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Abstract

This work presents a new class of residual operators called ultimate levelings
which are powerful image operators based on numerical residues. Within a
multi-scale framework, these operators analyze a given image under a series
of levelings. Thus, contrasted objects can be detected if a relevant residue is
generated when they are filtered out by one of these levelings. Our approach
consists of, firstly, (i) representing the input image as a morphological tree;
then, (ii) showing that a certain operation on this tree results in a leveling
operator; and finally (iii) demonstrating that a sequential application of this
operation on the tree is able to produce a family of levelings that satisfies scale-
space properties. Besides, other contributions of this paper include: (i) the
statement of properties of ultimate levelings, (ii) the presentation of an efficient
algorithm for their computation, (iii) the provision of strategies for choosing
families of primitives, (iv) the presentation of strategies for filtering undesirable
residues, and (v) the provision of some illustrative examples of application of
ultimate levelings. Furthermore, ultimate levelings are computationally efficient
and their performance evaluations are comparable to the state of art methods
for filtering and image segmentation.

Keywords: residual morphological operator, ultimate attribute openings,
ultimate grain filters, levelings, component trees, tree of shapes.

1. Introduction

An operator in Mathematical Morphology (MM) can be seen as a mapping
between complete lattices [1]. In particular, mappings on the set of all gray level
images F(D) defined on domain D ⊂ Z2 and co-domain K = {0, 1, ...,K} are of
special interest in MM, i.e., ψ : F(D) → F(D). Furthermore, when ψ satisfies
the properties of being increasing (∀f, g ∈ F(D), f ≤ g ⇐⇒ ψ(f) ≤ ψ(g)) and
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idempotent (∀f ∈ F(D), ψ(f) = ψ(ψ(f))), it is called morphological filter [1].
The first condition preserves the lattice relation order, while the second condi-
tion responds to the fact that increasing operations are not invertible. By using
these properties, information content reductions are expected after applying
morphological filters [2]. Relying on these characteristics, morphological filters
remove selectively undesirable contents from images such as noise, background
irregularities, etc.; while preserving desired contents [3, 4, 5]. However, this is
not always an easy task.

A complementary strategy is to effectively erase the desirable portion of an
image, and then restore it through a difference with the original image. This
gives rise to the idea of residual operators. Simply put, residual operators are
transformations that involve combinations of morphological operators with dif-
ferences (or subtractions). Morphological gradient, top-hat transforms, skeleton
by maximal balls, ultimate erosion and ultimate opening are some examples of
residual operators widely used in image processing applications.

In this study, we present a new large class of residual operators based on an
indexed family of levelings. This class of residual operators analyzes the evolu-
tion of the residual value between two consecutive operators on a scale-space of
levelings. The residual value of these operators can reveal important contrast
information in images. This new class of operators includes some existing ones
such as maximum difference of openings (resp., closings) by reconstruction [6],
differential morphological profiles [7], ultimate attribute openings (resp., clos-
ings) [8], differential attribute profiles [9], shape ultimate attribute openings
(resp., closings) [10] and ultimate grain filters [11]. They have successfully been
used as a preprocessing step in various applications such as texture features
extraction[6], segmentation of high-resolution satellite imagery [12, 9], text lo-
cation [8, 13], segmentation of building façades [10] and restoration of historical
documents [14]. Given above considerations, in this paper, besides the presen-
tation of this new class of residual operators, which we call ultimate levelings,
we also show its properties, fast algorithms for its computation and possible ap-
plications for residual information extraction in image processing applications.

The remainder of this paper is structured as follows. Section 2 briefly recall
some definitions and properties about scale-space representations based on lev-
elings and residual operators. In Section 3, we provide the main contributions
of this paper by (i) introducing the ultimate leveling as a class of residual opera-
tors, (ii) stating some of its properties and (iii) presenting an efficient algorithm
for its computation. Section 4 provides some strategies for choosing a family
of primitives. In Section 5, we present some strategies for filtering undesirable
residues and, Section 6 provides some illustrative examples of application of
ultimate levelings. Finally, Section 7 concludes this work and presents some
future research directions.

2. Theoretical background

In many image processing problems, objects of interest may be present at
different scales. For such situations, multi-scale approaches have been developed
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over the last few decades, where a sequence of coarser and coarser decomposi-
tions of the same image are derived. In this sense, F. Meyer and P. Maragos [15]
proposed a nonlinear scale-space (sequence of images) decomposition obtained
from a sequence of operators of a general class of morphological filters called
levelings giving rise to morphological scale-space based on levelings. Later, W.
Alves et al. [16] proved that there exists an efficient representation of morpho-
logical scale-space based on levelings through hierarchies of level sets.

Thus, for the sake of understanding, Sections 2.1 and 2.2 recall some defi-
nitions and properties of hierarchies of level sets and morphological scale-space
based on levelings, respectively. Then, we present an efficient representation of
morphological scale-spaces based on levelings through hierarchies of level sets.
And, Section 2.3 provides a link between the state of art in residual operators
and the main result of this paper, given in Section 3.

2.1. Hierarchies of level sets: component tree and tree of shapes

Image representations through trees have been proposed in recent years to
carry out tasks of image processing and analysis such as filtering, segmentation,
pattern recognition, contrast extraction, registration, compression and others.
In this scenario, as illustrated in Fig. 1, the first step consists of constructing
a representation of the input image by means of a tree, then the task of image
processing or analysis is performed through modifications or information extrac-
tion in the tree itself, and finally an image is reconstructed from the modified
tree.

Input

image

Output

Image
Tree

modifications or
information extraction

in the tree itself

ReconstructionConstruction

Figure 1: Image representation through a tree.

In order to build the trees considered in this paper, we need the following
definitions. For any λ ∈ K = {0, 1, ...,K}, we define X λ↓ (f) = {p ∈ D : f(p) <

λ} and X ↑λ (f) = {p ∈ D : f(p) ≥ λ} as the lower and upper level sets at
value λ from an image f ∈ F(D), respectively. These level sets are nested, i.e.,

X 1
↓ (f) ⊆ X 2

↓ (f) ⊆ ... ⊆ XK↓ (f) and X ↑K(f) ⊆ X ↑K−1(f) ⊆ ... ⊆ X ↑0 (f). It is
possible to show that the image f can be reconstructed using either the family
of lower or upper sets, i.e., ∀p ∈ D,

f(p) = sup{λ : p ∈ X ↑λ (f)}
= inf{λ− 1 : p ∈ X λ↓ (f)}. (1)
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Examples of lower and upper level sets are presented in Fig. 2. Observe that,
given a λ ∈ K, the level set X λ↓ (f) or X ↑λ (f) may have more than one connected
component.
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Image f

Lower level sets

X 1
↓ (f) = X 0

↓ (f) X 3
↓ (f) = X 2

↓ (f) X 6
↓ (f) = X 5

↓ (f) = X 4
↓ (f) X 7

↓ (f)

Upper level sets

X↑0 (f) X↑1 (f) = X↑2 (f) X↑3 (f) = X↑4 (f) X↑5 (f) = X↑6 (f) = X↑7 (f)

Figure 2: Examples of lower and upper level sets extracted from an image. At right is the

input image f and at top and bottom rows, respectively, are the level sets Xλ↓ (f) and X ↑
λ (f).

From lower or upper level sets, we define two other sets L(f) and U(f)
composed by the connected components (CCs) of the lower and upper level sets

of f , i.e., L(f) = {C ∈ CC4(X λ↓ (f)) : λ ∈ K} and U(f) = {C ∈ CC8(X ↑λ (f)) :
λ ∈ K}, where CC4(X) and CC8(X) are sets of 4 and 8 connected CCs of X,
respectively. The ordered pairs consisting of the CCs of the lower and upper
level sets and the usual inclusion set relation, i.e., (L(f),⊆) and (U(f),⊆),
induce two dual trees [17] called component trees. This leads us to Def. 2.1,
and consequently to Prop. 2.2. In Fig. 3, we have examples of component trees
(L(f),⊆) and (U(f),⊆) built from the lower and upper level sets presented in
Fig. 2. Observe that the CCs of the lower or upper level sets extracted from an
image have a hierarchical structure in these trees.

Definition 2.1. Let (T ,�) be an ordered set. We say that � induces a tree
structure in T if the following two conditions hold:

1. ∃R ∈ T such that ∀N ∈ T , N � R. In that case we shall say that R is the
root of the tree.

2. ∀A,B,C ∈ T , if A � B and A � C then either B � C or C � B. In that
case, we shall say that B and C are nested.

Proposition 2.2 (V. Caselles et. al [17]). Both (L(f),⊆) and (U(f),⊆) are
trees.

2.1.1. Tree of shapes

Combining these dual trees (L(f),⊆) and (U(f),⊆) into a single tree, the
so called tree of shapes can be built [17, 18]. In fact, let P(D) denote the
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Component tree (L(f),⊆) Component tree (U(f),⊆) Tree of shapes (SAT (f),⊆)

Figure 3: Examples of trees (L(f),⊆) and (U(f),⊆) built from the lower and upper level sets
presented in Fig. 2.

powerset of D and let sat : P(D) → P(D) be the operator of saturation [17,
18, 19]. Thus, let SAT (f) = {sat(C) : C ∈ L(f) ∪ U(f)} be the family of
CCs of the lower and upper level sets, respectively, with all holes filled. The
elements of SAT (f), called shapes, are nested by the inclusion relation. The
pair (SAT (f),⊆) induces a tree (see Prop. 2.3) which is called tree of shapes
[17, 19]. Fig. 3, we have an example of tree of shapes (SAT (f),⊆) built from
the lower and upper level sets presented in Fig. 2.

Proposition 2.3 (V. Caselles et. al [17]). The ordered set (SAT (f),⊆) is a
tree.

2.1.2. Compact representation of trees

Tree of shapes and also component trees of an image f will be denoted
generically by Tf . It is well known that a tree Tf can be completely represented
by a compact and non-redundant data structure [19, 20] so that, for each pixel
p ∈ D is associated to the smallest shape or CC of the tree containing p. In
this structure, by the parenthood relationship, one can easily find that, all its
ancestors shapes or CCs in the tree are also associated to this pixel p. Then,
we denote by SC(Tf , p) the smallest shape or CC containing p in the tree Tf .
In particular, the compact representations of component trees (L(f),⊆) and
(U(f),⊆) are known as, respectively, min-tree and max-tree [21, 22]. Fig. 4
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shows the component trees of Fig. 3 along with the highlighted pixels in red
indicating their smallest component.

Component tree (L(f),⊆) Component tree (U(f),⊆)

Figure 4: Examples of component trees along with the highlighted pixels in red indicating
their smallest component.

2.1.3. Image reconstruction from trees

Note that, by definition, an image can be reconstructed from its level sets
(see Eq. 1). Inspired by this equation, we can define mappings levelL : L(f)→
K, levelU : U(f)→ K and levelSAT : SAT (f)→ K as follows:

levelL(C) = inf{λ− 1 : C ∈ CC4(X λ↓ (f)), λ ∈ K},
levelU (C) = sup{λ : C ∈ CC8(X ↑λ (f)), λ ∈ K} and
levelSAT (C) = f(y) such that y ∈ arg sup{|SC(Tf , x)| : x ∈ C},

where Tf = (SAT (f),⊆).

(2)

For the sake of simpler notation, from now on, the subscript indicating the
tree will be dropped from the mappings level when it is clear from context.
Using the mapping level, it is possible to prove that an image f ∈ F(D) can be
reconstructed from a tree Tf as follows, ∀p ∈ D, f(p) = level(SC(Tf , p)). In such
a case, we write: f = Rec(Tf ). In particular, if f is obtained by Rec((L(f),⊆))
(resp., Rec((U(f),⊆)) and Rec((SAT (f),⊆))), then this operation is called
lower (resp., upper and shape) reconstruction.

2.1.4. Pruning operations

Now, the following definition (Def. 2.4) characterizes pruning operations of
a tree (T ,�).

Definition 2.4. We say that (T ′,�) is obtained by a pruning operation of a
tree (T ,�) if and only if, T ′ ⊆ T , for any X ∈ T ′, @Y ∈ (T \ T ′) such that
X � Y . In such a case, we write T ′ = Pruning(T ).
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Following this definition, if Tf is a tree of an image f ∈ F(D), then we say
Tg is the pruned version of Tf if and only if Tg = Pruning(Tf ). Also, one can
easily see that Tg ⊆ Tf and Tg is still a tree (not a forest). In addition, since the
nodes of Tf and Tg are nested by the inclusion relation order, it can be proved
that, ∀p ∈ D, SC(Tf , p) ⊆ SC(Tg, p) [16].

At the end of this subsection, we have all the ingredients of Fig. 1, that
is, given an input image f , construct a tree, followed by pruning operations
that modifies the original tree, and, finally reconstructed the image from the
modified tree.

2.2. Morphological scale-space based on levelings

As previously mentioned, in many applications in image processing, objects
of interest in an image may belong to many scales. In this situation, several
representations of scale-space have been developed in recent decades, such as
the scale-space through levelings. In this sense, a scale-space based on levelings,
which are specializations of connected operators, is presented in this section
through a hierarchy of level sets, more specifically, through component trees and
tree of shapes. For that, firstly we recall some theory on connected operators
and levelings. Then, recall that reconstructions of pruned trees are levelings.
Finally, recall that a tree represents a scale-space that can be constructed by
successive pruning operations in the tree.

2.2.1. Connected operators and levelings

In a few words, a connected operator ψ : F(D)→ F(D) is a transformation
that enlarges the partition of space created by flat zones and consequently do
not create new contours [23]. More precisely, see Def. 2.5.

Definition 2.5 (P. Salembier and J. Serra [23]). An operator ψ : F(D)→ F(D)
is said to be connected, if and only if, for any f ∈ F(D) the following relation
is valid for any pixel p ∈ D, i. e.,

Pf (p) ⊆ Pψ(f)(p),

where Pf and Pψ(f) are two partitions on D generated by the flat zones of f and
ψ(f), respectively. In addition, Pf (p) and Pψ(f)(p) are two regions of Pf and
Pψ(f) that contains the pixel p.

This definition emphasizes the processing based on regions since the output
regions are obtained by merging adjacent regions from input image partition.
An equivalent definition, introduced by F. Meyer [24], emphasizes the local
processing of region contours, i.e., if there is a transition between two adjacent
pixels (p, q) in the operator output (that is, [ψ(f)](p) 6= [ψ(f)](q)), then a
transition also occurs between the same pixels in the input image (that is,
f(p) 6= f(q)).

Connected operators represent a wide class of operators [15, 25, 26] exten-
sively studied in the literature. One of these specializations, known as level-
ings [15, 24, 25, 26], is a powerful filter that preserves order, does not create
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new structures (regional extrema and contours) and its values are enclosed by
values of neighbor pixels (see Def. 2.6).

Definition 2.6 (F. Meyer [24, 25]). An operator ψ : F(D) → F(D) is said to
be leveling, if and only if, for any f ∈ F(D) the following relation is valid for
all pairs of adjacent pixels, i.e., ∀(p, q) ∈ A,

[ψ(f)](p) > [ψ(f)](q)⇒ f(p) ≥ [ψ(f)](p) and [ψ(f)](q) ≥ f(q).

where A is a adjacency relation1 on D.

2.2.2. Morphological scale-space of levelings

Note that from the definition of a class of operators C (e.g., connected op-
erators or levelings), it is possible to build a binary relation R on F(D) such
that, for any (g, f) ∈ R if and only if there exists ψ ∈ C such that g = ψ(f).
Thus, definition of levelings can be seen as a binary relation Rleveling on F(D).
Similarly, we can define the relation Rconnected. So, we say that g is leveling of
f if and only if (g, f) ∈ Rleveling. Analogously, g is connected of f if and only if
(g, f) ∈ Rconnected. In [24], F. Meyer, shows that Rleveling is reflexive and tran-
sitive; and, if we ignore the constant images, then Rleveling is anti-symmetric,
i.e., Rleveling is an order relation. With the help of this order relation, levelings
can be nested and create a scale-space decomposition of an image f ∈ F(D) in
the form of a series of levelings (g0 = f, g1, . . . , gn), where gk is leveling of gk−1

and, as a consequence of transitivity, gk is also a leveling of each image gj , for
j < k [15] and forms what we call a morphological scale-space of levelings.

Morphological scale-spaces are important for image segmentation since they
have the following features: (i) simplification, i.e., all contours and all regional
extrema of gi+1 are present in gi; (ii) causality, i.e., any contour of gi+1 corre-
sponds to a stronger contour of gi at the same location; and (iii) fidelity, i.e.,
no new extrema at larger scales [4, 5, 14, 15].

In Fig. 5, we have an example of morphological scale-space based on levelings.
Observe that, the coarser is the scale, the more simplified is the image; and at
larger scales there are neither new contours nor new extrema.

Figure 5: Example of a scale-space based on levelings.

1An adjacency relation A on D is binary relation on pixels of D. Thus, (p, q) ∈ A if and
only if p is an adjacent of q or alternatively q ∈ A(p). Common examples of adjacency relation
on D are 4 or 8-connectivities.
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2.2.3. Reconstruction of pruned trees

In this way, W. Alves et al. [16] showed that scale-spaces based on levelings
can be obtained by successive sequences of prunings. More precisely, let Tf be
a tree (max-tree, min-tree or tree of shapes) that represents an image f ∈ F(D)
and let (T 0

f , T 1
f , T 2

f , . . .) be a sequence of trees obtained by successive prunings,
i.e.,

T if =

{
Tf , if i = 0,

Pruning(T i−1
f ), if i > 0.

for i = 0, 1, 2, . . . (3)

Then, W. Alves et al. [16] have proved that reconstructions from pruned trees are
levelings. Hence, if Rec(T nf ) is a leveling of Rec(T kf ) and Rec(T kf ) is a leveling

of Rec(T jf ), then, by transitivity, we have also that Rec(T nf ) is a leveling of

Rec(T jf ), for any 0 ≤ j ≤ k ≤ n. This shows that the sequence of trees
generates a family of levelings that subsequently simplifies the image f , thus
constituting a morphological scale-space. This fact leads us to Theo. 2.7.

Theorem 2.7 (Alves et al. [16]). Let Tf be a tree (max-tree, min-tree or tree
of shapes) that represents an image f . Let (T 0

f , T 1
f , . . . , T nf ) be a sequence of

trees obtained by successive prunings. Then, the sequence of reconstructions
(Rec(T 0

f ), Rec(T 1
f ), . . ., Rec(T nf )) is a morphological scale-space of levelings.

2.3. Residual operators

This subsection provides a link between the state of art in residual operators
and the main result of this paper, given in Section 3. As previously mentioned,
a residual operator rψ,φ : F(D) → F(D) is defined as the difference between
two operators, say ψ : F(D)→ F(D) and φ : F(D)→ F(D), applied to a given
image f ∈ F(D), i.e., ∀p ∈ D, [rψ,φ(f)](p) = [ψ(f)](p)− [φ(f)](p). Operators ψ
and φ are called primitives, and if [ψ(f)](p) > [φ(f)](p), then we say rψ,φ(p) is
a positive residue; or a negative residue if [ψ(f)](p) < [φ(f)](p); otherwise, we
say rψ,φ(p) is a null residue. Residual operators have been extended to extract
residues of two increasing families of primitives {ψi : F(D) → F(D), i ∈ I4}
and {φi : F(D) → F(D), i ∈ I4} indexed by a set I4 = {0, 1, ..., IMAX} such
that, for any i, j ∈ I4, if i ≤ j, then ψi 4 ψj and φi 4 φj . Note that, in
notation of the index set I4, it is explicitly indicated the partial order relation
4 between primitive operators. Thus, the i -th residual operator applied to a
given image f ∈ F(D) is defined as rψi,φi(f) = ψi(f)− φi(f) and the extended
residual operator θ : F(D) → F(D) applied to an image f is defined as the
supremum of residues, i.e., θ(f) = supi∈I4{rψi,φi(f)}. Skeleton by maximal
balls and ultimate erosion are examples of extended binary residual operators
commonly used in binary image processing.

Some residual operators are defined on a single increasing family of primitives
{ψi : i ∈ I4} such that ψi 4 ψi+1 and residues rψi,ψi+1 are consecutively
extracted along with the primitives family. For simplicity, we denote, from this
moment on, the i -th residual operator rψi,ψi+1

by ri. Thus, in the same way as
defined above, the residual operator defined from this single family is given by
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the supremum of consecutive residues applied for any image f ∈ F(D), that is,

θ(f) = sup
i∈I4
{ri(f) : ri(f) = ψi(f)− ψi+1(f)}. (4)

In this sense, in 1997, W. Li et al. [6] used the result of this operator, along
with all the residues, when the primitives are openings (and by duality, closings)
by reconstruction, to build, for each pixel p ∈ D, features (among others) for
texture classification.

A few years later, in 2000, M. Pesaresi and J. A. Benediktsson [7], used the
same concept to define, for each pixel p ∈ D, the derivative of morphological
profile applied to high resolution satellite images segmentation. The morpholog-
ical profile is a large vector constructed, for each pixel p ∈ D, by concatenation
of openings (and by duality, closings) by reconstruction. The derivative of mor-
phological profile is nothing more than the large vector built from all consecutive
residues. Also in [7], the authors used, along with the derivative of morpholog-
ical profile, the point where occurs its greatest derivative to build a large vector
to characterize each pixel for image segmentation. It is worth mentioning that
the studies initiated by M. Pesaresi and J. A. Benediktsson [7, 12] have had
high-impact contributions in the remote sensing domain [27].

Afterwards, in 2007, S. Beucher [28] proposed the ultimate opening (and by
duality, ultimate closing), which is a residual operator where the primitives are
openings by structuring elements of increasing sizes {γBi : i ∈ I≥} (and, respec-
tively, closings by structuring elements of decreasing sizes {ϕBi : i ∈ I≤}). Many
advances inspired in morphological profile and ultimate opening have been pro-
posed over the last few years which include, for example, the ultimate attribute
opening (UAO) and by duality ultimate attribute closing (UAC) [8], which are
residual operators where primitives are attribute openings {γκi : i ∈ I≥} and
attribute closings {ϕκi : i ∈ I≤}, respectively. Similarly, in [9, 29], the authors
have been proposed the attribute openings (resp. closings) profiles where the
greatest derivatives are equivalent to the ultimate attribute opening based on
the same primitives.

From the above, we can see that residual operators are very important for
image processing and analysis.

2.3.1. Computation of residual operators by successive prunings

Algorithms for residual operator computation have been proposed using
trees [11, 29, 30, 31, 32]. If (T 0

f , T 1
f , . . . , T

IMAX
f ) is a sequence of trees obtained

by successive prunings from a tree Tf such that ψ0(f) = Rec(T 0
f ), ψi(f) =

Rec(T if ) and T if = Pruning(T i−1
f ), for i ∈ I, then (ψ0(f), ψ1(f), . . . , ψIMAX (f))

constitutes a morphological scale-space based on levelings. Then, the nodes of
T if , which are not in T i+1

f , can be used to calculate the residues ri(f) between
ψi(f) and ψi+1(f). In Fig. 6, we have an example of computation of the residual
operator (at the bottom right) by a sequence of successive prunings (at the top
row) of the component tree (L(f),⊆) (at left). Note that the morphological
scale-space and residues are given, respectively, at the middle and bottom rows.
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Tf = (L(f),⊆)

T 0
f = Tf

ψ0(f) = f

r0(f)

T 1
f

ψ1(f)

r1(f)

T 2
f

ψ2(f)

r2(f)

T 3
f

ψ3(f)

r3(f)

T 4
f

ψ4(f)

r4(f)

T 5
f

ψ5(f)

r5(f)

T 6
f

ψ6(f)

sup{ri(f)}

Nr(0) Nr(1) Nr(2) Nr(3)
Nr(4)

Nr(5)

Figure 6: An example of ultimate attribute closing is shown: (top) Trees derived by suc-
cessive prunings; (middle) primitives family {ψi(f) : ψi(f) = Rec(Ti), i = 0, 1, ..., 6}; (bot-
tom) extracted residues {r0(f), r1(f), ..., r5(f)}; and the result of ultimate attribute closing
sup{ri(f)}.

In this way, a consecutive residual operator can be obtained by a sequence of
successive prunings of a tree which in turn defines a morphological scale-space
based on specific family of levelings. In this paper, a larger collection of levelings
is considered. The resulting operators are called ultimate levelings and they will
be defined more formally in Section 3.

3. Ultimate levelings

Ultimate levelings constitute a wider class of residual operators defined from
an indexed family of levelings {ψi : i ∈ I} such that for any i, j ∈ I, i ≤ j ⇔
ψj is leveling of ψi. Note that this larger class of operator includes families
of openings and closings by reconstruction studied by Pesaresi et al. [7]. An
ultimate leveling analyzes the evolution of the residual value presented in two
consecutive primitives, i.e. r+

i (f) = [ψi(f)−ψi+1(f)∨ 0] and r−i (f) = [ψi(f)−
ψi+1(f)∨0], keeping the maximum positive and negative residues for each pixel.
More precisely, see Def. 3.1.

Definition 3.1 (Ultimate levelings). A positive ultimate leveling operator R+
θ

(resp., negative R−θ ) is the supremum of positive (resp., negative) residues r+
i

(resp., r−i ) extracted from a family {ψi : i ∈ I} indexed by a set I, such
that, for any i, j ∈ I, i ≤ j ⇔ ψj is a leveling of ψi. That is, R+

θ (f) =
supi∈I{r+

i (f) : r+
i (f) = [ψi(f)− ψi+1(f) ∨ 0]} (resp., R−θ (f) = supi∈I{r−i (f) :

r−i (f) = [ψi+1(f)−ψi(f)∨0]}). Thus, the ultimate leveling Rθ is the supremum
between R+

θ and R−θ , i.e., Rθ(f) = R+
θ (f) ∨R−θ (f).

3.1. Associated information to ultimate levelings

Residual values of these operators can reveal important contrasted structures
in the image. Besides residues, other associated information can be obtained
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such as properties of the operators that produced the residual value. For exam-
ple, S. Beucher [28] introduced a function qImax : D → I that associates to each
pixel the major index that produces the maximum non-null residue, i.e.,

q+
Imax

(p) = max{i+ 1 : [r+
i (f)](p) = [R+

θ (f)](p) > 0} (5)

and
q−Imax

(p) = max{i+ 1 : [r−i (f)](p) = [R−θ (f)](p) > 0}. (6)

The functions q+
Imax

and q−Imax
(resp., q+

κmax
and q−κmax

) are combined into a single
function qImax

(resp., qκmax
), i.e.,

p ∈ D, qImax
(p) =

{
q+
Imax

(p), if [Rθ(f)](p) > [R+
θ (f)](p),

q−Imax
(p), otherwise.

(7)

Furthermore, replacing the max operator by any other rank-order operators can
have some other interesting functions as, for example: qImedian

qImin
, qκmedian

and
qκmin . These functions may be very useful to analyze the extracted residues as
already done in some applications [7, 10, 12, 28, 33].

In Fig. 7, we present the input image f (shown in Fig. 6), its ultimate leveling
Rθ(f), and the associated image qImax

. Note that the colors in qImax
indicate the

primitive operator index that generated the maximum residue shown in Rθ(f).

Input image f Ultimate leveling Rθ(f) Associated image qImax

Figure 7: Example of the associated image qImax and the ultimate leveling Rθ(f) of the input
image presented in Fig. 6.

In the remainder of this section, we present some theoretical contributions of
this paper, including properties of ultimate levelings and an efficient algorithm
for ultimate leveling computation.

3.2. Properties of ultimate levelings

In this section, we will present two properties of ultimate levelings: structures
preservation (in Subsection 3.2.1) and complementation (in Subsection 3.2.2).
But, before that, it is worth mentioning that ultimate levelings are not morpho-
logical filters, i.e., they are not increasing and are also not idempotent, in spite
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of the i-th residue r+
i (resp., r−i ) is an idempotent operator, that is,

r+
i (r+

i (f)) = ψi(r
+
i (f))− ψi+1(r+

i (f)) ∨ 0
= ψi([ψi(f)− ψi+1(f) ∨ 0])− ψi+1([ψi(f)− ψi+1(f) ∨ 0]) ∨ 0
= ψi([ψi(f)− ψi+1(f) ∨ 0])− 0
= ψi(f)− ψi+1(f) ∨ 0
= r+

i (f).

We show as a contribution of this paper that ultimate levelings have very in-
teresting properties on structures preservation (contours and regional extrema)
and complementariness (see Sections 3.2.1 and 3.2.2, respectively). Moreover,
positive ultimate levelings R+

θ are anti-extensive, i.e. R+
θ (f) ≤ f . Furthermore,

a residual decomposition (r0(f), . . . , rIMAX−1(f)) of an image f ∈ F(D) can
also be used to build residual hierarchies, and also it can be used for image re-
construction, since r+

i (f) = ψi(f)−ψi+1(f)∨0 and r−i (f) = ψi+1(f)−ψi(f)∨0,
we have that ψi(f) = ψi+1(f) + r+

i (f) − r−i (f), and, consequently, we can re-
construct an image f from a residual decomposition as follows:

f = ψIMAX (f) +

IMAX−1∑
i=0

r+
i (f)−

IMAX−1∑
i=0

r−i (f). (8)

3.2.1. Properties on structures preservation

Levelings are operators that satisfy good properties on structures preser-
vation (contours and regional extrema). Indeed, these properties are widely
desired in segmentation applications. In this section, we show that ultimate
levelings inherit some of these properties.

Given an image f and a family of primitives {ψi : i ∈ I} indexed by a set I,
if ψi+1(f) is a leveling of ψi(f) and (p, q) ∈ A, then [ψi(f)](p) = [ψi(f)](q) ⇒
[ψi+1(f)](p) = [ψi+1(f)](q), which implies [0∨ψi(f)−ψi+1(f)](p) = [0∨ψi(f)−
ψi+1(f)](q) (resp. [0 ∨ ψi+1(f) − ψi(f)](p) = [0 ∨ ψi+1(f) − ψi(f)](q)), which
shows that r+

i (f) (resp. r−i (f)) is connected of ψi(f).
Besides, if [ψi+1(f)](p) > [ψi+1(f)](q), then [ψi(f)](p) ≥ [ψi+1(f)](p) >

[ψi+1(f)](q) ≥ [ψi(f)](q), since ψi+1(f) is a leveling of ψi(f). Thus, we de-
rive 2 statements: (i) [0 ∨ ψi(f) − ψi+1(f)](p) ≥ [0 ∨ ψi(f) − ψi+1(f)](q)
(i.e., [r+

i (f)](p) ≥ [r+
i (f)](q)); and (ii) [ψi(f)](p) > [ψi(f)](q). Therefore, if

[ψi+1(f)](p) > [ψi+1(f)](q), then a transition on positive residues r+
i (f) implies

a transition on ψi(f) with the same order. We can come to the same conclusion,
if we consider [ψi+1(f)](p) = [ψi+1(f)](q). Therefore, ∀(p, q) ∈ A, [r+

i (f)](p) ≥
[r+
i (f)](q)⇒ [ψi(f)](p) > [ψi(f)](q), which shows also that r+

i (f) (resp., r−i (f))
is an arcwise connected operator (or monotone planing [24]) of ψi(f). This leads
us to Lemma 3.2.

Lemma 3.2. If (ψ0(f), ψ1(f), ..., ψn(f)) is a scale-space based on levelings, then
r+
i (f) = [0 ∨ ψi(f) − ψi+1(f)] (resp., r−i (f)) is an arcwise connected operator

of ψi(f), for 0 ≤ i ≤ n− 1.
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On one hand, although connected operators never introduce new contours [5],
they may turn a regional minimum into a maximum and vice-versa. On other
hand, arcwise connected operators are a specialization of connected operators
which do not create regional minima or maxima [24]. Since levelings are a
particular kind of arcwise connected operators, they share the same property.
Besides, levelings also preserve order and this characteristic allows us to state
Props. 3.3 and 3.4. These propositions guarantee that ultimate levelings are
also connected operators and preserve order. Note that, we can easily prove
Props. 3.3 and 3.4 with the help of Lemma 3.2 and the fact that connected
(resp., arcwise connected and levelings) operators are closed under composition,
infimum and supremum.

Proposition 3.3. Ultimate levelings are connected operators.

Proposition 3.4. Positive (resp., negative) ultimate levelings are arcwise con-
nected operators.

Consequently, Props. 3.3 and 3.4 lead us to Corollaries 3.5 and 3.6.

Corollary 3.5. Ultimate grain filters are connected operators.

Corollary 3.6. Ultimate attribute openings (resp., closings) are arcwise con-
nected operators.

As positive (resp., negative) ultimate levelings are arcwise connected op-
erators, and, therefore they will inherit the property of not creating regional
maxima (resp., minima).

Proposition 3.7. Positive ultimate levelings do not create new regional max-
ima. In other words, if R+

θ (f) (resp., R−θ (f)) has a regional maximum X ⊆ D,
then f possesses a regional maximum (resp., minimum) Z ⊆ X .

Proof. Let X ⊆ D be a regional maximum of R+
θ (f) and let y = arg max{f(x) :

x ∈ X} be a pixel of X with maximum value in f . Then, there is a flat-zone Z
in f that contains y. Clearly, Z ⊆ X , since R+

θ is a connected operator. Now,
suppose, by contradiction, that Z is not a regional maximum of f . Then, there
is a pixel p /∈ Z adjacent to some pixel q ∈ Z such that f(p) > f(q) = f(y).
Thanks to Prop. 3.4, we have that R+

θ is an arcwise connected operator. Thus,
f(p) ≥ f(q)⇒ [R+

θ (f)](p) ≥ [R+
θ (f)](q), but as q ∈ Z ⊆ X and X is a regional

maximum of R+
θ (f), then [R+

θ (f)](p) = [R+
θ (f)](q). So, p ∈ X . However, this

is a contradiction, since y is the pixel of X with maximum value in f , and,
consequently, f(p) ≤ f(y). Therefore Z is a regional maximum of f .

3.2.2. Properties with respect to complementation

Two operators ψ and ϕ are dual with respect to complementation if apply-
ing ψ to an image f is equivalent to applying ϕ to the complement of f and
taking the complement of the result [34], i.e., ψ(f) = [ϕ(f c)]c, where f c is the
complement of image f and is defined, for each pixel p ∈ D, as f c(p) = K−f(p).
Similarly, ψ and ϕ are complementary if applying ψ to an image f is equivalent
to applying ϕ to the complement of f , i.e. ψ(f) = ϕ(f c).
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Proposition 3.8. Let (ψ0(f), ψ1(f), ..., ψn(f)) and (ϕ0(f), ϕ1(f), ..., ϕn(f)) be
two scale-spaces based on levelings such that for any 0 ≤ i ≤ n, ψi(f) is dual of
ϕi(f). Then, r+

i (f) and r−i (f) are complementary, where r+
i (f) = [0 ∨ ψi(f)−

ψi+1(f)] and r−i (f) = [0 ∨ ϕi+1(f c)− ϕi(f c)]).

Proof.
r+
i (f) = [0 ∨ ψi(f)− ψi+1(f)]

= [0 ∨ (ϕi(f
c))c − (ϕi+1(f c))c]

= [0 ∨ (K − ϕi(f c))− (K − ϕi+1(f c))]
= [0 ∨ ϕi+1(f c)− ϕi(f c)]
= r−i (f c)

Corollary 3.9. Ultimate attribute openings and closings are complementary.

An operator ψ is self-dual with respect to complementation if its dual oper-
ator with respect to the complementation is ψ itself [34], i.e. ψ(f) = [ψ(f c)]c.
Similarly, ψ is self-complementary if ψ(f) = ψ(f c).

Proposition 3.10. Let (ψ0(f), ψ1(f), ..., ψn(f)) be a scale-space based on lev-
elings such that ψi(f) is self-dual. Then, we have that ri(f) = r+

i (f)∨ r−i (f) is
self-complementary.

Corollary 3.11. Ultimate grain filters are self-complementary.

Corollary 3.12. If R+
θ (f) is an ultimate attribute opening of f and R−θ (f) is

an ultimate attribute closing of f , then [R+
θ (f)∨R−θ (f)] is self-complementary.

3.3. Construction of ultimate levelings

Thanks to Theo. 2.7, it is known that if (T 0
f , T 1

f , . . . , T
IMAX
f ) is a sequence

of trees obtained by successive prunings such that ψ0(f) = Rec(T 0
f ), ψi(f) =

Rec(T if ) and T if = Pruning(T i−1
f ), for i ∈ I, then (ψ0(f), ψ1(f), . . . , ψIMAX (f))

constitutes a morphological scale-space based on levelings. Then, let N r(i) be
the set of nodes removed from T if to build the pruned tree T i+1

f , i.e. N r(i) = T if
� T i+1

f . Since these trees are derived from successive prunings, we can present
Prop. 3.13, which states that residues can be computed in parallel.

Proposition 3.13. If i, j ∈ I such that i 6= j, then N r(i) ∩N r(j) = ∅.

Therefore, we can calculate positive (resp., negative) residues of all pixels of a
given node C ∈ N r(i) by

r+
T if

(C) =


[level(C)− level(parent(C)) ∨ 0], if parent(C) /∈ N r(i),
[level(C)− level(parent(C)) ∨ 0]

+ r+
T if

(parent(C)), otherwise,

(9)
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and thus,

∀p ∈ D, [r+
i (f)](p) =

{
r+
T if

(SC(T if , p)), if SC(T if , p) ∈ N r(i),
0, otherwise,

(10)

and consequently, this leads us to Alg. 1 for ultimate leveling computation
through a top-down approach, which is a generalization of J. Fabrizio and B.
Marcotegui’s algorithm [31]: (i) the residue of the parent node is calculated;
(ii) it is then propagated to its child nodes; (iii) every child node compares its
residue with the residue of its parent node and keeps the maximum of these two
values in Rθ; (iv) after this step, each child node becomes a parent node and
the process is repeated.

Algorithm 1: Basic computation of the ultimate levelings.

1 BasicComputationOfUltimateLeveling(Tree Tf , node C) begin
2 if ∃i ∈ I such that C ∈ N r(i) then
3 r+

i [C] = level(C)− level(parent(C)) ∨ 0;

4 r−i [C] = level(parent(C))− level(C) ∨ 0;
5 if parent(C) ∈ N r(i) then
6 r+

i [C] = r+
i [C] + r+

i [parent(C)];

7 r−i [C] = r−i [C] + r−i [parent(C)];

8 R+
θ [C] = R+

θ [parent(C)] ∨ r+
i [C];

9 R−θ [C] = R−θ [parent(C)] ∨ r−i [C];
// From here, compute q+ and q−

10 foreach S ∈ children(C) do
11 BasicComputationOfUltimateLeveling (Tf , S);

The input of Alg. 1 is a tree (max-tree, min-tree or tree of shapes). These
trees can be built by simple algorithms based on union-find such as proposed
in [20, 35] with time complexity O(|D| log(|D|)). Once the tree is built (see
algorithms in [22, 20]), function BasicComputationOfUltimateLeveling is ex-
ecuted from the root node. Conditions given at lines 2 and 5 depend on the
chosen family of primitives and their verifications can be done in constant time.
Since function BasicComputationOfUltimateLeveling visits each node of the
tree exactly once and the number of nodes of the tree is at most the number of
pixels in the image, BasicComputationOfUltimateLeveling is executed with
time complexity O(|D|). At the end, we can reconstruct the output of Alg. 1
(i.e., ∀p ∈ D,Rθ(p) = R+

θ [SC(T , p)]∨R−θ [SC(T , p)]) in O(|D|) time complexity.
Therefore, the time complexity of the proposed algorithm is O(|D| log(|D|)).

4. Strategies for choosing a family of primitives

The results of ultimate leveling operators depend directly on the chosen
primitives. In fact, since residues are obtained by the difference of two consecu-
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tive primitives and they can be computed by the difference between two consec-
utive pruned trees, the output of Alg. 1 depends on the set N r(i) = T if � T

i+1
f

(see lines 2 and 5). Thus, a family of primitives (ψ0(f), ψ1(f), ..., ψIMAX (f)) can
be obtained by the reconstruction from a sequence of consecutive pruned trees
(T 0
f = Tf , T 1

f , ..., T
IMAX
f ), which in turn can be derived from the sets N r(i) by

using the following formula:

T i+1
f = T if � N r(i). (11)

The choice ofN r(i) sets determines the pruning strategy. A logical predicate
Γ : P(D) → {True,False} marks the tree branches to be pruned (see Alg. 2).
These markings (and consequently, every tree T if and its set N r(i)) can be
obtained, for example, through a postorder traversal of Tf . The node visiting
order does not alter the ultimate leveling result thanks to Prop. 3.13. As an
illustration, Fig. 6 shows an example of marking the tree (by sorting the height
of CCs) in which we can deduce the sequence of nodes N r(i) and, consequently,
the sequence of pruned trees.

Algorithm 2: Basic computation of choose a primitives family.

1 chooseThePrimitivesFamily(tree Tf) begin
2 i = 0
3 T 0

f = Tf
4 foreach node C of a postorder traversal of Tf do
5 if Γ(C) is true then
6 N r(i) is the subtree of T if rooted in C

7 T i+1
f = T if � N r(i)

8 i = i+ 1

Observe that the set with the largest number of primitives that can be de-
rived from a tree Tf is given by the criterion: ∀C ∈ Tf , Γ(C) = JC is not rootK.
It can be a good idea to use all these primitives if the purpose involves shape
recognition. However, that does not seem to be a good idea if the purpose is
to identify contrasted regions from a natural image, since the residue generated
between two consecutive operators can be very close to zero. This may occur
because the objects of an image decompose very slowly. Thus, in the follow-
ing subsections, we present some strategies to build primitive families that can
generate more significant residues for the ultimate levelings.

4.1. Attribute based primitives

As stated in Section 2, tree nodes correspond to image regions defined by
level sets. Characteristics of these regions such as area, volume, height, width
or circularity can be computed and assigned to tree nodes as node attributes.
Several attributes can be combined in a vector, as proposed in [36], but in this
paper only scalar attributes are considered. Thus, formally, a node attribute
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is a function κ : P(D) → R representing a region feature. Some attributes
are increasing, i.e., A,B ∈ P(D), A ⊆ B ⇒ κ(A) ≤ κ(B). If attributes are
increasing, their values also follow a well-defined ordering in the tree due to the
hierarchy of the level sets. Thanks to this property, attribute opening (resp.,
closing and grain filter) is performed by simply pruning the tree nodes whose
attribute value κ is lower than a given threshold t followed by reconstruction
of the pruned tree. For non increasing attributes several strategies (min, max,
direct or Viterbi optimization) are proposed in [21].

Thus, families of attribute openings, attribute closings and grain filters can
be determined from a family of increasing thresholds (t1, t2, ..., tIMAX ) for an
increasing attribute κ. For example, the family of thresholds can be derived
from a tree Tf , i.e., ti ∈ Tκ = {κ(C) : C ∈ Tf} such that 1 ≤ i ≤ |Tκ| =
IMAX . Thus, T 0

f = Tf , T i+1
f = Pruning(T if ) = {C ∈ T if : κ(C) ≤ ti+1}

and ψi = Rec(T if ), for 0 ≤ i < IMAX . Therefore, a node C ∈ N r(i) =

T if�T
i+1
f satisfies the conditions of criterion Γ, if and only if, κ(C) ≤ ti and

κ(parent(C)) > ti or equivalently κ(C) 6= κ(parent(C)) So, ∀N ∈ Tf ,Γ(N) =
Jκ(N) 6= κ(parent(N))K.

Residual values of negative (resp. positive) ultimate levelings R−θ (resp.
R+
θ ) are the biggest difference between two consecutive operators from a given

primitive family. In this sense, Fig. 8 shows an example of an application of R−θ
in a given image f ∈ F(D) where we analyze the evolution of residual values
for a given pixel using two primitive families: area closing and height closing.
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Figure 8: Evolution of residual values of the pixel marked in red of the input image obtained
from ultimate attribute (area and height) closings.

Primitive families based on area attribute (or similarly, volume) tend to
simplify images very slowly leading to very small residues. We can get bigger
residues if we choose primitive families that tend to simplify the image more
quickly, as evidenced in Fig. 8: family of height closings simplifies more quickly
than family of area closings. In both cases, we see that the residues generated for
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the selected pixel are the largest transition between two consecutive primitives,
which are the following: 2 for area closings and 59 for height closings, but, in
both cases, they are smaller than the real contrast (that is, approximately 117)
of the object that contains the selected pixel.

Based on these considerations, B. Marcotegui et al. [37], proposed a solution
for primitive selection called gradual transition and, in this paper, we propose
a second solution, based on extinction values [38, 39].

• Primitives based on gradual transition
As seen previously, families of attribute openings (resp. closings) and
grain filters can be determined from families of increasing thresholds (t1,
. . . , tIMAX ) for an increasing attribute κ. Thus, a node C ∈ N r(i) ⊆
Ti satisfies the conditions of criterion Γ, if and only if, κ(C) ≤ ti and
κ(parent(C)) > ti or equivalently κ(C) 6= κ(parent(C)) which also is
equivalent to κ(parent(C)) − κ(C) > 0. Thus, one way to reduce this
discomfort is to mark the nodes that have a great variation ∆ of attribute
value with respect to its parent, i.e., C ∈ Tf satisfies the conditions of
criterion Γ, if and only if, κ(parent(C)) − κ(C) > ∆. So, ∀N ∈ Tf , we
do: Γ(N) = Jκ(parent(N))− κ(N) > ∆K.

Note that, choosing ∆ = 0 gives the classic ultimate leveling, ∆ = 1
integrates a series of non-null residues, ∆ = 2 integrates a series of residues
separated by at least 2 consecutive null residues, and so on [37]. Note that,
it is not easy to find the best value for ∆, since it is a global information
and is not always possible to estimate the real contrast for all regions of
the image.
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Figure 9: Evolution of residual values of the pixel marked in red of the input image obtained
from ultimate attribute (area and height) closings using a family of primitives based on gradual
transition. (see Fig. 8).
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• Primitives based on extinction values
Extinction values [38, 39] are good candidates to define a pruning predi-
cate Γ. Extinction values are measures extracted from regional extrema
(minima or maxima). In short, the extinction value of a regional extremum
M for an increasing attribute κ is the maximal size of the attribute filter,
such that there still exists a regional extremum M ′ that contains M after
the filtering [38, 39]. Thus, we can mark only the nodes such that their
attribute value corresponds to an extinction value. This procedure can be
done by the following algorithm [40]:

1. For each leaf L of Tf (i.e. regional extremum), the path towards the
root is initiated.

(a) When a node NL with more than one child appears (i.e. a ram-
ification) in the path, the following verification is performed:

i. Let CL ∈ children(NL) be the node such that L ⊂ CL
(i.e., CL is ancestral of L). If there exists another C ∈
children(NL) such that κ(C) > κ(CL), then κ(CL) is de-
fined as the extinction value for leaf L (note that, in this
case, this is the maximum attribute value that maintains
the regional extremum L [40]). Thus, Γ(C) is true for all
C ∈ children(NL) and then an iteration for the next leaf is
performed.

ii. Otherwise, we continue the leaf path until the next ramifica-
tion NL is found and the procedure is repeated.

iii. Finally, if the path reaches the root, then its extinction value
is set as the attribute value of the first node in the path before
arriving at the root, which is the maximum image extinction
value.

Fig. 10 shows the evolutions of residual values of a given pixel obtained
from ultimate attribute closings based on extinction values. As we can
see, comparing with the ones of Fig. 9, the residual values using height
attribute with extinction value strategy are bigger than the ones obtained
by using gradual transitions.

A summary of this section is illustrated on Fig. 11. Applications of ultimate
levelings based on different families of primitives are shown highlighting the
following aspects: (i) polarity of objects extracted from ultimate levelings: light
(resp. dark) objects are residues extracted from anti-extensive (resp. extensive)
primitives as attribute openings (resp. attribute closings) and objects in both
polarities are residues extracted from self-dual primitives as grain filters; (ii)
the choice of attribute type: attribute filters that simplify images more slowly,
such as area attribute ones, tend to produce less contrast, whereas attribute
filters that simplify images more abruptly tend to produce more contrast such
as height attribute filters. (iii) the choice of a strategy for selecting primitives
that produce more contrast such as primitives based on gradual transition or
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Figure 10: Evolution of residual values of the pixel marked in red of the input image ob-
tained from ultimate attribute (area and height) closings using a family of primitives based
on extinction values.

on extinction values. In this way, we should remark that the parameter ∆
for selecting primitives based on gradual transition is a global information so
that it is not always possible to estimate real contrast for all regions of the
image, whereas extinction values are obtained from local information of the
image associated to regional extrema and this makes them good alternatives to
design non-parametric ultimate levelings.

UO-Area UO-Area-GT UO-Area-EV UO-Height UO-Height-GT UO-Height-EV

UC-Area UC-Area-GT UC-Area-EV UC-Height UC-Height-GT UC-Height-EV

UGF-Area UGF-Area-GT UGF-Area-EV UGF-Height UGF-Height-GT UGF-Height-EV

Figure 11: Example of applications of ultimate levelings where each row contains applications
of UAO, UAC and UGF using primitive families based on attributes (area and height of
bounding box), gradual transition (GT) with ∆ = 5 and extinction values (EV).
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4.2. Primitives based on marked image

Primitives based on marked image can be obtained by a traditional algorithm
Λ, such as the one originally proposed by F. Meyer [25], to construct levelings
that takes two images as arguments: an input image f ∈ F(D) and a marker
image g ∈ F(D). It modifies g in such a way that it becomes a leveling of f .
Let us denote by Λ(f, g) the leveling of f obtained from marker g.

It can be shown that anti-extensive (resp. extensive) levelings, named open-
ing by reconstruction (resp. closing by reconstruction), can be constructed from
marker images. They can be obtained by pruning operations of extended max-
trees (resp. min-trees) [16]. In this case, the nodes of the tree to be pruned
are determined according to the image marker [16]. Then, let Tρ(Tf , g) and
Tρ∗(Tf , g) denote the trees obtained from, respectively, an opening and a clos-
ing by reconstruction of tree Tf by marked image g ∈ F(D). Thus, families
of openings (resp. closings) by reconstruction (ψ0(f), ψ1(f), . . . , ψIMAX (f)) can
be determined from families of markers (g1, g2, ..., gIMAX ) in the following way:
T0 = Tf , ψ0(f) = Rec(T0) = f , Ti = Pruning(Ti−1) = Tρ(Ti−1, gi) (resp.
Tρ∗(Ti−1, gi)) and ψi(f) = Rec(Ti) for 1 ≤ i < IMAX . Thus, families of markers
may be used to generate morphological scale-spaces based on levelings as shown
by F. Meyer in [15, 14].

If primitives are neither extensive nor anti-extensive, then we can separately
calculate positive and negative ultimate levelings and after combine them (see
Prop.16 in [24]).

In general, N r(i) is a set of connected components of graph Ti � Ti+1 and,
consequently, a node C ∈ N r(i) ⊆ Ti satisfies the conditions of criterion Γ,
if and only if node C is removed (and, at the same time, its parent node is
preserved) by the pruning operation generated by the corresponding marker
image.

5. Strategies for filtering undesirable residues

Ultimate levelings are operators that extract residual information from prim-
itive families. During the residual extraction process, it is very common that un-
desirable regions of the input image contain residual information that should be
filtered out. These undesirable residual regions often include desirable residual
regions (which should be preserved) due to the design of the ultimate levelings
which consider maximum residues.

T. Retornaz [41] already described this problem, called myopia, which is
normally produced by nested structures (in fact, this can be confirmed by
Prop. 3.7). In this way, J. Hernández and B. Marcotegui [10] proposed a solution
for this problem using shape information during the residual extraction process.
However, the drawback of this solution is that residual values are modified ac-
cording to a similarity function and thus the properties of ultimate levelings are
lost.

In this work, we propose an approach to preserve the original extracted
residual values while filtering out residues extracted from undesirable regions.
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As shown in Fig.12, we calculate ultimate levelings Rθ only for residues ri
satisfying a given similarity criterion Ω.

ψ0(f) ψ1(f) ψ2(f) ... ... ψIMAX−1
(f) ψIMAX (f)

r1(f) r2(f) r3(f) ... rIMAX−2
(f) rIMAX−1

(f)

Rθ(f) = sup{ri(f) : ri(f) satisfies Ω}

Figure 12: Scheme for filtering out residues ri extracted from undesirable regions. For exam-
ple, the residues in red do not satisfies the criterion Ω and thereby they are filtered out; the
supremum is evaluate only on the blue ones.

This procedure can be implemented in several manners. To decide whether a
residue r+

i (f) (resp., r−i (f)) is filtered out or not, just checking nodes C ∈ N r(i)
that satisfy a given filtering criterion Ω : P(D) → {desirable,undesirable}.
Thus, we only calculate the ultimate leveling Rθ for residues r+

i (resp., r−i )
such that satisfy the criterion Ω. So, positive (resp. negative) residues are
redefined as follows:

∀p ∈ D, [rΩ+
i (f)](p) =


r+
T if

(SC(T if , p)), if SC(T if , p) ∈ N r(i) and ∃C ∈ N r(i)
such that Ω(C) is desirable;

0, otherwise.
(12)

Ultimate levelings obtained from filtering out undesirable regions are rede-
fined as follows:

RΩ(f) = R+
Ω(f) ∨R−Ω(f), (13)

where,

R+
Ω(f) = sup{rΩ+

i (f) : i ∈ I} and R−Ω(f) = sup{rΩ−
i (f) : i ∈ I}. (14)

Below are listed two examples for filtering strategy. The first one is based
on feature vector [42, 36] similar to the research from J. Hernández and B.
Marcotegui [10] and the second one is based on stable regions [43].

5.1. Filtering based on shape information

Shape recognition is one of the fundamental problems in field of image
analysis and various approaches have been proposed over the last decades.
One of the shape recognition subproblems is called decision problem [10, 44]
that consists in comparing two patterns A and B using a similarity measure
d : P(D) × P(D) → R+ by means of a given threshold α, that is, deciding
whether the similarity is greater or smaller than the threshold. Thus, we can
construct Ω according to a similarity criterion, comparing the shape correspond-
ing to a node C ∈ N r(i) and a reference shape Ωref ∈ P(D). Thus, the criterion
Ω is defined for any node C ∈ P(D) as follows:

Ω(C) =

{
desirable, if d(C,Ωref ) ≤ α,
undesirable, otherwise.

(15)
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This filtering strategy was first introduced by J. Hernández and B. Mar-
cotegui [10] where several shape similarity functions were studied.

5.2. Filtering based on Maximally Stable Extremal Regions

Maximally Stable Extremal Regions (MSER) originally introduced by Matas
et al. [43] have been widely used in a variety of applications in computer vision
as region detector. The regions detected by this method are the CCs of level sets
with maximum stability and, as shown by Kimmel et al. [45], are invariant to
affine transformations and thereby this method has an advantage compared to
the SIFT detector. In this way, stability can be seen as a relationship between
intensities and attributes of comparable CCs. More formally, a stability function
associates to any CC Cλ, extracted from a level set at value λ, the following
value:

Stability(Cλ) =
κ(Cλ)

|κ(Cλ−∆)− κ(Cλ+∆)|
, (16)

where ∆ ∈ K is a stability parameter and Cλ−∆, Cλ and Cλ+∆ are comparable
CCs extracted from level sets at values, λ−∆, λ and λ+∆, respectively. Then,
the CCs that correspond to the local maxima of stability function are called
MSERs. It is worth mentioning that MSER variants [45, 46] can be explored.

Based on these considerations, the criterion Ω is defined for any node C ∈
P(D) as follows:

Ω(C) =

{
desirable, if C is MSER,
undesirable, otherwise.

(17)

6. Examples of application of ultimate levelings

This section provides some illustrative examples of application of ultimate
levelings in order to give a glimpse of their usefulness.

6.1. Blood vessels segmentation

Blood vessels segmentation from images such as of Fig. 13a is a very im-
portant problem for retinal image analysis. Since ultimate levelings preserve
location and shape of contours, it is appropriate to apply them along with a
shape-based filter such as presented in Subsection 5.1. In fact, an approach
is to first apply the closing top-hat operator (with a disk-shaped structuring
element with a radius of 7 pixels) in order to reduce the amount of undesir-
able information (see Fig. 13c); and, then, apply an ultimate leveling with
anti-extensive primitives and using a filter that emphasizes elongated objects
defined as (although other definitions can be found at [47, 48, 49]):

Ωelongation(C) =

 desirable, if d(C,Ωref ) =
1

E(C)
≤ α,

undesirable, otherwise.
(18)
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where E(C) = π SemiMajorAxis(C)2/(4 Area(C)) is the elongation measure [50],
obtained from Area(C) and SemiMajorAxis(C) which are, respectively, the area
of CC (or shape) C and the length of semi-major axis of the best fitting ellipse
on C computed by central moments.

We can see in Fig. 13e the result of this application. Just for comparison,
Fig. 13d shows an application of ultimate levelings without applying elongation
filtering. As we can observe, the elongation filter significantly improves the
result.

(a) input RGB image (b) input image (channel G) (c) closing top-hat

(d) UAO applied in (c) (e) UAO with elongation filter (f) Overlap: (b) and (e)

Figure 13: Application of ultimate leveling (ultimate attribute opening) with elongation shape
information.

6.2. Beans segmentation

Automated systems for inspection of agricultural products are very relevant
for classification, quality estimation, and storage supervision of fruits and veg-
etables. In particular, since bean constitutes the staple diet of people in some
countries, their visual quality inspection could reduce significantly the time-
consuming and high-cost of manual inspection task. One step to accomplish
this automated inspection is to obtain a segmentation of beans from images
such as of Fig. 14a. For that, we can apply ultimate levelings using grain filters
(Fig. 14b and Fig. 14c) or attribute closings (Fig. 14d and Fig. 14e) as primitives
along with filtering based on MSER, as discussed in Subsection 5.2. As we can
see, the ultimate levelings using grain filters as primitives were able to segment
the whole bean with no holes, since grain filters are self-dual operators.
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(a) input image (b) UGF with filtering based on MSER. (c) highlight the result of (b).

(d) UAC with filtering based on MSER. (e) highlight the result of (d).

Figure 14: Example of applications of ultimate levelings for beans segmentation.

6.3. Scene-text detection

Texts present within scenes are usually associated to digital media semantic
contexts and may constitute important content-based descriptors. In particular,
the problem of separating text from non-text regions in images, such as the
ones presented in Fig. 15 taken from ICDAR dataset [51], is a step to solve
the scene-text detection problem. One approach is to solve another supervised
classification problem that comes first which consists of deciding whether a
connected component is a character or not. For that, we can define some features
(descriptors) used in scene-text detection problems [8, 13, 33] such as: aspect
ratio (H1), rectangularity (H2), number of holes (H3) and color variance (H4).
From them, given a set of thresholds αi, βi ∈ R+, for i = 1, 2, 3, 4, we can
build logical predicates Γi(C) = Jαi ≤ Hi(C) ≤ βiK. For the purpose of this
application, we used:

Γ1(C) = 0 ≤ H1(C) ≤ 8
Γ2(C) = 0, 4 ≤ H2(C) ≤ 0.95
Γ3(C) = 0 ≤ H3(C) ≤ 5
Γ4(C) = 0 ≤ H4(C) ≤ 60

(19)

These logical predicates can be used along with filtering based on MSER in the
following way:

Ωchar(C) =

 desirable, if C is MSER and Γi(C) are all true,
for i = 1, . . . , 4,

undesirable, otherwise.
(20)

The ultimate leveling with this composite filter can be used in a first step of
scene-text detection problems in which a set of candidate characters is extracted
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and then a set of candidate text regions is constructed by merging candidate
characters. Thus, these candidate text regions are classified as text or non-text
regions [8, 13, 52]. Fig. 15c shows the results of application of ultimate level-
ings in some images (presented at Fig. 15a) of ICDAR dataset [51]. It is worth
mentioning that text regions are extracted even in images with both polarities,
low contrast, complex background and illumination problems. Just for compar-
ison, Fig. 15e shows the results of application of Pesaresi’s approach [7]. As we
can observe, the ultimate levelings along with a composite MSER-based filter
significantly improves the result generating images without noises.

(a) input images

(b) Results using ultimate levelings.

(c) Highlight the of results (b).

(d) Results using Pesaresi’s approach [7]

(e) Highlight the of results (d).

Figure 15: Application of ultimate grain filter with composite filter.

7. Conclusion

This work presents a new class of residual operators called ultimate level-
ings which are powerful multi-scale image operators defined on levelings scale-
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space. Besides, other contributions of this paper include: (i) the statement of
properties of ultimate levelings (in Subsection 3.2), (ii) the presentation of an
efficient algorithm for their computation inspired by Fabrizio and Marcotegui’s
algorithm [31] (in Subsection 3.3), (iii) the provision of strategies for choos-
ing families of primitives (in Section 4), (iv) the presentation of strategies for
filtering undesirable residues (in Section 5), (v) the provision of some illustra-
tive examples (retinal blood vessels extraction, beans segmentation and text
location) of application of ultimate levelings (in Section 6).

Furthermore, ultimate levelings are computationally efficient and their per-
formance evaluations are comparable to the state of art methods for filter-
ing and image segmentation. For example, some operators included in ulti-
mate levelings class have been demonstrated to have good perfomance evalua-
tion [6, 8, 10, 11, 13]. We also provide a plugin and source code for the popular
free image processing software ImageJ [53] that gives access for some ultimate
levelings operators. Instructions for download and installation can be found at
http://www.ime.usp.br/~wonder/UL.

As a future work, in order to avoid nesting of residual regions, we plan to
analyze a series of residues between nodes and, using a certain criterion, take a
global decision for selecting the best residues.
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