38]. For all conflicting vehicles i, j ∈
Ntκ , we let πpij = 1 if vehicle i passes the p-th collision region
before j, and πpij = 0 otherwise; moreover, we introduce the
binary indicator variables for all k ≥ κ:

εij,p(k) = χ[sij,p,+∞[(s
k
i ), (6)

ε⊥ij,p(k) = χ[s⊥ij,p,+∞[(s
k
i ). (7)

s⊥ij sij s⊥ij

s⊥ji

sji

s⊥ji

Cij

Fig. 4. Minimum bounding hexagon for the collision region presented in
fig. 2a.

We enforce the collision avoidance constraints for all con-
flicting vehicles i, j ∈ Ntκ and k ≥ κ as:(

πpij ∧ ¬ εij,p(k)
)
⇒ sk+1

j ≤ s⊥ji,p (8)(
πpij ∧ εij,p(k) ∧ ¬ ε⊥ij,p(k)

)
⇒ sk+1

i ≥ sk+1
j + dij,p (9)(

πpij ∧ εij,p(k) ∧ ¬ ε⊥ij,p(k)
)
⇒

sk+1
i ≥ sk+1

j +dij,p +
τ

2

(
vk+1
j − vk+1

i

)
(10)

where dij,p = sij,p − s⊥ji,p. Constraint (8) corresponds to
“crossing situations”, where a vehicle has to wait for another to
pass; constraints (9) and (10) correspond to “following situa-
tions”, where a vehicle needs to maintain a certain longitudinal
distance from another.

Note that constraints (8) to (10) use the values of the
indicator variables at step k to force the positions of the
vehicles at step k + 1 in order to avoid a “corner cutting”
phenomenon; the additional constraint (10) prevents collisions
between two time steps. These constraints are very slightly
stronger than that of collision avoidance, i.e. for all t ≥ tκ,
(si(t), sj(t)) /∈ Cij . Consequently, the results in the rest of
this article are to be understood replacing the exact collision
avoidance constraints in definition 1 by conditions (8)-(10).

Finally, to ensure the consistency of the formulation, we
add the mutual exclusion constraint for all conflicting vehicles
i, j ∈ Ntκ :

πpij + πpji = 1. (11)

4) Deadlock avoidance: As described in Section III-A6, we
require all vehicles to maintain a minimum speed inside their
no-stop region Di = [s⊥i , s

⊥
i ]. This requirement is enforced

by defining additional binary variables, for all i ∈ Ntκ and all
k ≥ κ:

ζacci (k) =χ[sacci ,+∞[(s
k
i ) (12)

ζini (k) =χ[s⊥i ,+∞[(s
k
i ) (13)

ζouti (k) =χ[s⊥i ,+∞[(s
k
i ) (14)

ηi(k) =χ[vmin−uaτ,+∞[(v
k
i ) (15)

and using the constraints:(
ζacci (k) ∧ ¬ ζini (k) ∧ ¬ ηi(k)

)
⇒ vk+1

i ≥ vki + uaτ, (16)(
ζini (k) ∧ ¬ ζouti (k)

)
⇒ vki ≥ vmin. (17)

As long as the acceleration regions Ai are large enough,
constraint (16) prevents vehicles from remaining blocked due
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to the minimum speed requirement (17). We will show in the
next section that these conditions effectively prevent deadlocks
for all future times.

5) Initial conditions: The supervision problem is used in
a receding horizon fashion, and we consider that the state of
each vehicle of Ntκ at time tκ is known before solving the
problem. Therefore, we use the following initial condition for
all i ∈ Ntκ :

(sκi , v
κ
i ) = (si(tκ), vi(tκ)) (18)

B. Objective function

Any piecewise-constant control verifying constraints (4) to
(18) for all k ≥ κ is dynamically admissible and prevents
collisions for all future times, and is therefore in Usafeτ,κ (tκ).
To remain compatible with human driving, we now formulate
an objective function allowing to find a least restrictive and
minimally deviating control given a desired control uκdes =
(uκi,des)i∈Ntκ . In what follows, we let (wκi )i∈Ntκ be a set of
strictly positive weights, X be the tuple of all the problem
variables, and we define:

Jκ(X) =
∑
i∈Ntκ

wκi
(
uκi − uκi,des

)2
. (19)

Noting πuκ the projection operator such that πuκ(X) = uκ,
we deduce the following theorem:

Theorem 1. The solution of the optimization problem:

u∗ = πuκ arg min
X

Jκ(X) (IH-SP)

subj. to ∀k ≥ κ, (4)− (18)

is a solution to the minimally deviating supervision problem
SP ∗ at time tκ, for the norm associated with Jκ ◦ πuκ .

Note that the weighting terms wκi allow distinguishing
between different types of agents, for instance to prioritize
emergency services or high-occupancy vehicles. More com-
plex cost functions can also be used, for instance to penalize
a forced acceleration more than a forced braking.

C. Receding horizon properties

We now assume that there exists a solution to IH-SP at time
tκ, that the vehicles of Ntκ follow this solution control over
[tκ, tκ + τ ], and that the vehicles of Ntκ+1

enter safely with
a margin τ . From Definitions 1 and 2, we have the following
theorem:

Theorem 2 (Recursive feasibility). Let τ > 0, κ ≥ 0, tκ = κτ
and tκ+1 = tκ + τ . Assume that:
• there exists a solution to IH-SP at time tκ for the vehicles

of Ntκ ,
• the vehicles of Ntκ follow this solution control over

[tκ, tκ+1],
• the vehicles of Ntκ+1 \Ntκ enter safely with a margin τ .

Then there exists a solution to IH-SP at time tκ+1 for the
vehicles of Ntκ+1

.

Proof. From definitions 1 and 2, and using theorem 1, we
know that the first two hypotheses guarantee that the vehicles

in Ntκ are in a safe state at time tκ+1. Moreover, the third
hypothesis ensures that the vehicles in Ntκ+1 also are in a safe
state at tκ+1 regardless of the control applied by the vehicles
of Ntκ+1

\ Ntκ up to time tκ+1. By definition 1, there exists
a feasible solution to IH-SP thus proving the theorem.

We now state that the IH-SP formulation effectively prevents
the apparition of deadlocksThe proof of this theorem can be
found in Appendix A-A.

Theorem 3 (Deadlock avoidance). Let κ ≥ 0 and assume
that, for all κ ≤ k ≤ κ0, the conditions of theorem 2 remain
satisfied at time tk. There exists a feasible solution of IH-SP at
time tκ0

in which all the vehicles in Ntκ0 exit the supervision
area in finite time.

Note that theorem 3 only ensures that, at all times, there
exists a solution where all the vehicles inside the supervision
at this particular time eventually exit. However, there is no
guarantee that such a solution will actually be selected, for
instance if one driver wishes to stop although there is no
other vehicle. There is also no fairness guarantee, i.e. it is
possible that one vehicle is forced to remain stopped for an
arbitrarily long time, for instance if there is a very heavy
traffic coming from another direction. Future developments
will focus devising more complex objectives function to take
traffic efficiency and fairness into account.

D. Multiple paths choices

The above formulation assumes that the path of each vehicle
is known in advance. However, this may not be realistic in the
context of semi-autonomous cars where drivers can decide to
change paths, for instance to avoid an obstacle on the road or
use another itinerary. Using additional variables to indicate the
path to which a vehicle is assigned, our formulation can be
extended to handle multiple possible paths for each vehicle.
Due to length limitations, this extension will be detailed in
future work.

V. FINITE HORIZON FORMULATION

In Section IV-C, we presented an infinite horizon formu-
lation to solve the minimally deviating supervision problem.
However, due to the infinite number of variables, this formu-
lation is not suitable for practical resolution. In this section,
we derive an equivalent finite horizon formulation that can be
implemented and solved using standard numerical techniques.

In what follows, we let K ≥ 1 and we denote by FH-SPK
the restriction of IH-SP at time tκ to the variables at steps k
with κ ≤ k ≤ κ+K, and we only consider the constraints (4)
to (18) up to step κ+K. The objective function is unchanged.
A solution to FH-SPK at time tκ allows to compute a control
preventing collisions up to time tκ +Kτ ; however, due to the
dynamics of the vehicles, the state reached at tκ + Kτ may
not be safe. Since FH-SPK only has a subset of the constraints
of IH-SP, we can formulate the following proposition:

Proposition 1. Let K ≥ 1 and let X be a solution of IH-SP
at step κ. The restriction of X to the first K + 1 time steps is
a feasible solution to FH-SPK .
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Using the global bounds ua, ub, umax and vmax defined in
section III-A4, we will now prove a reciprocal implication to
proposition 1: if K is chosen large enough, any solution of
FH-SPK can be used to construct a solution of IH-SP.

As presented in [36], the key idea of the proof lies in
the choice of a planning horizon long enough to allow any
vehicle to fully stop. The structure of the demonstration is as
follows: lemma 1 gives a lower bound on the time horizon to
allow a single isolated vehicle to stop using discrete dynamics,
although with a potential risk of rear-end collisions from
following vehicles. In proposition 2, we give a slightly higher
bound on the time horizon ensuring that all vehicles in a
line can all safely stop without rear-end collisions. Finally,
in proposition 3 we give a bound on K ensuring the recursive
feasibility of FH-SPK ; this allows formulating theorem 4,
stating the equivalence of FH-SPK and IH-SP. In this section,
we only present sketches of proofs for each result; detailed
demonstrations can be found in Appendix A-B.

Lemma 1. At a time tκ, consider a horizon T = Kτ with
T ≥ vmax

|ub| +τ . Let i ∈ Ntκ be a vehicle for which there exists
a piecewise-constant control (uki )κ≤k<κ+K such that, for all
κ ≤ k < κ+K, uki ∈ [ui, ui], corresponding to a dynamically
feasible trajectory si(t) over [tκ, tκ + T + τ ].
There exists a discrete control (ũki )κ≤k≤κ+K such that for all
κ ≤ k ≤ κ+K, uki ∈ [ui, ui] and ũκi = uκi , and for which the
corresponding dynamically feasible trajectory t 7→ x̃i(t) =
(s̃i(t), ṽi(t)) verifies s̃i(tκ + T + τ) ≤ si(t1 + T ) and ṽi = 0
over [tκ + T, tκ + T + τ ].

Sketch of proof. vmax
|ub| is an upper bound on the required time

for any vehicle to stop by applying a control ub, which by
definition is dynamically feasible. The additional τ accounts
for the fact that we require ũκi = uκi at the first time step.

In the following proposition and noting d·e the ceiling
function, we prove a bound ensuring that a line of vehicles
can safely stop before the leader reaches its final computed
position at the end of the time horizon, without risk of rear-
end collisions:

Proposition 2. At a time tκ, suppose that p vehicles of Ntκ
(denoted by 1, . . . , p from rear to front) are following one
another. Consider a horizon Tstop = Kstopτ ≥ vmax

|ub| + (p −
1)
(

1 +
⌈
umax
|ub|

⌉)
τ + τ , and assume that every vehicle i ∈

{1, . . . , p} has a safe discrete control (uki )κ≤k<κ+K such that,
for all κ ≤ k < κ+K, uki ∈ [ui, ui]. We let t 7→ xi(t) be the
trajectory over [tκ, tκ + T ] for vehicle i under control (uki ).
For all i ∈ {1, . . . , p}, there exists a safe discrete control
(ûki )κ≤k≤κ+K such that for all κ ≤ k ≤ κ+K, uki ∈ [ui, ui],
ûκi = uκi and for which the corresponding dynamically feasible
and safe trajectory t 7→ x̂i(t) = (ŝi(t), v̂i(t)) verifies ŝi(tκ +
T + τ) ≤ si(t1 + T ) and v̂i = 0 over [tκ + T, tκ + T + τ ].

Sketch of proof. The worst case that needs to be taken into
account corresponds to a situation where the initial states of
the vehicles require each of them to accelerate in order to
avoid a rear-end collision from the vehicle behind. This rather
extreme situation happens when a vehicle goes faster than the

one it is following, and the two are too close to allow a safe
deceleration. In this case, the rearmost vehicle can always
brake with the control from lemma 1, until it decelerates
below the speed of the vehicle in front of it. The second
rearmost vehicle can then decelerate, then the third and up to
the front-most vehicle. The term

(
1 +

⌈
umax
|ub|

⌉)
τ arises from

the piecewise-constant control hypothesis, and vanishes as τ
goes to 0. Note that the condition Kstopτ ≥ vmax

|ub| + vmax
ua

+ τ
also provides the same guarantees; depending on the value of
p, this second bound might be more efficient.

Remark 1. The bound from proposition 2 depends on the
number of vehicles in a line, and can become quite high when
p is large. It can be proven that the condition Kstopτ ≥ vmax

|ub| +
vmax
ua

+ τ also provides the same guarantees; depending on
the value of p, this second bound might be more efficient.

We can now prove the recursive feasibility of FH-SPK for
a large enough K, as follows:

Proposition 3. Consider a time tκ, and assume that at most
p vehicles are following one another at all times t ≥ tκ. We
set d = maxt≥tκ,i∈Nt

(
s⊥i − sacci

)
and we let Tstop be the

stopping horizon from proposition 2 for p vehicles; moreover,
we define Trec = Krecτ ≥ Tstop + vmin

ua
+ d

vmin
+ τ . We

assume that all vehicles of Nt for all t > tκ enter safely with
a margin τ .

Problem FH-SPKrec is recursively feasible under the hy-
potheses of theorem 2, i.e. if there exists a solution to FH-
SPKrec at time tκ for the vehicles of Ntκ , there exists a
solution at tκ + τ for the vehicles of Ntκ+τ .

Sketch of proof. The idea between the choice of Trec is to
ensure that each vehicle can either stop safely before entering
its acceleration region (without generating rear-end collisions),
or has already planned to exit its no-stop region safely.
Moreover, the safe entering hypothesis ensures that the entry
of new vehicles does not invalidate previously safe solutions,
which can therefore be extended.

We obtain the equivalence between IH-SP and FH-SPK :

Theorem 4. Problems IH-SP and FH-SPK with Kτ ≥ Trec
are equivalent, i.e. an optimal solution to one is also an
optimal solution to the other.

Proof. Proposition 1 ensures that any optimal solution to IH-
SP is a feasible solution of FH-SPK . Proposition 3 shows that
a solution to FH-SPK (with Kτ ≥ Trec) can be recursively
extended to a solution of IH-SP; therefore, the optimal solution
of FH-SPK is feasible for IH-SP. Using these two results, we
deduce the stated theorem.

An important corollary of theorems 1, 3 and 4 is that the
control obtained by solving FH-SPK with K large enough is
also a solution to the minimally deviating supervision problem,
and ensures deadlock avoidance as well. Contrary to IH-SP,
FH-SPK is relatively easy to solve with dedicated mixed-
integer quadratic programming solvers, as will be demon-
strated in the following section.
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VI. SIMULATION RESULTS

A. Simulation environment
The presented Supervisor framework has been validated

using extensive computer simulations on various test scenar-
ios. In the absence of standardized test situations and since
no open-sourced implementation of comparable methods [7],
[8] is available, this section does not aim at a quantitative
comparison with existing algorithms. Since our Supervisor is
by design guaranteed to output an optimal1 safe control, the
major evaluation criterion is rather its ability to handle a wider
variety of traffic scenarios than existing techniques, which is
demonstrated in the rest of this section.

Due to implementation reasons, the resolution of the su-
pervision problem is performed off-line and simulations are
run in two successive phases. In the first phase, we define
the geometry of the roads inside the supervision area and the
corresponding possible paths, and compute the collision and
acceleration regions information for each pair of paths. Since
these sets only depend on the geometry of vehicles and paths,
the corresponding parameters are computed off-line.

In the second phase, we run the simulation by coupling the
high-fidelity vehicle physics simulator PreScan [39] with an
external Python implementation of our supervisor. The actual
resolution uses the commercial MIQP solver GUROBI [35];
the Python program runs a coarse simulation over a set time
horizon with a fixed time step duration. Vehicles are generated
using random Poisson arrivals, with a predefined arrival rate
for each possible path, while respecting the safe entering con-
dition; the initial velocity of each generated vehicle is chosen
randomly according to a truncated Gaussian distribution. At
each time step, the finite horizon supervision problem FH-SP
is solved for the vehicles inside the supervision area, and yields
the best safe control for the set of vehicles. The state of these
vehicles at the next time step is then computed according to
equations (4) and (5).

In parallel, we use PreScan to validate the consistency of
this output: from the safe controls computed in the Python
supervisor and knowing the reference paths of the vehicles, we
compute a target state comprising a desired position, heading
and longitudinal velocity for each vehicle. This target state is
fed into a low-level controller which outputs a steering and an
acceleration or braking control. The vehicle model used in the
validation phase takes into account engine response as well as
chassis and suspensions dynamics, but does not model road-
tire friction. PreScan’s collision detection and visualization
capacities are then used to validate the absence of collision
or dangerous situations. Note that vehicles controllers are
designed to ensure a bounded positioning error for any vehicle,
relative to their prescribed path and velocity profile. This
error is taken into account in the computation of the collision
regions, so that the system is robust to control imperfections.

B. Test scenarios
In the rest of this section, we consider three test scenarios

– chosen to represent a wide variety of driving situations –

1Among the set of piecewise-constant controls with a given time step
duration and in the sense of Definition 4
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Fig. 5. Vehicles positions and velocities in the merging scenario; solid lines
correspond to vehicles on the entry lane, dashed lines to vehicles starting on
the highway. The thick colored portions show overriding intervals.

consisting of merging on a highway, crossing an intersection
or driving inside a roundabout. To showcase the performance
of our framework in avoiding accidents and deadlocks, we
assume that drivers are “oblivious” and focused on tracking a
desired speed, regardless of the presence of other vehicles. A
video of the presented simulations is available online2.

1) Highway merging: We first consider a very simple
highway merging scenario, where an entry lane merges into
a single-lane road; the possible paths for the vehicles are the
same as in fig. 2c. The collision region between a vehicle
i in the entry lane and a vehicle j on the highway have a
single connected component given as s⊥ij = s⊥ji = 89 m and
sij = sji = 94 m, taking control errors into account.

To illustrate the action of the supervisor, we consider a
set of six vehicles, three of which are on the highway and
three on the entry lane. All vehicles are assumed to have
“oblivious” drivers maintaining a constant speed, thus resulting
in potential collisions. This admittedly unrealistic behavior
has been chosen to generate a higher probability of collisions
in absence of supervision. Figure 5 shows the longitudinal
trajectories of the supervised vehicles; colored (thick) portions
of the lines represent intervals of time during which overriding
occurs. The area in gray corresponds to the collision region
between entering vehicles and vehicles on the highway; thanks
to the action of the supervisor, all collisions are successfully
avoided.

2) Intersection crossing: The second scenario is the cross-
ing of a + shaped intersection by a total of eight vehicles,
with two vehicles per branch. In each branch, the front vehicle
goes straight, and the rear vehicle turns left; moreover, all
vehicles in front start at the same distance from the center of
the intersection, and the same is true for the vehicles in the

2Available at https://youtu.be/JJZKfHMUeCI



10

0 2 4 6 8 10 12 14
0

20

40

60

80

0 2 4 6 8 10 12 14
0

20

40

60

80

Time (s)

Po
si

tio
n

(m
)

(a) Longitudinal positions; the shaded area is the collision region.

0 2 4 6 8 10 12 14
0

5

10

15

20

0 2 4 6 8 10 12 14
0

5

10

15

20

Time (s)

Sp
ee

d
(m

/s
)

(b) Longitudinal velocities

Fig. 6. Vehicles positions and velocities in the intersection crossing scenario;
solid lines correspond to vehicles on the entry lane, dashed lines to vehicles
starting on the highway. The thick colored portions show overriding intervals.
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Fig. 7. Illustration of three possible classes of trajectories found by the solver,
depending on the initial states of the vehicles. Trajectories 1 and 2 correspond
to one vehicle passing the two collision points before the other. Trajectory 3
corresponds to the case where the vehicle on the inner lane enters after the
other, and overtakes it inside the roundabout.

rear. This scenario illustrates the symmetry-breaking capacities
of our framework, which handles this perfectly symmetrical
scenario well, as shown in fig. 6. The area in gray corresponds
to the collision region between vehicles on different branches.
A video of a longer, one hour simulation is available also
online3.

3) Roundabout driving: Finally, the third scenario consists
of vehicles driving inside a two-lanes roundabout. The par-
ticularity of this situation is that collision regions can have
multiple connected components, for instance for the paths
shown in fig. 2b. Since our formulation explicitly distinguishes
each of these connected components, the supervisor is able to
choose an ordering for each point of conflict, as illustrated in
fig. 7: depending on the initial states and control targets of the

3https://youtu.be/cl32nbceZvw

vehicles, a different class of solution is chosen. A video of a
longer, one hour simulation is also available online4.

4) Computation time: Due to the relatively short time hori-
zon needed to ascertain infinite horizon safety, computation
time remains reasonable despite the NP-hardness of the MIQP
formulation. Figure 8 shows the evolution of the computation
time in the intersection crossing and roundabout scenarios; the
limited available space in the merging scenario does not allow
enough vehicles for a similar diagram. These measurements
have been obtained on a computer equipped with an Intel
Core i7-6700K CPU clocked at 4 GHz with 16 GB of RAM,
using the GUROBI solver in version 7.0. It can be seen that
computation time remains below the duration of a time step
in 90% of cases for up to approximately ten simultaneous
vehicles, thus allowing real-time computation at 2 Hz.

Note that the MIQP problem only loosely depends on the
paths geometry, but rather on the average number of conflicts
per vehicle which is higher in the case of roundabout driving,
thus explaining the longer times reported in fig. 8b. Moreover,
the implemented algorithm has been devised for readability
over efficiency, and can be optimized by removing redundant
variables to further reduce computation time. In practice, this
refresh rate means that vehicles could apply a new acceleration
every 0.5 s, which is faster than the typical reaction time of
one second for a human driver, and should therefore be barely
perceived. Note that for practical implementation purposes,
the input of the supervisor should be predicted states at the
end of the computation period instead of current states; since
the acceleration of each vehicle is assumed to be known to
the supervisor, these predictions can be easily performed by
forward integration.

VII. DISCUSSION ON IMPLEMENTATION

In the previous sections, we presented an optimization-based
algorithm for the supervision of semi-autonomous vehicles;
we now briefly discuss obstacles and possible solutions for
actual implementation. First and foremost, not all vehicles will
be equipped with the required communication capacities at
the same time; therefore, the ability to deal with unequipped
vehicles and other traffic participants is key to envision actual
applications. Second, this work assumes perfect communica-
tion and control, and in general ignores uncertainties arising
from real-world constraints.

A. Dealing with unequipped vehicles

As with all innovations, the penetration rate of our system
would gradually increase overtime, but remain below 100 %
for years, yet the formulation proposed in Section IV re-
quires all vehicles to be equipped with supervision capacities.
Although a detailed study on the integration of unequipped
vehicles in our framework is out of the scope of this paper, we
present a possible technique to handle these vehicles provided
that they can avoid longitudinal collisions with the leading
vehicle, and have a bounded reaction time.

First, note that it is always possible to consider unequipped
vehicles conservatively as proposed in [40]: at a given step k,

4https://youtu.be/pLoG32wFnkE
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Fig. 8. Distribution of computation times depending on the number of
vehicles, for τ = 0.5 s. Shaded areas represent the [0, 90%] percentiles.

we compute the minimum and maximum curvilinear position
that can be reached at time tk by the unequipped vehicle iu,
denoted by skiu,min and skiu,max respectively. Using the same
notations as in Section IV, we then define:

εiuj,p(k) = χ[siuj,p,+∞[(s
k
iu,max), (20)

ε⊥iuj,p(k) = χ[s⊥iuj,p,+∞[(s
k
iu,min). (21)

Therefore, the unequipped vehicle is considered as occupying
the conflict region at step k when there exists a control
(maximum acceleration) for which it could be inside this
region at step k. Similarly, the vehicle is only considered
as liberating the conflict region when, even by applying a
maximum braking, it would exit it. The collision avoidance
constraints (9) and (10) are also modified to use sk+1

iu,min
and

vk+1
iu,min

, where vk+1
iu,min

is the minimum speed reachable by iu
at k + 1. Other traffic participants such as cyclists (and, to a
lesser extent, pedestrians) could also be taken into account in
this fashion. Recently proposed “non-conservatively defensive
strategies” [41] could also be applied.

A limitation of this simple approach is that it can lead
equipped vehicles to often yield right-of-way to unequipped
vehicles, which may be problematic and can slow the accep-
tance of the system. A possible method (introduced in [42])
to reduce this problem while improving the global level of
safety is to use the existing equipped vehicles to force the
unequipped ones to stop when required. Suppose that an
unequipped vehicle (denoted by iu) follows an equipped one
(ie), both crossing the path of another equipped vehicle je.
By setting πieje = 0 (thus requiring je to pass before ie), we
effectively force the unequipped vehicle iu to also pass after
je; the reaction time of the unequipped vehicle can be taken

into account by adjusting the lower bound on the longitudinal
acceleration of vehicle ie.

Note that this approach still guarantees that no collision
can happen between an unequipped and an equipped vehicle;
moreover, as the penetration rate of equipped vehicles in-
creases, additional rules may be enforced to reduce the number
of occurrences in which conflicting unequipped vehicles are
simultaneously allowed in the conflict region, thus increasing
safety even for the unequipped vehicles. Future work will
study the impact of penetration rate on safety and efficiency
for both equipped and unequipped vehicles.

B. Practical implementation
We propose a centralized implementation, where a roadside

computer (supervisor) with communication capacities is added
to the infrastructure, and is tasked with repeatedly solving
FH-SPK . Note that resolution could also be performed using
cloud computing, possibly providing much faster computations
without necessitating fully dedicated hardware. The supervisor
is also assumed to be equipped with a set of sensors (e.g.,
cameras), so that the arrival of new vehicles in the supervision
area can be monitored (in order to account for unequipped
vehicles and other traffic participants). Equipped vehicles are
supposed to regularly communicate their current state, includ-
ing position, velocity and driver’s control input, and receive
instructions (the safe acceleration sequence (uki ) solution of
FH-SPK) from the roadside supervisor. The vehicle’s on-board
computer then uses these instructions to override the driver’s
control inputs when needed. We argue that the main sources
of uncertainty, i.e. communication, sensing and control errors,
can be taken into account by using safety margins when
computing collision regions.

Communications are assumed to have similar performance
to current 802.11p specifications; we use the figures provided
in [43], [44] as reference, with latency below 20 ms, and
packet loss probability of less than 30 % under 300 m. To ac-
count for network congestion, we use more conservative values
than those reported experimentally in [44]. Moreover, using
the additional roadside sensors, we estimate that uncertainty
in each vehicle’s localization could be reduced to below 1 m
longitudinally.

First, the 20 ms latency corresponds to less than 1 m at
highway speed. Second, since they do not require exchanging
a lot of data, such messages can be sent much more frequently
than the refresh rate of the supervisor. Considering messages
can be sent at 20 Hz, the probability of a message not being
received in 0.25 s is roughly 0.2 %, and 6× 10−6 after 0.5 s.
Since they receive a whole sequence of safe accelerations,
individual vehicles can keep executing this sequence until
a new one is successfully received. A worst-case scenario
would be having one vehicle using acceleration ua (maximum
acceleration) where it should have used ub (maximum brak-
ing): after a duration t, the corresponding positioning error is
1
2 t

2(ua + |ub|), which is roughly 30 cm after 0.25 s and 1.3 m
after 0.5 s for typical values of ua and |ub| of 5 m s−2. More
robust contingency protocols could likely be developed, and
will be the subject of future work, but these values can be
used as safety margins without compromising performance.
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Similarly, positioning and control uncertainty can be ac-
counted for as margins in the collision regions, provided they
can be bounded. In this work, we assume that vehicle self-
positioning can be improved using the roadside sensors from
the supervisor (which can be precisely calibrated), which could
provide relatively tight bounds on error.

VIII. CONCLUSION

In this article, we designed a framework allowing safe semi-
autonomous driving of multiple cooperative vehicles in various
traffic situations. We first introduce a set of linear constraints
ensuring infinite horizon safety for a group of human-driven
vehicles, traveling inside predefined corridors with the help
of existing lane-keeping technologies. Based on this set of
constraints, a discrete-time Supervisor is allowed to override
the drivers’ longitudinal control inputs if they would lead the
vehicles into an inevitable collision state. In this case, the
control used for overriding is chosen as close as possible to the
one originally requested by the drivers. These two properties
ensure that intervention only occurs when strictly necessary to
maintain safety, thus facilitating the acceptation of the system
by human drivers.

Theoretical considerations prove this supervisor guarantees
both safety and deadlock avoidance, and can be applied with-
out distinction to multiple situations such as traffic intersec-
tion, highway entry lanes or roundabouts. Using the realistic
vehicle physics simulator PreScan, we demonstrated that our
algorithm can handle complex situations over an arbitrary
duration, with continuous arrivals of vehicles. Moreover, the
proposed formulation can be solved in real-time on a standard
desktop computer for up to ten vehicles, which makes it
suitable for practical applications.

Additionally, this work opens up many perspectives for
future research. First and foremost, the current framework
does not deal with non-equipped vehicles or other traffic
participants such as cyclists or pedestrians, nor does it take
sensor and communication uncertainties into account. Before
considering an actual implementation, the system should be
more robust to these various sources of noise. Moreover, our
formulation has been designed in a mostly centralized fashion;
various approaches need to be explored to design a more
realistic decentralized system, that could be implemented in
actual cars.

APPENDIX A
DEMONSTRATIONS

A. Proofs for Section IV

Before proving theorem 3, we introduce the following
lemma stemming from graph theory:

Lemma 2. Let G = (V,E) a directed graph with vertices
set V and edges set E. All cycles in G can be removed by
reversing a set of edges, each of them contributing to at least
one cycle.

Proof. The proof is based on the existence of minimum
feedback arc sets [45], i.e. a minimum set Efeedback ⊂ E
such that G′ = (V,E \ Efeedback) is acyclic. By minimality

of Efeedback, any e ∈ Efeedback belongs to at least one cycle
of G. Moreover, it can be seen that reversing the edges of
Efeedback also leads to an acyclic graph, thus proving the
lemma.

Proof of Theorem 3. Note that the only constraints requiring
a vehicle to stop are (8) to (10), forcing a vehicle j to wait for
a vehicle i with πpij = 1. From the hypotheses and theorem 2,
there exists a solution X to IH-SP at time tκ0

. We define a
directed priority graph GX = (V,E) with V = Ntκ0 and
where an edge i→ j belongs to E if there exists p such that
πpij = 1. Using this representation, a cycle in GX corresponds
to a chain of q conflicting vehicles i1, i2, . . . , iq, iq+1 = i1 for
which there exists a connected component Cpninin+1

such that
πpninin+1

= 1 for all n = 1 . . . q.
If GX is acyclic, it defines a (partial) topological order, and

it is always possible to admit the vehicles one by one in that
order. Therefore, there exists a feasible solution where all the
vehicles of Ntκ0 exit the supervision area in finite time.

We now assume that there exists at least one cycle in GX. If
all the vehicles involved in the cycle can exit in finite time, the
result of the theorem is proven. Otherwise, we note Ndead ⊂
Ntκ0 a set of vehicles corresponding to a cycle in GX: all
of these vehicles are stopped at infinity, and are prevented to
move further by a constraint of form (8), for a certain j ∈
Ndead. Moreover, the no-stop condition (17) ensures that, for
all i ∈ Ndead and all k ≥ κ, ski ≤ s⊥i .

From lemma 2, we know that it is possible to change the
values of the variables πpij for i, j ∈ Ndead to render GX
acyclic. Using the fact that ski ≤ s⊥i for all of these vehicles,
we know that modifying these priorities does not violate
constraints (8) to (10). Therefore, we can build a solution X′

for which the corresponding priority graph is acyclic, which
proves the theorem.

B. Proofs for Section V

Proof of Lemma 1. The proof is trivial if we consider
continuous-time dynamics, as a single vehicle can always
apply a control lower or equal to ub starting from time tk+τ ,
which ensures it is stopped for t ≥ tk + τ + vmax

ub
. A slight

additional complexity happens at the final braking time step
when considering piecewise-constant controls, applying ub for
a duration τ might result in a negative velocity, which is not
allowed in our framework. We now proceed to the formal
proof, as below.

Let (uki ) be the control corresponding to trajectory si, and
let us define a control (wki ) as: wκi = uκi , wki = min(ub, u

k
i )

for κ < k < κ + K, and wκ+Ki = ub. We construct
(ũki ) iteratively as ũκi = uki and, for k ≥ κ + 1, ũki ={

wki if ṽki + wki τ ≥ 0

− v
k
i

τ otherwise
, where ṽki is the speed of vehicle

i at time tk under control (ũki ).
As ṽκ+1

i = vκ+1
i ≤ vmax ≤ (K − 1)τ |ub| from the

hypothesis, there exists a minimal value of k0 ≥ κ such
that ṽk0i ≤ |ub|τ ; moreover, the condition on K ensures that
ṽκ+1
i − (K−2)|ub|∆t ≤ |ub|∆t, and so k0 ≤ (κ+ 1) + (K−

2) = κ+K − 1.
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Fig. 9. Illustration of the “overshoot” phenomenon; the vertical grid corre-
spond to integer multiples of the time step.

From the definition of (ũki ), we know that for all k0 + 1 ≤
k ≤ κ + K, ṽki = 0. Since ũki ≤ uki for κ ≤ k ≤ k0 − 1,
we also know that s̃k0i ≤ sk0i and ṽk0i ≤ vk0i . Finally, ũk0i is
the minimal admissible control starting from x̃k0i ; therefore,
s̃k0+1
i ≤ sk0+1

i = sκ+Ki which proves the above lemma.

Proof of Proposition 2. We first consider the continuous-time
case to give an intuition of the proof. We build upon the
fact that the rearmost vehicle in a line can always brake with
acceleration ub until it fully stops. However, some the initial
conditions may require vehicles in front to accelerate in order
to avoid collisions, for instance if the rearmost vehicle is too
fast. However, even in this case, we know that the second
rearmost vehicle can brake with ub as soon as it has matched
the speed of the rearmost vehicle, and by induction this is true
for all the vehicles in the line. In the continuous-time case, all
of these vehicles can therefore stop in a time bounded by vmax

|ub| .
When considering piecewise-continuous controls, an addi-

tional complexity arises from the fact that vehicles may match
speed between two time steps, resulting in an “overshoot”
in velocity. We use the hypotheses on the acceleration to
bound this overshoot, as illustrated in fig. 9: we consider a
fast vehicle (noted 1, blue curve) following a slower vehicle
(noted 2, red curve). To avoid collisions, vehicle 2 is required
to accelerate; vehicles match speed at time t2→1; however,
due to the time discretization, the overshoot phenomenon can
occur. Using the bounds on the acceleration, noting k2→1

the time step immediately following t2→1, we know that
vk2 ≤ vk1 + τ(umax + |ub|). Moreover, after step k, vehicle
2 can brake with a control ub up to time t1, corresponding to
the first integer time step k1 when vk11 ≤ τ |ub|. Since both
vehicles 1 and 2 have the same acceleration of [t2→1, t1], we
know that vk12 ≤ τ |ub| + τ(|ub| + umax). Therefore, noting
k2 = k1 + 1 +

⌈
umax
|ub|

⌉
, we know that vk22 ≤ τ |ub|. The

same reasoning can then be repeated for the vehicles preceding
vehicle 2. We will now formalize this recursion, as below.

We will prove by induction that, for i ∈ {1, . . . , p}, there
exists a dynamically feasible control (ûki ) with ûκi = uκi and
ûki ≤ uki for k ≥ κ such that the corresponding vehicle speed
(v̂ki ) verifies v̂κ+Kii ≤ |ub|τ with Kiτ =

⌈
vmax
|ub|

⌉
+ (i −

1)
(

1 +
⌈
umax
|ub|

⌉)
τ . First, for the rearmost vehicle i = 1, the

proof of lemma 1 provides the result with ûki = ũki .

We now let i ≥ 2 and assume that every vehicle j ∈
{1, . . . , i−1} follows its corresponding control (ûkj ). We note
ŝkj and v̂kj the position and speed of vehicle j at step k under
this control. Since ûkj ≤ ukj for these vehicles, we deduce from
the monotony of the system that the original control solution
for vehicle i (uki )κ≤k<κ+K prevents rear-end collisions if
vehicle i − 1 applies (̂uki−1). Therefore, any dynamically
feasible extension of (uki ) is safe over [κτ, (κ + K + 1)τ [.
As a result, the set Usafei (uκi , [κ, κ + K]) of all admissible
controls (ûki )κ≤k≤κ+K for vehicle i such that ûκi = uκi and
uki ≤ ûki ≤ uki for κ ≤ k < κ + K is not empty. We note
(ûki ) a minimum element of this set (and so ûki ≤ uki ); we
will prove that v̂κ+Kii ≤ |ub|τ .

If for all k ≥ κ, v̂ki ≤ ṽki−1, we conclude that vehicle i stops
before vehicle i−1 which proves the result from the induction
hypothesis. Otherwise, we let ki0 ≥ κ be the minimum k such
that v̂ki ≥ ṽki−1, and we know that v̂k

i
0
i ≤ v̂

ki0−1
i−1 + umaxτ .

For all k ≥ ki0, we know from the monotony of the system
that the control min(ûki−1, u

k
i , ub) prevents rear-end collisions;

we deduce that, for k ≥ ki0, v̂ki ≤ v̂k−1i−1 + umaxτ . Therefore,
v̂
κ+Ki−1+1
i ≤ v̂Ki−1

i−1 +umaxτ and we deduce from the induc-
tion hypothesis that v̂κ+Ki−1+1

i ≤ umaxτ + |ub|τ . Therefore,
we obtain the recursion relation Ki = Ki−1 + 1 +

⌈
umax
|ub|

⌉
which yields the announced result.

Finally, we conclude that vehicle i can fully stop (without
rear-end collisions) at step κ+Ki + 1; therefore the set of p
vehicles can safely stop before the beginning of step κ+K if
K ≥ Kp = vmax

|ub|τ + (p − 1)
⌈
umax
|ub|

⌉
+ 1. Since the recursion

ensures that for all i and k, ûki ≤ uki , we deduce that sκ+Ki ≤
ŝκ+Ki which proves the proposition.

Note that the time needed for vehicles to match speeds
can also be bounded by vmax

ua
regardless of the value of p.

Therefore, all vehicles can also fully stop within the time
horizon if T = Kτ ≥ vmax

|ub| + vmax
ua

+ 2τ . Depending on
the value of p, this bound may be better than the previously
demonstrated one.

Proof of Proposition 3. We consider a time tκ = κτ , and we
let Trec = Krecτ ≥ Tstop + vmin

ua
+ d

vmin
+ τ . Consider a

solution X of FH-SPKrec for the vehicles of Ntκ , defined for
steps κ ≤ k ≤ κ + K. We will first show that this solution
can be extended to a solution of FH-SPK+1 for the vehicles
in Ntκ . Note that the only constraints which can be unfeasible
are the safety constraints (8)-(10) and the minimum velocity
constraints (16) and (17). Consider a vehicle i ∈ Ntκ : using
the control corresponding to this solution, two cases can arise:
• si(Tstop) ≤ sacci , in which case proposition 2 ensures

that i and all the vehicles behind it can fully stop before
reaching sacci , and can remain stopped up to step Krec+1.
Since we also require that saccj ≥ sacci if j follows i, this
ensures that keeping i and its followers stopped satisfies
all the above constraints;

• otherwise, si(Trec) ≥ s⊥i , in which case the crossing
and minimum velocity constraints (8), (16) and (17) are
satisfied for all conflicting vehicle j up to step Krec.
The requirement Trec ≥ Tstop and proposition 2 ensure
that the safe following constraints (9) and (10) involving
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vehicle i remain satisfiable for the vehicles of Ntκ up to
step Krec + 1.

Indeed, if s⊥i ≥ si(Tstop) > sacci , condition (16) ensures that
vehicle i accelerates at least with acceleration ua until reaching
speed vmin, which takes at most a time vmin

ua
. The vehicle is

then required to maintain speed vmin until reaching s⊥i , which
takes at most a time d

vmin
. Therefore, vehicle i necessarily

reaches s⊥i by time Trec; the additional τ accounts for vehicles
reaching doing so between two time steps.

The above considerations ensure that the solution of FH-
SPK at time tκ can be prolongated to a solution of FH-SPK+1

for the vehicles of Ntκ . Finally, noting that the safe entry
hypothesis ensures that this solution remains safe even when
taking the vehicles of Ntκ+τ \ Ntκ into consideration. By
definition, there also exists a safe control (and therefore a
solution to FH-SPK) for these vehicles at time tκ + τ . As
a result, there exists a solution to FH-SPK at time tκ + τ for
the vehicles of Ntκ+τ which proves the stated result.
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[28] T. Siméon, S. Leroy, and J. P. Laumond, “Path coordination for multiple
mobile robots: A resolution-complete algorithm,” IEEE Transactions on
Robotics and Automation, vol. 18, no. 1, pp. 42–49, 2002.

[29] J. Peng, “Coordinating Multiple Robots with Kinodynamic Constraints
Along Specified Paths,” The International Journal of Robotics Research,
vol. 24, no. 4, pp. 295–310, apr 2005.

[30] E. R. Müller, R. C. Carlson, and W. K. Junior, “Intersection control for
automated vehicles with MILP,” IFAC-PapersOnLine, vol. 49, no. 3, pp.
37–42, 2016.

[31] J. Park, S. Karumanchi, and K. Iagnemma, “Homotopy-Based Divide-
and-Conquer Strategy for Optimal Trajectory Planning via Mixed-
Integer Programming,” IEEE Transactions on Robotics, vol. 31, no. 5,
pp. 1101–1115, 2015.

[32] F. Borrelli, D. Subramanian, A. Raghunathan, and L. Biegler, “MILP
and NLP Techniques for centralized trajectory planning of multiple
unmanned air vehicles,” in 2006 American Control Conference. IEEE,
2006, pp. 5763–5768.

[33] S. Cafieri and N. Durand, “Aircraft deconfliction with speed regulation:
New models from mixed-integer optimization,” Journal of Global Op-
timization, vol. 58, no. 4, pp. 613–629, 2014.

[34] N. Murgovski, G. R. de Campos, and J. Sjoberg, “Convex modeling of
conflict resolution at traffic intersections,” in 2015 54th IEEE Conference
on Decision and Control (CDC). IEEE, dec 2015, pp. 4708–4713.

[35] Gurobi Optimization, Inc., “Gurobi optimizer reference manual,” 2015.
[Online]. Available: http://www.gurobi.com
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[37] P. Polack, F. Altché, B. d’Andréa-Novel, and A. de La Fortelle, “The
Kinematic Bicycle Model : a Consistent Model for Planning Feasible
Trajectories for Autonomous Vehicles ?” 2017 IEEE Intelligent Vehicles
Symposium (IV), no. IV, 2017.
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