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Partitioning of the Free Space-Time for On-Road Navigation of
Autonomous Ground Vehicles

Florent Altché2,1 and Arnaud de La Fortelle1

Abstract— In this article, we consider the problem of trajec-
tory planning and control for on-road driving of an autonomous
ground vehicle (AGV) in presence of static or moving obstacles.
We propose a systematic approach to partition the collision-free
portion of the space-time into convex sub-regions that can be
interpreted in terms of relative positions with respect to a set
of fixed or mobile obstacles. We show that this partitioning
allows decomposing the NP-hard problem of computing an
optimal collision-free trajectory, as a path-finding problem in a
well-designed graph followed by a simple (polynomial time)
optimization phase for any quadratic convex cost function.
Moreover, robustness criteria such as margin of error while
executing the trajectory can easily be taken into account at the
graph-exploration phase, thus reducing the number of paths to
explore.

I. INTRODUCTION

In order to drive on public roads, autonomous ground
vehicles (AGVs) will be required to navigate efficiently
inside a potentially dense flow of other vehicles with uncer-
tain behaviors. For this reason, planning safe, efficient and
dynamically feasible trajectories that can be safely followed
by a low-level controller is a particularly important problem.

One of the difficulties of “optimal” trajectory planning
for AGVs is that the presence of obstacles renders the
search space non-convex, and multiple possible maneuver
variants (for which there is at least one locally optimum
trajectory [1]) exist, such as illustrated in Figure 1. At control
level, tracking the computed trajectory may involve highly
nonlinear vehicle dynamics when nearing the handling limits
(see, e.g., [2] for a review); in less demanding (low-slip)
scenarios, simpler dynamic models (some of which exhibit
the interesting flatness property [3], [4]) can be used.

Because they allow simultaneous trajectory generation
with obstacle avoidance and control computation, model
predictive control (MPC) approaches have been very popular
for AGVs (see, e.g., [5], [6]). However, real-time constraints
usually force authors considering very precise dynamic mod-
els to choose a short (sub-second) prediction horizon, which
may in turn cause the MPC problem to become infeasible,
for instance when a new obstacle is detected with not enough
time to stop. Even with simpler dynamic models, the non-
convexity of the state-space renders continuous optimization
techniques inefficient. For this reason, hierarchical frame-
works [7], [8] have been proposed, in which a medium-term
(up to a dozen seconds) planner generates a rough trajectory
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Fig. 1. Example driving situation involving multiple maneuver choices
for an AGV (denoted ev): overtake the slower (blue, denoted 1) vehicle
before the green vehicle (2) passes or wait behind the blue vehicle, possibly
overtaking after the green vehicle has passed. Solid arrows represent the
velocity of each vehicle, dotted arrows represent possible AGV trajectories.

which is then refined by a short-term (sub-second to a
few seconds) controller. Mixed-integer programming (MIP)
methods are often used in medium-term trajectory planning
to encode the discrete decisions arising from multiple ma-
neuver choices [9], [10], generalized as logical constraints
in [11]. However, MIP problems are known to be NP-
hard [12] and are therefore difficult to solve in real-time.

In this article, we propose a different approach for maneu-
ver selection, inspired by the use of graph-based coordination
of robots [13] and the decomposition of the collision-free
space presented in [14] for 2D path-planning. First, we
introduce a systematic algorithm to partition the collision-
free space-time into 3D regions with geometrical adjacency
relations; the structure of on-road driving allows to assign a
semantic interpretation to each partition subset. Using time
discretization, we further divide these regions into convex
polyhedrons, and design a transition graph in which any
path corresponds to a collision-free trajectory (that may
however be dynamically infeasible). The main advantage of
our approach is to reduce the entire combinatorial decision-
making process (choosing from which side to avoid each
obstacle) to the selection of a path in a graph. Once a path
in the graph has been selected, we show that computing
a corresponding optimal trajectory (for a quadratic convex
cost function) in an MPC fashion is widely simplified and
can be performed in polynomial time. Note, however, that
the number of edges in the transition graph still does grow
exponentially with the number of obstacles; future work will
focus on exploration heuristics that can be used to avoid
exploring inefficient paths.

A second advantageous property of our decomposition
approach is to simplify the use of risk metrics, which can be
directly taken into account at the graph exploration phase;
in [15], the authors used a similar partitioning technique
to design a “space margin” metric for 2D path planning.



In this article, we introduce a complementary time margin
metric, corresponding to a temporal tolerance to execute
a particular maneuver, that can be easily computed from
our graph representation. This measure is related to the
notion of “gap acceptance”, commonly used in stochastic
decision-making (see, e.g., [16]). We believe that combining
a temporal margin (notably accounting for uncertainty in
predicting the future trajectory of moving obstacles) as well
as a spatial margin (accounting for perception and control
errors) is key for trajectory planning and tracking in real-
world situations, for instance coupled with MPC or Linear
Quadratic Gaussian motion planning and control [17].

Our transition graph approach generalizes state-machine-
based techniques [18], [19] which rely on a predefined set of
maneuvers (such as track lane or change lane) that needs to
be manually adapted to the driving situation. By contrast, our
method can be applied in many scenarios (including highway
and urban driving, for instance crossing an intersection) with
the same formalism. Although spatio-temporal graphs have
already been used for the control of AGVs [20], [21], no
existing approach provides the same desirable properties, and
notably to easily account for margins in planning.

The rest of this article is structured as follows: in Sec-
tion II, we present intuitions of our main ideas using the
example scenario of Figure 1. In Section III, we formalize
these intuitions mathematically, and we present applications
of our results to planning and control for autonomous ground
vehicles in Section IV. Finally, Section V concludes the
study.

II. A GUIDING EXAMPLE

The goal of this section is to give an intuition of our main
mathematical results using the example scenario shown in
Figure 1; the formal mathematical theory is developed in the
next section. In our example, we consider an autonomous
ground vehicle (called ego-vehicle in the remainder of this
article) navigating on a road with two other vehicles (obsta-
cles). Intuitively, the ego-vehicle has three classes of maneu-
vers to choose from: either it can remain behind vehicle 1,
overtake it before vehicle 2 passes, or overtake it after vehicle
2 has passed; in [1], these maneuver choices are linked to
the notion of homotopy classes of trajectories. Assuming that
the future trajectory of the obstacles is known in advance,
it is possible to compute the obstacle set χo of (x, y, t)
positions of the ego-vehicle for which a collision exists at
time t; the complement of this set is the collision-free region
of the space-time (or free space-time), denoted by χf . Any
collision-free trajectory for the ego-vehicle corresponds to
a path in χf ; Figure 2 provides an illustration of the free
space-time in our example.

Due to the complex structure of the free space-time,
notably its non-convexity, this abstraction is difficult to
use directly to compute optimal collision-free trajectories.
Inspired by the work in [13] and [14], we propose a
decomposition of χf in convex subregions with adjacency
relations. First, we partition horizontal planes (corresponding
to fixed time instants) using relative positions with respect to
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Fig. 2. Free space-time χf (in white) corresponding to the situation of
Figure 1. Obstacles are pictured in the color of the corresponding vehicle.
Light-gray planes represent the road extent in the y direction. The thick
curves represent possible collision-free trajectories for the ego-vehicle.
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(a) t = t0 : adjt0 (lf, br) = 1, adjt0 (lb, fr) = 0
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(d) t = t3 : adjt3 (lf, br) = 0, adjt3 (lb, fr) = 1

Fig. 3. Partitioning of the 2D space at different times in our example
scenario, and adjacency relations adj. In this example, adjt(lb, br) =
adjt(lf, fr) = 1 and adjt is symmetrical at all times.

each obstacle as illustrated in Figure 3. Each subset of the
partition corresponds to positions where the ego-vehicle is
either located in front (f ), to the left (l), behind (b) or to the
right (r) of each obstacle. Using the additional information
given by road boundaries, this partitioning technique yields
four subsets denoted by (lb), (lf), (br) and (fr), indicating
the relative position of the ego-vehicle from obstacle 1 and
2 in this order. We call these labels signature of each subset.
Additionally, for two such subsets A and B at a given time
t, we can define an adjacency relation adjt (related to that
of [14]), such that adjt(A,B) = 1 if the intersection of their
closures is not empty, i.e. Ā ∩ B̄ 6= ∅.

This partitioning method can be generalized to the three-
dimensional space-time by using unions of regions sharing
the same signature, as shown in Figure 4. The notion of
adjacency described above can be extended, and we let
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Fig. 4. Partitioning of the free space-time of Figure 2 into four cells. The
legend gives the signature of each cell, with blue obstacle first.

TABLE I
VALIDITY SETS Adj(A,B)

br fr lb lf

br [t0,+∞) ∅ [t0,+∞) [t0, t1)
fr ∅ [t0,+∞) (t2,+∞) [t0,+∞)
lb [t0,+∞) (t2,+∞) [t0,+∞) ∅
lf [t0, t1) [t0,+∞) ∅ [t0,+∞)

Adj(A,B) be the set of times t such that adjt(A,B) = 1. We
call the set Adj(A,B) the validity set of the transition from
A to B, corresponding to time periods for which a collision-
free trajectory from A to B exists. The validity sets in this
example are given in Table I, with initial time t0.

Using Table I, we can build a directed graph (that we
call transition graph) representing all the possible transitions
between cells of the partition as shown in Figure 5: each
vertex of this graph corresponds to a partition cell, and we
add the edge A → B if Adj(A,B) 6= ∅. Additionally,
we associate to each edge of the graph the corresponding
validity set. A path in this graph is given as a succession
of edges and associated transition times within the validity
set of each edge, for instance ((br → lb, t1), (lb→ fr, t3))
corresponding to the maneuver of waiting for the green
vehicle (2) to pass before overtaking the blue one (1).
Between these explicit transition times, the ego-vehicle is
supposed to remain inside the last reached cell.

br
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[t2,+∞)

[t2,+∞)

[t0, t1)

[t0, t1)

Fig. 5. Transition graph corresponding to Figure 4, with validity set of each
edge. Thinner edges shown in black have a validity set [t0,+∞) (omitted
for readability).

TABLE II
TIME MARGINS OF EXAMPLE PATHS

Path Most constr. trans. Margin

((br → br, t0)) br → br +∞
((br → lb, t1), (lb→ fr, t3)) lb→ fr +∞
((br → lf, t0), (lf → fr, t1)) br → lf t1 − t0
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Fig. 6. Discrete partitioning of the free space-time of Figure 2, with t0 = 0.

Using this graph-based representation also allows to com-
pute a risk metric associated to a maneuver, called time
margin. This measure is defined as the time which remains to
the ego-vehicle to perform a particular maneuver, before the
most constrained transition becomes impossible. To illustrate
this notion (which is formally defined in Section III), we
present example time margins for a selection of paths in
Table II.

Although this continuous approach is interesting mathe-
matically, it is not necessarily suited for practical computer
implementation, which is generally based on time sampling.
For this reason, we also propose a discrete partitioning as
shown in Figure 6: for a discretization time step τ > 0, we
approximate the free space as a union of disjointed cylinders
of the form A× [t0 +kτ, t0 + (k+ 1)τ) where A is a subset
in the partition at time t0 + kτ . Using this time-discretized
partition, we can adapt the notion of adjacency to design a
time-discretized transition graph, as shown in Figure 7. In
this graph, a path can be simply given as a list of successive
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Fig. 7. Discrete-time transition graph and time margins corresponding to
the partition of Figure 6. Vertex Ak corresponds to the ego-vehicle being
in set A at time t0 + kτ .
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Fig. 8. Frenet coordinates of a point on the road.

vertices, thus allowing to use classic exploration algorithms.
The time margin of any edge in the graph can also be easily
computed (as shown in Section III).

We believe that this graph-based representation has two
main advantages. First, the combinatorial part of the tra-
jectory planning problem, consisting in choosing a feasible
maneuver around the obstacles, is reduced to selecting a path
in a transition graph. We will show in Section IV that, once
such a path is given, computing a corresponding optimal
trajectory becomes extremely simple for a large class of
cost functions. Second, the graph approach makes it easy
to take into account safety margins by avoiding exploration
of time-constrained edges, which can be useful to handle
uncertainty in trajectory estimation. Additional metrics can
also be computed (see, e.g., [15]) for spatial constraints, in
order to account for control or positioning error.

III. MATHEMATICAL RESULTS

A. Modeling

We now proceed to theorize and generalize the intuitions
exposed in the previous section. We consider an autonomous
ego ground vehicle, driving on a road in presence of obsta-
cles, which can either be fixed or mobile. We assume that the
ego-vehicle remains parallel to the local direction of the road,
as it usually is the case in normal (non-crash) situations, so
that the configuration of the ego-vehicle is fully given by the
position of its center of mass, denoted by (x, y) in ground
coordinates.

We assume that the ego-vehicle has knowledge of the road
geometry, for instance through cartography, as a C2 reference
path γ and bounds on the lateral deviation from γ, as shown
in Figure 8; we let R ⊂ R2 be such that the ego-vehicle is
on the road if, and only if, (x, y) ∈ R. Finally, we assume
that the road curvature and width are such that, for all X =
(x, y) ∈ R, there exists a unique point Xγ ∈ γ which is
closest to X .

According to Figure 8, we define the Frenet coordinates of
X as (s(X), r(X)), where s(X) is the curvilinear position
of the corresponding point Xγ along γ, and r(X) = (X −
Xγ)·N with (T,N) the Frenet frame of γ at point Xγ . With
these notations, we let rmin and rmax be such that X ∈ R
if, and only if, rmin(s(X)) ≤ s(X) ≤ rmax(s(X)), and we
let Q =

{
(s, r) ∈ R2 : rmin(s) ≤ r ≤ rmax(s)

}
denote the

extent of the road in Frenet coordinates. In what follows, we
only consider the Frenet coordinates of the ego-vehicle, and
we drop the dependence of s and r in X . We assume that

rmax

rmin

r

s

QT1 TK

Fig. 9. Decomposition of the road (in grey) in trapezes.

the ego-vehicle only moves forward along the road, in the
direction of increasing s.

We denote by O the set of obstacles existing on the road
around the ego-vehicle, and by N = |O| the number of
obstacles. At a given time t0, we consider a time horizon
T and we assume that an estimation of the trajectory of
each obstacle o ∈ O is available over [t0, t0 + T ]. We let
χ = Q× [t0, t0 + T ] the set of space-time points for which
the vehicle is on the road. With the previous assumptions
and knowing the shapes of all vehicles, it is possible to
compute the (collision-)free space-time χf ⊂ χ such that
(s, r, t) ∈ χf if, and only if, the vehicle is on the road
and does not collide with any obstacle at time t; we call
obstacle space-time χo the complement of χf in χ. Note that
the free space-time is similar to the notion of configuration
space(-time), which is widely used in robotics [22], and
can be computed efficiently [23]. In this article, we also
suppose perfect knowledge of these future trajectories over
[t0, t0 + T ]; however, probabilistic trajectory estimates can
also be taken into account, for instance by defining χpf as
the set of points of χ which are free with probability p.

B. Semantic partitioning

We consider that for all t1 ∈ [t0, t0+T ], the intersection of
the obstacle space-time χo is a union of (potentially rotated)
rectangles; due to the roughly rectangular shape of classical
vehicles, this assumption does not excessively sacrifice preci-
sion. Moreover, we assume that the road boundary functions
rmin and rmax are piecewise-linear and continuous.

Many algorithms can be used to partition the free space-
time. However, we believe that partitioning χf in a seman-
tically meaningful way, i.e. that can be easily understood
by humans, is preferable to purely arbitrary partitions that
could be achieved, for instance, by tetrahedral meshing.
Moreover, it is demonstrated in [14] that partitioning the free
(2D) space with a minimal set of edges provides interesting
topological properties. In what follows, we systematize the
approach presented in Section II in a two-step partitioning
algorithm: first, we partition planes corresponding to a fixed
time t1 ∈ [t0, t0 + T ]; second, we deduce a partition of χf .
We let Qt1f = ΠQ (χf ∩ {t = t1}) be the free (2D) space at
time t1, with ΠQ the projection operator on Q.

1) Partitioning at fixed t1: First, note that we can use
trapeze decomposition to partition the road in convex regions
using rmin and rmax as shown in Figure 9; since the road
profile does not depend on time, this decomposition allows
to fully partition χ by using cylinders with trapezoidal base.
Each trapeze Tk (with k ∈ {1 . .K}) can be defined by a
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Fig. 10. Partitioning of the 2D space around a single obstacle (Cobs
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set of linear constraints1, in the form AkX ≤ bk with Ak a
4-by-2 matrix, X = [s, r]T and bk a vector of R4.

For a single rectangular obstacle o at time t1, we define
four regions Cio ⊂ R2 (i ∈ {1 . . 4}) as illustrated in
Figure 10; as in Section II, these regions can be identified
as positions where the ego-vehicle is located in front, to the
left, behind or to the right of the obstacle. Similarly, we let
Cobso be the obstacle region corresponding to o. Since all
obstacles are assumed rectangular, each of the Cio regions is
defined by a set of linear constraints1 in the form AioX ≤ bio,
with Aio a two-column matrix, X = [s, r]T and bio a vector
having the same number of lines as Aio. The partition of Qt1f
is built recursively according to Algorithm 1.

Algorithm 1 Partitioning of Qt1f
P0 ← {Tk}k=1..K . Initialize P0 as a partition of Q
N ← |O|
for n = 1 . . N do . Loop over all obstacles on
Pn ← {}
for all C ∈ Pn−1 do . Loop over cells C in Pn−1

for j = 1 . . 4 do
if Cjon ∩ C 6= ∅ then . Partition C \ Cobson
Pn ← Pn ∪ {Cjon ∩ C}

end if
end for

end for
end for
Pt1 ← PN

Theorem 1: Pt1 is a partition of Qt1f .
Proof: We will prove that, for all 0 ≤ n ≤ N , Pn is

a partition of Qn = Q \ ⋃ni=1 C
obs
oi . First, this property is

verified for P0 which is a partition of Q. Second, the loop
preserves the following invariants for all n ≥ 1 and any
element e ∈ Pn:
• e 6= ∅ and ∃e′ ∈ Pn−1 such that e ⊂ e′;
• for all 1 ≤ i ≤ n, ∃j ∈ {1 . . 4} such that e ⊂ Cjoi .

Thus, Pn =
{
e ∩ Cjon

∣∣e ∈ Pn−1, j ∈ {1 . . 4}, e ∩ Cjon 6= ∅
}

.
Since the sets

(
Cjon
)
j=1..4

define a partition of R2 \Cobson and
since all e ∈ P0 is a subset of Q, we deduce by induction
that all elements of Pn are nonempty subsets of Qn.

1To ensure the sets are disjoint, some of the inequalities should be strict.
In practice, we use non-strict inequalities with a small tolerance ε.
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Fig. 11. A more complicated example with 3 obstacles.
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Fig. 12. Partitioning in the example of Figure 11, with subsets signature;
for instance, brl means that the ego-vehicle is behind the first vehicle, to the
right of the second and left of the third. The thick black lines correspond to
the unique trapeze encoding road boundaries; its index is omitted for clarity.

Reciprocally, for all any q ∈ Qn = Qn−1 \ Cobson there
exists j ∈ {1 . . 4} such that q ∈ Qn−1 ∩ Cjon . Since P0 is
a partition of Q, inductive reasoning yields Qn ⊂

⋃
e∈Pn

e.

From the previous proof, we deduce the corollary:
Corollary 1 (Semantic partitioning): For all e ∈ Pt1 ,

there exists a unique tuple σt1(e) = (k, j1, . . . , jN ) ∈
{1 . .K} × {1 . . 4}N such that e = Tk ∩

⋂
n=1..N C

jn
on .

We call σt1(e) the signature of subset e, and we let Σ =
{1 . .K} × {1 . . 4}N ; σt1 is a bijection from Σ to Pt1 ∪ ∅.

Therefore, our partitioning of Qt1f bijectively corresponds
to relative positions from all N obstacles in the free space at
time t1, and there is a finite number of elements in the par-
tition which is bounded by K4N . Thus, each element in the
partition can be uniquely defined by its signature. Moreover,
all elements e ∈ Pt1 also are convex polygons, which can
be fully described using a single (matrix, vector) pair that
can easily be stored in computer memory. Figures 11 and 12
illustrate our partitioning in a more complex scenario2 with
3 vehicles; note that, for clarity purposes, we respectively
used f, l, b, r instead of 1, 2, 3, 4 as defined in Corollary 1.
Also remark that, although Figure 11 is shown in world
coordinates (x, y), Figure 12 uses Frenet coordinates (s, r).

In order to encode the relation between elements of the
partition, we introduce the notion of adjacency as follows:

Definition 1 (Adjacency): For e1, e2 ∈ Pt1 , we say that
e1 and e2 are adjacent if, and only if the intersection of their
closures is not empty, i.e. e1 ∩ e2 6= ∅.

2Obstacle regions 1, 2, 3 in Figure 12 are computed for a point-mass
ego-vehicle, in order to match the vehicle shapes shown in Figure 11.



Note that this property can be verified in polynomial
time using the matrix inequality representation and linear
programming; for σ, σ′ ∈ Σ, we let adjt1(σ, σ′) = 1 if
σ−1
t1 (σ) and σ−1

t1 (σ′) are adjacent, and 0 otherwise.
2) Continuous-time partitioning: We now define a parti-

tion of the free space-time χf as follows: for σ ∈ Σ, we let
Eσ =

⋃
t1∈[t0,t0+T ] σ

−1
t1 (σ) × {t1} be the set of all points

in the free space-time sharing the same signature σ. The set
P = {Eσ |σ ∈ Σ, Eσ 6= ∅} then defines a partition of χf
(see Figure 4). For σ and σ′ ∈ Σ, we define the validity set
Adj(σ, σ′) = {t ∈ [t0, t0 + T ] | adjt(σ, σ

′) = 1}.
We can now define the transition graph (see Figure 5):
Definition 2: The continuous transition graph

is the directed graph Gc = (Vc, Ec,Adj) with
vertex set Vc = {σ ∈ Σ |Eσ 6= ∅}, edges set
Ec =

{
(σ1, σ2) ∈ Σ2

∣∣Adj(Eσ1
, Eσ2

) 6= ∅
}

and associated
validity set Adj.

Definition 3: A path in Gc is given by a list of vertices
(σ1, . . . , σm+1) ∈ Vc so that for all i ≤ m, (σi, σi+1) ∈ Ec,
and a list of strictly increasing transition times (t1, . . . , tm)
such that for all i ∈ {1 . .m}, ti ∈ Adj(σi, σi+1) and
[ti, ti+1) ⊂ Adj(σi, σi).

Therefore, a path in Gc corresponds to a sequence of
cells that are adjacent at each transition time, and for which
the ego-vehicle can remain in a given cell between two
consecutive transitions. We can now define:

Definition 4: Let πc =
(
(σ1, . . . , σm+1), (t1, . . . , tm)

)
be a path in Gc. The time margin of πc is V (πc) =

mini=1...m

(
sup

{
t− ti

∣∣ [ti, t) ⊂ Adj(σi, σi+1)
})

.
3) Discrete time: Due to the potentially complex trajecto-

ries followed by the obstacles, there is no guarantee regarding
the topology of the subsets Eσ , which can for instance have
multiple connected components; similarly, Adj(Eσ1

, Eσ2
) is

in general a union of disjointed intervals. To make practical
applications easier, we also propose a temporal discretization
of the free space-time with a time step duration τ (with
T = Pτ ), and we let θp = t0 + pτ . Instead of using the
exact shape of Eσ , we define Epσ = σ−1

θp
(σ) × [θp, θp+1)

and we assume that Epσ ⊂ χf for all σ ∈ Σ and p ∈
{0 . . P}. Since σ−1

θp
(σ) is a convex (or empty) set, Epσ is

either empty or convex, and fully defined by a set of linear
inequalities in the form A[X, t]T ≤ b (the comments of
footnote 1 also apply here). Finally, we define a partition
of the free space-time χf in convex box-shaped cells as
Pτ = {Epσ|p ∈ {0 . . P}, σ ∈ Σ, Epσ 6= ∅} (see Figure 6).

Definition 5: The discrete transition graph is the directed
graph Gd = (Vd, Ed) with vertex set Vd = Pτ and edges set
Ed =

{
(Epσ1

, Ep+1
σ2

)
∣∣∣Epσ1

, Ep+1
σ2
∈ Vd, adjθp(σ1, σ2) = 1

}
.

Therefore, each vertex of G corresponds to a certain cell
of the partition Pτ at a given time θp, and the edge v1 → v2

exists if v1 and v2 represent two adjacent cells (possibly
twice the same) at two consecutive time steps. Paths in Gd
comply with the usual definitions of graph theory and can
be given as a set of vertices.

Finally, we define the notion of time margin in Gd:
Definition 6: For a path πd =

(
E0
σ0
, . . . , Em+1

σm+1

)
in Gd,

the time margin is v(πd) = min
i=0...m

max
p=i...m

ṽ(i, p) with

ṽ(i, p) =
{
τ(p− i+ 1)

∣∣∀q ∈ {i . . p}, adjθq (σi, σi+1) = 1
}

.

IV. APPLICATION TO PLANNING AND CONTROL

Before presenting the applications of our approach to plan-
ning and control, let us formulate the following definition:

Definition 7: Let πc0 =
(
(σ1, . . . , σm+1), (t1, . . . , tm)

)
be

a path in Gc and x(t) be a collision-free trajectory for the
ego-vehicle. We say that π0 corresponds to x if, for all i ∈
{1 . .m}, x

(
[ti−1, ti)

)
⊂ Eσi and x

(
[tm, T )

)
⊂ Eσm+1 .

From this definition, we deduce that for a given collision-
free trajectory x(t) there exists a unique corresponding path
in Gc denoted by π(x). Reciprocally, for a given path π0 in
Gc, there exists a set of corresponding trajectories denoted
by π−1(π0). We obtain the following theorem:

Theorem 2: Let J(x) be a cost function for a given
trajectory x(t), X the set of collision-free trajectories, and
Π the set of paths in Gc. We have:

min
x∈X

J(x) = min
π0∈Π

(
min

x∈π−1(π0)
J(x)

)
(1)

Proof: From the previous definition, for any
collision-free trajectory x ∈ X there exists π0 ∈
Π such that π(x) = π0. Therefore, minx∈X J(x) ≤
minπ0∈Π

(
minx∈π−1(π0) J(x)

)
. Reciprocally, for all π0 ∈ Π,

any x ∈ π−1(π0) is guaranteed to be collision-free, leading
to the reciprocal inequality.

In other words, it is equivalent to find an optimal trajectory
for the ego-vehicle, and to find an optimal path in the transi-
tion graph Gc and then the optimal trajectory corresponding
to this path. These results can be extended to paths in the
discrete graph Gd; due to space limitations, details are not
presented here and we only provide the following definition:

Definition 8: Let τ > 0 be a discretization time step,
πd0 = (E0

σ0
, . . . , Em+1

σm+1
) be a path in Gd and x(t) be a

collision-free trajectory for the ego-vehicle. We say that πd0
corresponds to x if, for all p ∈ {0 . .m}, x(θp) ∈ Epσp

and
x([θp, θp+1)) ⊂ Epσp

∪ Epσp+1
.

An interesting feature of this decomposition of the tra-
jectory planning problem is that we effectively separate the
discrete choice of a maneuver variant, and the search for
an optimal control corresponding to this maneuver as was
obtained in [14] for path-planning. This second problem
can be solved efficiently under certain assumptions on the
vehicle dynamics. We consider an AGV with linear discrete
dynamics (using, e.g., the flatness property [3]) xp+1 =
Axp + Bup for a state xp and a control up ∈ U (with
U a convex polyhedron) with a discretization time step τ ,
where A and B have constant coefficient. For a positive
semi-definite matrix Q, a line vector L and defining Xp =
[xTp , u

T
p ]T , we consider a generic quadratic cost function

J(x, u) = 1
2X

T
p QXp + LTXp. In this case:

Theorem 3: Let π0 be a path in Gd and x0 an
initial AGV state. The optimal trajectory (and associ-
ated control sequence) (Xp) starting from x0 realizing

min
(xp)∈π−1(π0),up∈U

J(x, u) can be computed in polynomial

time in the number of obstacles and time steps.



Proof: We will show that this problem is an instance
of convex quadratic programming (QP), which has a com-
plexity O(n3) where n is the number of constraints [24].
First, the cost function J is quadratic and convex. Second,
vehicle dynamics and control bounds can be encoded as
linear constraints. Moreover, the condition (xp) ∈ π−1(π0)
corresponds to a set of O(PN) linear constraints, leading to
a QP problem with complexity O

(
(PN)3

)
for N obstacles

over P time steps,thus proving the announced result.
Note, however, that the graphs Gc and Gd do have a

number of vertices scaling exponentially with the number of
obstacles. An advantage of our approach is that exhaustive
exploration is not required, especially when considering
safety margins, for instance on minimum required time
or space margin (see [15]). Direct optimization techniques
such as those based on mixed-integer programming [11] do
not allow similar pruning of the decision tree using prac-
tical considerations (although branch-and-bound heuristics
do allow pruning). We believe that the use of such safety
metrics coupled with tailored heuristics for graph exploration
can prove very interesting for safe and efficient trajectory
planning under uncertainty.

V. CONCLUSION

This article generalized the divide-and-conquer approach
used in [14] in two dimensions, to the 3D space-time for on-
road navigation of autonomous ground vehicles in presence
of moving obstacles. We described a systematic method to
partition the collision-free space-time in the presence of fixed
or moving obstacles, and we provided a graph representation
of all possible collision-free trajectories. This approach al-
lows to treat the combinatorial problem of optimal trajectory
planning in two steps: first, a path-finding problem in a graph,
and then a simple optimization that can be performed in
polynomial time in the number of obstacles for any quadratic
cost function. Moreover, we introduced a notion of time
margin and showed that our graph-based approach can easily
take into account margin of error in the execution for a
particular maneuver. Coupled with additional similar metrics,
we believe that our approach can have useful applications for
planning under prediction and control uncertainty, notably in
the frame of stochastic decision-making.
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