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High-Speed Trajectory Planning for Autonomous Vehicles Using a
Simple Dynamic Model

Florent Altché2,1, Philip Polack1 and Arnaud de La Fortelle1

Abstract— In this article, we propose a new approach to
drive a vehicle at high speed along a predetermined path using
Model Predictive Control. Instead of modeling precise vehicle
dynamics, which strongly restricts the planning horizon that
can be considered in real-time, we use a simplified second-
order integrator model which is constrained to match the
vehicle’s feasible dynamic envelope. Moreover, and contrary
to many MPC approaches taking a target speed as input,
our formulation also includes velocity planning, making the
vehicle able to automatically adjust its speed to the layout of
the road. Simulation results on a highly precise vehicle model
show that our approach can be used in real-time to provide
feasible trajectories that can be tracked using a simple control
architecture. Moreover, the use of our simplified model makes
the planner more robust and yields better trajectories compared
to kinematic models commonly used in trajectory planning.

I. INTRODUCTION

In order to improve safety and energy efficiency and not
to surprise other road users, autonomous vehicles are widely
expected to drive smoothly; moreover, traffic efficiency con-
cerns will likely lead these vehicles to follow relatively
closely the road speed limit. However, such speed limits may
not always exist (e.g., on some dirt roads) or they may not be
followed safely due to the road topology (e.g., mountain road
with sharp curves) or weather conditions (e.g., icy road).

Many trajectory planning algorithms rely on an a-priori
knowledge of a target velocity that can either be an explicit
parameter of the problem [1], [2] or be implicitly given by
requiring a set of target positions at fixed times [3], [4].
Some authors have proposed using the road curvature [5] to
provide an upper bound on the velocity, which corresponds to
a maximum lateral acceleration; this method can be extended
to obstacle avoidance by first planning a collision-free path,
then adjusting the velocity consequently [6]. However, as
path selection and velocity planning are intrinsically linked,
this approach can lead to severe inefficiencies.

For this reason, model predictive control (MPC) tech-
niques are often used in the literature, since they allow to
simultaneously compute a feasible trajectory and a sequence
of control inputs to track it. However, high-speed trajectory
planning requires a complex modeling of the vehicle to
account for its dynamic limitations, which mainly come from
the complex and highly non-linear [7] tire-road interactions.
Adding to this difficulty, wheel dynamics are generally
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much faster (around 1ms [8]) than changes of the vehicle’s
macroscopic state (typically 100ms). Therefore, the existing
literature is generally divided between medium-term (a few
seconds) trajectory planning including obstacle avoidance for
low-speed applications, mainly relying on simple kinematic
models (see, e.g. [9], [10]), and short-term (sub-second) tra-
jectory tracking for high-speed or low-adherence applications
using wheel dynamics modeling (see, e.g., [11]–[14]). In the
second case, obstacle avoidance is generally not considered
(with the notable exception of [15]), and the existence of
a feasible collision-free trajectory is not guaranteed in the
case of an unexpected obstacle. Note that sampling-based
approaches [16] have also been proposed in the literature;
however, they do not provide optimality guarantees when a
finite number of samples is selected, and may have trouble
finding a feasible solution in complex scenarios.

In this article, we propose a middle-ground approach to
allow trajectory planning over a few seconds in high dynamic
situations. This approach relies on the use a simple vehicle
model (initially proposed in [17]) derived from a realistic
dynamic modeling of the vehicle body and wheels, which
accounts for tire slip effects using carefully estimated bounds
on the dynamics. Using this model, we design a non-linear
trajectory planning framework, which is able to follow a
predefined path (e.g., the road centerline) at high speed
while avoiding obstacles. Comparison with a more classical
kinematic bicycle model shows that our proposed planner
provides better trajectories and is more robust. Moreover,
our simulations showed that computation time remains below
80ms on a standard computer and could be further reduced
using auto-generation [4], thus allowing real-time use. To the
best of the authors’ knowledge, no comparable framework
has been published for medium- or long-term planning in
high dynamic situations.

The rest of this article is structured as follows: in Sec-
tion II, we present a 9 degrees of freedom dynamic model
of the vehicle’s body, that we use throughout the rest of
this article. In Section IV, we briefly describe our simplified
dynamic model and to formulate a trajectory planner based
on Model Predictive Control, which computes an aggressive
yet feasible trajectory. This planner is validated and its
performance is compared to a classical kinematic bicycle
model in Section V using a realistic physics simulation suite;
finally, Section VI concludes the study.

II. VEHICLE MODEL

In this article, we consider a 9 degrees of freedom model-
ing of the vehicle body, which provides a satisfying balance



between accuracy and computational cost. Alongside with
the usual 2D state [X,Y, ψ] (with ψ the yaw rotation) of
the vehicle, the model takes into account roll and pitch
movements, wheel dynamics and coupling of longitudinal
and lateral tire slips. Being a chassis model, it does not take
into account the dynamics of the car engine or brakes. The
control inputs of the vehicle are the torque Ti applied to
each wheel i and the steering angle of the front wheels, δ.
We use uppercase letters (e.g., X , Y ) to denote coordinates
in the ground (global) frame, and lowercase letters for
coordinates in the vehicle (local) frame; the x coordinate in
the local frame corresponds to the longitudinal component.
The notations are given in Table I and illustrated in Figure 1.

TABLE I
NOTATIONS

X , Y , Z Position of the vehicle’s CoM (ground frame)
θ, φ, ψ Roll, pitch and yaw angles of the car body
Vx, Vy Longitudinal and lat. vehicle speed (vehicle frame)
Vxwi Longitudinal speed of wheel i (wheel frame)
ωi Angular velocity of wheel i
ζi Displacement of suspension i
δ Steering angle of the front wheels
Tωi Total torque applied to wheel i
Fxwi , Fywi Longitudinal and lateral forces on wheel i (wheel frame)
Fxi , Fyi Longitudinal and lat. forces on wheel i (vehicle frame)
Fzi Normal ground force on wheel i
Faero Air drag force on the vehicle
MT Total mass of the vehicle
Ix, Iy , Iz Roll, pitch and yaw inertia of the vehicle
Iri Inertia of wheel i around its axis
lf , lr Distance between the front/rear axle and the CoM
lw Half-track of the vehicle
rw Effective radius of the wheels
ks, ds Suspensions stiffness and damping

Fig. 1. Simulation model of the vehicle in the (x, y) plane

We make the assumptions that the body of the vehicle
rotates around its center of mass, and that the aerodynamic
forces do not create a moment on the vehicle. Moreover, we
assume that the road remains horizontal, and any slope or
banking angle is neglected; this assumption could be relaxed
using a slightly more complex vehicle model. Under these
hypotheses, the dynamics of the vehicle’s center of mass are

written as:

Ẋ = Vx cosψ − Vy sinψ (1a)

Ẏ = Vx sinψ + Vy cosψ (1b)

V̇x = ψ̇Vy +
1

MT

4∑
i=1

Fxi
− Faero (1c)

V̇y = − ψ̇Vx +
1

MT

4∑
i=1

Fyi , (1d)

where Fxi and Fyi are respectively the longitudinal and
lateral tire forces generated on wheel i, expressed in the
local vehicle frame (x, y). The yaw, roll and pitch motions
of the car body are computed as:

Izψ̈ = lf (Fy1 + Fy2)− lr(Fy3 + Fy4)

+ lw(Fx2
+ Fx4

−Fx1
− Fx3

) (2a)

Ixθ̈ = lw(Fz1 + Fz3 − Fz2 − Fz4)+Z

4∑
i=1

Fyi (2b)

Iyφ̈ = lr(Fz3 + Fz4)− lf (Fz1 + Fz2)−Z
4∑
i=1

Fxi
(2c)

where Fzi = −ksζi(θ, φ) − ds ˙(ζi)(θ, φ), with ζi(θ, φ) the
displacement of suspension i for the given roll and pitch
angles of the car body. The variation of Fz models the impact
of load transfer between tires. Finally, the dynamics of each
wheel i can be written as

Irω̇i = Tωi
− rwFxwi

. (3)

In general, the longitudinal and lateral forces Fxwi and
Fywi depend on the longitudinal slip ratio τi, the side-slip
angle αi, the reactive normal force Fzi and the road friction
coefficient µ. The slip ratio of wheel i can be computed as

τi =

{
rwωi−Vxwi

rwωi
if rwωi ≥ Vxwi

rwωi−Vxwi

Vxwi
otherwise.

(4)

The lateral slip-angle αi of tire i is the angle between the
wheel’s orientation and its velocity, and can be expressed as

αf = δ − Vy + lf ψ̇

Vx ± lwψ̇
(5)

αr = −
Vy − lrψ̇
Vx ± lwψ̇

(6)

where f and r denote the front and rear wheels respectively.
In this article, we use Pacejka’s combined slip tire model

(equations (4.E1) to (4.E67) in [7]), which takes into account
the interaction between longitudinal and lateral slips, thus
encompassing the notion of friction circle [18]. For clarity
purposes, we do not reproduce the complete set of equations.

III. CONSTRAINED SECOND-ORDER INTEGRATOR MODEL

Theoretically, it is possible to use the 9 degrees of free-
dom model inside a model predictive control framework to
directly compute an optimal trajectory and the corresponding
controls. However, classical optimization tools often struggle



to solve problems involving highly nonlinear constraints or
cost functions, as it is the case in the model presented in
Section II – notably due to disjunction (4) which makes τ
non-differentiable. Additionally, wheel dynamics generally
occur over very small characteristic times – typically a few
milliseconds – which requires choosing a correspondingly
small discretization time step, making planning over long
horizons impractical at best. For this reason, simplified mod-
els are very often preferred. Kinematic bicycle (or single-
track) models [9], [10], [19], or even simpler second-order
integrator models [2] are therefore common in the trajectory
planning literature.

One of the main issues of these simplified models is that
they are generally considered to be imprecise when nearing
the handling limits of the vehicle. To counter this problem,
previous work [17] presented a constrained second-order
dynamic model derived from simulation data using the 9
degrees of freedom model of Section II. For lack of space,
we only briefly described these previous results here.
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Fig. 2. Envelope of the sets of feasible accelerations for different lon-
gitudinal velocities vx,0 and lateral velocity vy,0 ∈ [−0.2vx,0, 0.2vx,0];
notice the slight deformation along the aX axis with increasing vx,0..

Using a random sampling method, we first compute (off-
line) an envelope for the set of feasible longitudinal (aX ),
lateral (aY ) and angular (aψ) accelerations, as shown in
Figure 2. More specifically, these sets are computed for a
given longitudinal velocity vx,0 and a lateral velocity vy,0 ∈
[−0.2vx,0, 0.2vx,0]. Therefore, only part of this region is ac-
tually reachable from an initial vehicle state (corresponding
to a determined lateral velocity). In this article, we assume
that the lateral dynamics of the vehicle is sufficiently fast to

neglect this effect. Simulation results (see Section V) show
this assumption seems reasonable.

Using these results, we propose a constrained double
integrator model for the vehicle dynamics. This model con-
siders a state vector ξ = [X,Y, ψ, vx, vy, vψ]

T and a control
u = [ux, uy, uψ]

T , with the same notations and reference
frames as presented in Section II. The dynamic equation of
the system is ξ̇ = f2di(ξ,u) with

f2di (ξ,u) =

 vx cosψ − vy sinψ
vx sinψ + vy cosψ
[vψ, ux, uy, uψ]

T

 . (7)

To allow the use of this model in planning, we approximate
the sets shown in Figure 2 as a set of convex linear and
nonlinear constraints in the (aX , aY ) plane as shown in
Figure 3. These constraints are expressed as:(aX

α

)2
+

(
aY
β

)2

≤ 1 (8)

aminX (vx,0) ≤ aX ≤ amaxX (vx,0) (9)

A[aX , aY , aψ]
T ≤ b (10)

where A is a constant matrix, b a constant vector and aminX ,
aminY depend on vx,0. For our model vehicle, the experimen-
tal data of Figure 2 yield α = 9.4m s−2, β = 9.0m s−2,
A =

(
2.6 1
2.6 −1

)
and b = ( 15.315.3 ) m s−2. Figure 4 shows the

variation of aminX and amaxX with the initial longitudinal
velocity; a polynomial fit yields aminX (vx,0) = −9.3 −
0.013vx,0+0.00072vx,0

2 and amaxX (vx,0) = 4.3− 0.009vx,0
(with vx,0 expressed in ms−1). In the (aY , aψ) plane, we
suppose a linear relation between aψ and aY in the form:
aψ = γaY , with γ = 0.56 radm−1. Although seemingly
restrictive, this approximation provides better results than
using a parallelogram acceptable region, and in practice
corresponds to minimizing the vehicle slip angle.

aX

aY

(a) Feasible set (blue) and approximation (red)

aX

aY

(b) Detail

Fig. 3. Convex approximation of the feasible accelerations in the (aX , aY )
plane. The actual region is shown in blue.

IV. MPC FORMULATION FOR TRAJECTORY PLANNING

We now use the second-order integrator model developed
in the previous section to design a trajectory planner based on
model predictive control. In this section, we assume that the
vehicle tries to follow a known reference path, for instance
the centerline of a given lane. The reference path γref is
supposed to be given as a set of positions (Xref , Yref ); as
obstacle avoidance is part of the MPC formulation, these
positions can simply be given through, e.g., high-definition
cartography.



10 20 30 40 50

4

6

8 −aminX

amaxX

vx,0 (ms−1)

m
s−

2

Fig. 4. Variations of the amin
X and amax
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In this article, we assume that the vehicle has no informa-
tion on a safe choice of longitudinal speed. Such situations
can arise in various scenarios, such as poor adherence condi-
tions where the speed limit cannot be safely followed, or in
the absence of speed limits, for instance on dirt roads or for
racing. Moreover, we assume that the vehicle also needs to
avoid obstacles on the road; for now, we only consider fixed
obstacles with known positions and shapes. Additionally, we
do not consider varying road adherence, and we suppose that
the tire-road friction coefficient µ is constant and equal for
all four wheels. Future work will study real-time estimation
of this friction coefficient to adapted the planner accordingly.

Algorithm 1: Planning and control
Data: current state ξ(t0), γref , horizon T
find xclosest := point of γref closest to (X(t0), Y (t0))
set s0 := curvilinear position of xclosest
set hz := [s0, s0 + vx(t0)T ]
set pX := fitpolynom(Xref |hz , s− s0, 5)
set pY := fitpolynom(Yref |hz , s− s0, 5)
find obs := list of relevant obstacles
find κ := max(abs(curvature(pX , pY , hz)))

set vmax := min
(
vx(t0) + aX(B)T,

√
µg/κ

)
compute ξmpc := MPC(ξ(t0), pX , pY , vmax, T , obs)
apply low level control to track ξmpc

The planning and control scheme works in several steps,
as presented in Algorithm 1. We first approximate Xref

and Yref over the next planning horizon T as fifth order
polynomials of the curvilinear position, starting at the point
of γref closest to the vehicle’s current position. Using these
polynomials, we compute the maximum (in absolute value)
of the path curvature over the planning horizon, noted κ, to
determine an upper bound vmax =

√
µg/κ for the speed

of the vehicle in order to limit the lateral acceleration to
µg (as proposed, e.g., in [5]). Only the relevant obstacles,
i.e. those for which a risk of collision exists during the next
planning horizon T , are effectively considered for collision
avoidance; we note O the set of these obstacles. Generalizing
the ideas of [20], we determine a bounding parabola for each
obstacle o ∈ O as shown in Figure 5, such that the collision
avoidance constraints can be written as po(X,Y ) ≤ 0, with
po a second-order multinomial function. Note that the use of
unbounded parabolas is preferred to bounded shapes such as

CoM

Obstacle
γref

Fig. 5. Modeling of an obstacle a parabola. The vertex and roots of the
parabola are chosen with enough margin to ensure that no collision can occur
as long as the center of mass is outside of the shaded region containing the
obstacle.

ellipses, since they do not create local minima.
At a time t0 corresponding to a vehicle state ξ(t0) (with

an initial longitudinal speed v0), we formulate the motion
planning problem using model predictive control with time
step duration h and horizon T = Kh as follows:

min
(uk)k=0...K−1

J
(
(ξk)k=0...K , (uk)k=0...K−1

)
(11a)

subj. to ξk+1 − ξk = h f2di(ξk,uk) (11b)
ξ0 = ξ(t0) (11c)(uX
α

)2
+

(
uY
β

)2

≤ 1 (11d)

aminX (vx,0) ≤ aX ≤ amaxX (vx,0) (11e)

A[uX , uY ]
T ≤ b (11f)

uψ = γuY (11g)
∀o ∈ O, po(Xk, Yk) ≤ 0 (11h)

for k = 0 . . .K − 1.

Note that, as it is often the case in the planning literature
(see, e.g., [21]), collision avoidance (eq. (11h)) is actually
implemented as soft constraints to avoid infeasibility caused
by numerical errors. Additionally, note that our formulation
can be slightly modified in order to take moving obstacles
into account, by using a different parabola pko for each
obstacle and at each time step.

In this article, we only focus on minimizing the deviation
from the reference trajectory. In most of the existing MPC
literature where a reference speed is supposed to be known
in advance, the cost function J is expressed as:

J
(
(ξk), (uk)

)
=

K∑
k=0

(Xk −Xref
k )2 + (Yk − Y refk )2. (12)

In these formulations, Xref
k and Y refk implicitly encode the

speed at which the reference path should be followed. Since
we do not assume that a reference speed is known in advance,
this method cannot be applied directly. A possible way to
handle this difficulty is to express Y refk as a function of Xk

(see, e.g, [22]). However, this method cannot be applied to all
shapes of reference paths, and is notably not suited to sharp
turns even when using local instead of global coordinates.
For this reason, we introduce an auxiliary state s to denote
the curvilinear position of the vehicle along γref , so that
Xref
k = pX(sk) and Y refk = pY (sk). In this article, we



use a simple first-order integrator dynamic for s with ṡ =√
v2x + v2y . Noting ξ′ the extended state of the vehicle, we

instead use the objective function:

J =

K−1∑
k=0

wvvtol
2
k + wXXtol

2
k + wY Ytol

2
k + woOtol

2
k (13)

where wv , wX , wY and wo are positive weighting terms, and
we add the following constraints to problem (11):

vtolk ≥ |vmax − vXk| (14a)
Xtolk ≥ |Xk − pX(sk)| (14b)
Ytolk ≥ |Yk − pY (sk)| (14c)

∀o ∈ O, Otolk ≥ po(Xk, Yk) (14d)
for k = 0 . . .K − 1.

V. SIMULATION RESULTS

We used the realistic physics simulator PreScan [23] to
validate the proposed MPC trajectory planner. The simulator
uses the 9 degrees of freedom model presented in Section II,
with the same parameters that were used to obtain the sets
of feasible accelerations in Section III. Robustness of the
planner to variations of the vehicle parameters is a subject
for further study.

The MPC problem (11)-(14) is solved using the ACADO
Toolkit [24]; due to the inner workings of the simulator, the
simulation is paused during resolution. The output of the
solver is the set of future target longitudinal and lateral ac-
celerations, as well as target future positions and longitudinal
velocities for the vehicle in the horizon T . These outputs
are fed into two low-level controllers, one being tasked with
velocity tracking and the other with steering.

Low-level tracking of the planned trajectory is achieved
using PID controllers; the lateral control also uses a τ
seconds look-ahead [25]. At time t, the predicted position of
the vehicle at t+τ is computed as X̂ = X+τvx cos(ψ̂) and
Ŷ = Y +τvx cos(ψ̂), with ψ̂ = ψ+ 1

2τψ̇. Instead of tracking
the target position at time t, the lateral control uses the error
between predicted and desired positions at time t+ τ . Using
a look-ahead τ = 0.2 s, this method was found to provide
better performance and stability than a simple PID. The
lateral control takes into account a limited angular velocity
for the steering wheel of 12 rad s−1, which is in the average
of recorded steering velocities for human drivers in obstacle
avoidance scenarios [26]; we do not consider the dynamics
of the engine or brakes, which are supposed to respond
instantaneously. Note that, although the PID approach gives
overall satisfying performance, we did observe certain rare
occurrences of over-correction sending the vehicle into a
spin; therefore, more robust control schemes accounting for
the tire’s friction circle should be explored.

The reference path used in our simulations is presented
in Figure 6; the path consists of a 60m straight line, a half
circle with radius 20m, a 200m straight line, a Bezier arc
corresponding to a 135 degrees turn, a 100m straight line,
a half circle with radius 10m and a final -135 degrees turn.
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Fig. 6. Detail of the reference path (black, dotted) and actual path followed
by the vehicle while avoiding obstacles (represented as orange circles), using
both planners.

In all simulations, the weights are chosen as wv = 1,
wX = wY = 10 and wo = 100, which were found
experimentally to provide a good trade-off between speed
and precision. The planning horizon is chosen as T = 3 s and
the time step duration of the MPC is h = 200ms; replanning
is performed every 100ms. To achieve real-time computation
speeds, the solver is limited to five SQP iterations, which was
experimentally shown to be sufficient for a good convergence
on our particular problem. Auto-generation techniques can
also be used to further reduce computation time [4].

For comparison purposes, we also implemented the same
MPC planner with a classical kinematic bicycle model such
as presented in [19]; the model is written as follows:

Ẋ = v cos (ψ + arctanβ) (15a)

Ẏ = v sin (ψ + arctanβ) (15b)

ψ̇ =
v

lr
sin (arctanβ) (15c)

v̇ = a (15d)

with v the longitudinal velocity and β = lr
lr+lf

tan δ the
side slip angle. The control inputs are the longitudinal
acceleration a, and the steering angle of the front wheel δ.

All other parts of the planning and control algorithm are
otherwise equal, including the low-level controller. More-
over, this model is only use inside the MPC planner, while
the simulation relies on that of Section II. The maximum
and minimum acceleration in the bicycle model are chosen
equal to aminX and amaxX (see Figure 3 for the notations)
respectively. Note that the solver is slightly faster using this
formulation; therefore, the maximum number of SQP itera-
tions is set to 6 for the kinematic model to yield comparable
computation times, which increases solution quality.

A. Planning without obstacles

We first consider trajectory planning without obstacles;
Figure 7 presents the actual speed of the vehicle during the
simulation as a function of its position along the path γref for
the two MPC planners, as well as the speed bound v2 ≤ κg
(with κ the path curvature), corresponding to a centripetal
acceleration of 1 g used, e.g., in [5]. First, we notice that both
planners have similar performance in the straight portions
of the road; however, the planner based on the proposed
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Fig. 7. Comparison of achieved vehicle speed with our proposed model
(in blue) and for a kinematic bicycle model (in red); the speed for the
kinematic model run until convergence is shown in solid black. The dotted
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TABLE II
ABSOLUTE LATERAL POSITIONING ERROR FOR BOTH PLANNERS.

Model RMS error (m) Maximum error (m)

Proposed 0.25 0.70
Kinematic 0.16 0.95

second-order model systematically achieves higher speeds in
curves. Second, no solver reaches the upper bound

√
g/κ,

thus confirming that including a speed selection phase during
planning (as opposed to tracking a predefined velocity solely
computed from path curvature) is useful for proper tracking.

The superior performance of the planner based on the
second-order integrator model is likely due to the simpler
relation between the optimization variables (the input con-
trols) and the objective value (the deviation from the target
state) than in the bicycle model, which allows a much faster
convergence towards the solution. Indeed, when allowing
the solver to run until convergence with the kinematic
bicycle model, the resulting velocity becomes comparable
to that obtained with the real-time second-order model (but
computation time is above 500ms).

Figure 8 shows the lateral error when tracking the refer-
ence path, for both MPC planners. Table II presents synthetic
data about the lateral error of the complete planning and
control architecture in both cases, showing satisfying overall
performance for high-speed applications. Note that better
precision can be achieved (at the cost of speed) by selecting
different values for the weighting coefficients. Moreover, a
more precise low-level controller can probably achieve better
performance.

B. Planning with obstacle avoidance

In this section, we compare the behavior of both planners
in the presence of obstacles, modeled as parabolas as ex-
plained in Figure 5. Figure 6 shows a detail of the actual
path followed by the vehicle using the proposed planner
while avoiding obstacles. The attached video file1 shows the
corresponding simulation.

Figure 9 presents the lateral deviation from the reference
trajectory while avoiding obstacles using both planners.

1Also available at https://youtu.be/BRpmdIxTz-0
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Fig. 8. Lateral positioning error for the proposed model (in blue) and for
the kinematic bicycle model (in red), without obstacles.
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Fig. 9. Lateral deviation for the proposed model (in blue) and for the
kinematic bicycle model (in red) while avoiding obstacles (shaded regions).

Generally speaking, the proposed planner allows a smaller
deviation from the reference and a higher average speed
of 12.7m s−1 compared to 10.2m s−1 using the kinematic
bicycle planner (for lack of space, the velocity curves are
not shown). More importantly, the kinematic planner is
sometimes unable to output a trajectory in less than 100ms,
as shown in Figure 10. This situation happens when ap-
proaching obstacles in high-curvature portions of the road; as
before, the better behavior of the proposed planner is likely
due to the simpler search space since the dynamic model
presents much less non-linearity. A more in-depth analysis
could provide useful insights on desirable model properties
to allow fast and robust convergence.

VI. CONCLUSION

In this article, we considered the trajectory planning and
control of a vehicle at high velocity near the limits of
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Fig. 10. MPC computation time (with obstacles) for the proposed model,
and for a kinematic bicycle model starting from the same state.



handling. Instead of using a highly complex model during
online resolution, as it is often the case in the literature,
we used a simpler vehicle model obtained from precise
dynamic simulations. This model was implemented into a
novel MPC-based trajectory planner; contrary to most exist-
ing algorithms, our formulation does not need a predefined
target speed. Instead, the MPC adjusts the vehicle’s speed in
real time to track a predefined path (such as the centerline of
a road) as fast as possible while maintaining a low tracking
error. Using the high fidelity physics simulator PreScan, we
demonstrated that the combination of this planner with a
PID-based low-level controller is capable of driving along
a demanding path at high speed with a low lateral error,
although controller robustness could be improved. Moreover,
comparison with a simple and widely used bicycle model
shows that the use of our simpler model allows the solver
to converge faster towards a better quality solution under
real-time constraints.

Although this work remains mainly theoretical, it opens
several perspectives for future research. First, the good
performance of our simple dynamic model even at high
speeds allows envisioning longer planning horizons without
sacrificing computation speed. Future work should also study
the consistency of using fully linear models, that can be
coupled with efficient mixed-integer optimization techniques
to allow optimal decision-making, for instance for overtaking
or lane-change decisions [2]. Second, we believe that the
ability of the proposed MPC formulation to automatically
adapt the vehicle’s velocity can find practical applications,
for instance when driving in low-adherence situations. There-
fore, the behavior of the planner with a variable friction co-
efficient should be studied further. A more precise low-level
controller, taking into account the very particular response
curve of the tires to precisely track a target force, which
would be more consistent with the second order integrator
model, can also prove interesting. Finally, implementation of
the planner and controller on an actual (scale model) vehicle
is a necessary step to validate the suitability of the proposed
planner for real-world use.
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