

Long-term energy modeling for a decarbonized world: an assessment of the Paris Agreement with an optimization bottom-up model

Sandrine SELOSSE & Seungwoo KANG & Nadia MAIZI

MINES ParisTech, PSL Research University, CMA-Centre for Applied Mathematics
Chair Modeling for Sustainable Development
Sophia Antipolis - France

The Paris Agreement: increasing the ambition of the long-term goal

An historical agreement: COP 21 marked a decisive stage on the transition to a decarbonized world

A major milestone

- Higher level of international cooperation after decades of negotiations and regional division
- Political will to initiate a global transition

A new objective

- Recognition of the 1.5°C (without formalization)
- The need for net-zero emissions

Article 2.1(a): "(h)olding the increase in the global average temperature to well below 2°C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5°C"

Article 4.1: "(...) to achieve a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century"

Modeling approach: TIAM-FR

3/18 IFORS – Québec – July 17-21, 2017

- French version of the **TIMES Integrated Assessment Model** (ETSAP/IEA)
- Optimization, linear programming, bottom-up, multiregional
 - Minimization of the total discounted cost of the system
- Long-term possible futures of the energy system in the Post-Paris climate context

$$NPV = \sum_{r=1}^{R} \sum_{y \in YEARS} (1 + d_{r,y})^{REFYR-y} * ANNCOST(r, y)$$

Where

NPV is the net present value of the total cost for all regions over the projected period;

ANNCOST (r,y) is the total annual cost in region r and year y;

dr,y is the discount rate;

REFYR is the reference year for discounting; YEARS is the set of years and R is the set of regions (15 regions)

Specification of scenario: decarbonized pathways

4/18

IFORS - Québec - July 17-21, 2017

A global 2050 target scenario in line with the long-term UNFCCC 2°C objective

- *UNFCCC-40*: 40%

- *UNFCCC-50*: 50%

GHG emissions reduction by 2050 compared to 2010

UNFCCC-70: 70%

A regional scenario considering the Paris Agreement with NDCs

 NDCs scenarios according to Low and High commitments by (2025)2030 compared to reference year and regional assumptions by 2050

Regions	Reference year	Target year	Reduction level	Reduction type	Mitigation	Mitigation		
Industrialized countries								
Europe (WEU-EEU)	1990	2030	40%		-29.5%			
The USA (USA)		2025	26% - 28%	Emission reduction	-33.3%	-35.0%		
Australia and New Zeland (AUS)	2005		26% - 28%		-26.0%	-28.0%		
Canada (CAN)			30%		-25.8%			
Japan (JPN)	2013		26%		-25.5%			
Fast developing countries								
China (CHI)	2005	2030	60% - 65%	Carbon intensity	15.5%	1.1%		
India (IND)	2005		33% - 35%		133%	126.0%		
Developing countries								
Russia (FSU)	1990		25% - 30%	Emission reduction	16.1%	8.4%		
Mexico (MEX)			25% - 40%		-2.6%	-22.1%		
South Korea (SKO)		2030	37%		-20.8%	-20.8%		
Africa (AFR)	BAU	2030	15% - 30%		17.1%	-3.5%		
Middle East (MEA)			15% - 30%		14.7%	-5.5%		
Asian countries (ODA)			15% - 30%		6.5%	-12.3%		
Latin America (CSA)	INDCs from TIMES-ALyC				15.3%	8.6%		

Regions	Reference year	Target year	Reduction level	Reduction type	Mitigation 2030-2050	Mitigation 2030-2050			
					(LowLow)	(UpUp)			
	Industrialized countries								
Europe (WEU-EEU)	1990		60%-80%		-33%	-67%			
The USA (USA)	2005		83%		-73%	-72%			
Australia and New Zeland (AUS)	2005	2050	60%-80%	Emission reduction	-46%	-72%			
Canada (CAN)	2005		60%-80%		-43%	-71%			
Japan (JPN)	2013		60%-80%		-46%	-73%			
Fast developing countries									
China (CHI)	2030	2050	Peak emission 2030		0%				
India (IND)	2030	2030 Peak eiili		1531011 2030					
Fast developing countries									
Russia (FSU)									
Mexico (MEX)									
South Korea (SKO)	2030	2050	Peak emission 2030		0%				
Africa (AFR)									
Middle East (MEA)									
Asian countries (ODA)									
Latin America (CSA)									

Regional contribution to the mitigation effort

Regional distribution of GHG emission

Technological choices to the mitigation effort World electricity production (PJ)

Technological choices to the mitigation effort World electricity production (PJ)

Regional electricity production (PJ) – Industrialized countries

Regional electricity production (PJ) – CCS Plants Fast developing countries

13/18 IFORS – Québec – July 17-21, 2017

INDCs Scenarios: no CCS but electricity from bioplant is more important

UNFCCC-70-NoBECCS: decarbonized electricity system (solar)

Regional electricity production (PJ) – Developing countries

15/18 IFORS - Québec - July 17-21, 2017 Increasingly strong climatic constraints 12 ☐ Enhanced Coalbed Methane recovery >1000 m ■ Enhanced Coalbed Methane recovery <1000 m ■ Enhanced Oil Recovery (onshore) Depleted oil fields (onshore) 10 ■ Depleted gas fields (onshore) ■ Deep saline aguifers (onshore) 8 Carbon sequestration sites 6 2 Fossile Fossile Biomasse Fossile Biomasse Biomasse Biomasse Biomasse 2040 2050 2030 2040 2050 2020 2030 2040 2030 2040 2050 2030 2040 2050 2050 2030 2020 2020 NDCs_upup_BioHi NDCs upup2 BioHi W-2050-40 BioHi W-2050-50 BioHi W-2050-70 BioHi 2°C objective Paris agreement

The decarbonized pathways of the post-Paris Climate Policy — Sandrine SELOSSE

Carbon storage by year to achieve the 2°C objective

(radiative forcing at 2,6 W/m² by 2100)

16/18

IFORS – Québec – July 17-21, 2017

Sensitivity analyses on carbon storage by site and scenario (Gt CO₂)

Sensitivity analysis on biomass potential and impact on storage carbon

Concluding remarks

- ✓ Contrasted regional contributions by 2030 allowing a GHG emissions stabilization (/2010 level)
- ✓ 2050: decarbonized pathways closer to the 2°C low targets but not enough
- ✓ Industrialized: contributions closed to global mitigation pathways with an important decarbonization
- ✓ Developing and fast developing: a decarbonization to increase by 2030
- ✓ Important place of CCS to achieve high targets (BECCS)
- One of the aims of the future UNFCCC negotiation: enhancing the climate ambition
 - Potential of decarbonization of Industrialized countries
- The technological progress is also a significant issue
 - A clear signal for decarbonization to policy makers, investors and business community
 - Climate target: availability of technological solutions
 - To the scale of the challenge: here focus on CCS with biomass and carbon storage potential

Long-term energy modeling for a decarbonized world July 20, 2017 – Quebec, Canada

Thank you for your attention!

sandrine.selosse@mines-paristech.fr

Cost analysis of constraints

Carbon marginal cost (\$/tCO2)

Scenario	Période	Coût marginal du carbone		
NDCs_lolo_BioHi	2030	20		
NDCs_lolo_BioLo	2030	20		
NDCs_upup2_BioHi				
NDCs_upup2_BioLo	2030	25		
NDCs_upup_BioHi		25		
NDCs_upup_BioLo				
W-2050-40_BioHi	2030	30		
W-2050-40_BioLo	2030	30		
NDCs_lolo_BioHi	2050			
NDCs_lolo_BioLo	2050	35		
W-2050-50_BioHi	2030	33		
W-2050-50_BioLo	2030			
W-2050-70_BioLo	2030	40		
W-2050-70_BioHi	2030	50		
NDCs_upup_BioHi	2050	75		
NDCs_upup_BioLo	2050	75		
W-2050-40_BioHi	2050	90		
W-2050-40_BioLo	2050			
NDCs_upup2_BioHi	2050	95		
W-2050-50_BioHi	2050	100		
NDCs_upup2_BioLo	2050	120		
W-2050-70_BioHi	2050	120		
W-2050-50_BioLo	2050	150		
W-2050-70_BioLo	2050	420		

Long-term possible futures of the energy system in the post-Paris climate context

IFORS - Québec - July 17-21, 2017

Qualitative and quantitative variations according to inputs and data

- Energy services demands (minimizing global cost under satisfaction of demands)
- Primary resources potentials
- Technologies and characteristics
- Emissions (CO₂, CH₄, and N₂O)
- Geographic and time scales
 (technico-economic characteristics of technologies according to region, period, etc.)
- Political parameters (environmental, technological, resources)

Output of the model

- Primal solution
 - Technological Investments
 - Activity and capacity by technology
 - Imports/exports by tradable resource
 - Primary resource extraction
 - Input/output flow by commodity and technology
 - GGH emissions by technology, sector, region

<u>Dual solution</u>

Marginal cost of the constraint

