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Flue gas captured contains different impurities (N2, O2, SO2, NO etc) and their concentrations 

depend on the capture process and the industrial sector. Moreover, the presence of impurities 

may change the thermophysical properties of the stream and therefore impact the conditions 

of CO2 storage. The aim of the paper is to investigate the solubility in water of carbon dioxide 

and some chosen impurities. In this work VLE calculations using a geochemical model 

(Corvisier, 2013) and two group contribution (GC-PR-CPA (Group Contribution-Peng 

Robinson-Cubic Plus Association) (Hajiw, 2014 and Hajiw et al., 2015) and E-PPR78 (Qian 

et al., 2013) equations of state) models are compared. 
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1. INTRODUCTION 

Combustion of fossil fuels and industrial processes are the principal anthropological sources 

of greenhouse gases emissions (carbon dioxide, methane, NOx, SOx...) to the atmosphere.   

Emissions of carbon dioxide, estimated at 35 gigatons in 2013 (Agency P.N.E.A., 2014), are 

considered to be the major cause of global warming. Carbon Capture and Storage (CCS) is a 

solution proposed to avoid emissions of carbon dioxide. Conditions for CO2 storage are 

considered to be in this study in the temperature and pressure range of 300-423 K and 6-30 

MPa (Liebscher et al., 2013). 

Depending on the capture process and the industrial field, the flue gases contain different 

impurities, with various compositions. Three examples, from a thermal power plant (Case A), 

a cement plant (Case B) (Meunier et al., 2014) and a coal IGCC (Integrated Gasification 

Combined Cycle) plant (Case C) (European Communities, 2011) are presented in Table 1. In 

all plants, coal is used as the major fuel. 

 

[Table 1] 

 

In this study, the major focus is the solubility of these impurities in water. Indeed, their 

presence in the flue gas may change CO2 thermophysical properties (density, viscosity) and 

phase diagram behaviour (solubility). As an example of the effect of different impurities on 

phase diagrams, phase envelopes of pure CO2 and mixtures given in Table 1 are drawn on 

Figure 1. 

 

[figure 1] 

 

 

Depending on the binary system, there are more or less data (Table 2). To the knowledge of 

the authors, no experimental data has been found for VLE of NO-H2O and NO2-H2O under 

pressure. On the contrary, VLE data are abundant for CO2-H2O, N2-H2O and CH4-H2O 

systems. References for these systems are presented in Table 2. 

 

[Table 2] 

 

 



 

To predict phase diagrams, it is necessary to have robust models. In this paper, three models 

are applied and compared on binary systems: two group contribution models (GC-PR-CPA 

(Hajiw et al., 2015) and E-PPR78 (Qian et al., 2013) EoS or equations of state) and a 

geochemical model (Corvisier, 2013). All three models have the Peng-Robinson EoS (Peng 

and Robinson, 1976) in common. Few data have been found in the open literature for ternary 

systems with water. Therefore, only three systems (i.e. two ternary systems CO2-CH4-H2O 

and CO2-N2-H2O and a quaternary CO2-CH4-H2S-H2O) are presented and used to validate all 

three models. 

2. THERMODYNAMIC MODELLING 

2.1. Group Contribution Models 

In group contribution models, molecules can be divided into groups and interactions between 

groups are taken into account rather than between molecules (e.g. UNIFAC model 

(Fredenslund et al., 1975)). However, in this study, molecules of interest are small and can 

therefore be considered also as groups.  

The PR–CPA EoS (Hajiw et al., 2015) has been used in this work. This model is composed of 

the cubic Peng Robinson EoS and the Wertheim term (Wertheim, 1984) which takes into 

account the presence of H-bonds due to the presence of associating molecules like water 

(equation 1) 
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The Peng-Robinson (PR) EoS is used in both E-PPR and GC-PR-CPA EoS. Therefore, when 

considering systems of non-associating compounds, the GC-PR-CPA EoS is reduced to the -

E-PPR78 EoS. Therefore, the attractive parameter ai and the co-volume bi for non-associating 

compounds are described by the same equations (Jaubert et al., 2014).  

 

In E-PPR78, there are two adjustable group interaction parameters (Akl and Bkl), that can be 

found in the paper of (Xu et al., 2015). As for the GC-PR-CPA EoS, different steps of 

adjustment have been taken into account. First, five parameters of the PR-CPA EoS (attractive 



parameter a0, co-volume b, parameter C1, association energy ε and association volume β) have 

been adjusted for pure water using vapour pressure and saturated liquid density data (see 

thesis of Hajiw (Hajiw, 2014)). They are recalled in Table 3. Then, group interaction 

parameters for gases – water binary systems (Ckl, Dkl and Ekl) have been adjusted on solubility 

data (Table 2). The modified simplex algorithm has been used to minimize the objective 

function. They are given in Table 4. Equations used in both models are developed in the 

appendix. 

 

[Table 3] 

 

[Table 4] 

2.2. Geochemical Model 

The geochemical model presented shortly in this part is implemented in CHESS/HYTEC 

software (Corvisier, 2013; Corvisier et al., 2013). The dissymmetrical approach γ-φ is used in 

geochemistry (Equation 2): 
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where mi is the molality (mol/kg of water) of the dissolved gaseous component i, γi
aq

 its 

activity coefficient, Ki
g
 the Henry’s law constant at water saturation pressure,   

  the molar 

volume of the dissolved gaseous component at infinite dilution, yi
g 

the component mole 

fraction in the gas phase and φi
g 

its fugacity coefficient. For the gas phase, the PR EoS is used. 

Henry’s law constants can be collected from various sources of the literature. Molar volumes, 

used to correct these latter for pressure, can be obtained from the revised Helgeson-Kirkham-

Flowers general equation (Tanger etal., 1988) and the associated parameters are also found in 

the literature. 

Moreover, this last model uses an important database and could solve a large set of mass 

balance and mass action laws equations to calculate the whole water speciation (i.e. pH, 

concentrations of species such as HCO3
-
, CO3

2-
, SO4

2-
…) and minerals 

dissolution/precipitation (i.e. carbonates, cement phase…). 

Parameters for pure gases and for gas solubilities are given in Table 5. In this model, binary 

interaction parameters are temperature independent. 

 



[Table 5] 

3. RESULTS AND DISCUSSION 

3.1. Binary systems with water 

Models are compared over experimental data found in the literature for each binary system. 

However, availability of data is disparate according to the binary system. Deviations are 

presented in Table 6. Duan and co-workers (Duan et al., 2003; Duan and Mao, 2006; Duan et 

al., 2007; Mao and Duan, 2006; Geng and Duan, 2006) also developed a model for gas 

solubility in water. When it is possible, their model is compared to the other three. 

[Table 6] 

 

Deviations for the same systems for temperature/pressure conditions from 300 to 423 K, from 

6 to 60 MPa are given in Table 7. In general, while the GC-PR-CPA EoS presents lower 

deviations for higher pressures, E-PPR78 and the geochemical model give similar deviations 

than the ones presented in Table 6. A reason is that, for the GC-PR-CPA EoS, parameters 

have been adjusted for high pressures. For SO2, when low and high pressures data are omitted 

the deviation for the GC-PR-CPA EoS decreases, whereas the deviations for others are 

significantly improved. The explanation comes from the fact that fitted (GC-PR-CPA and E-

PPR78) or collected (geochemical model) parameters of each model have been adjusted on 

various data temperature/pressure ranges. Consequently, it shall also be mentioned that results 

could be improved with adapted and optimized fit. 

 

[Table 7] 

 

Figures 2 and 3 present respectively CO2 and SO2 solubilities in water at three temperatures. 

Water content in CO2 at three isotherms is shown on Figure 4. 

 

[Figures 2-4] 

Table 8 gives deviations between experimental data and predictions for the CO2-H2O and 

SO2-H2O binary systems presented on Figures 2 and 4. It reveals that the quality of data is 

very important for estimation of deviations and evaluation of the performance of the models. 

 

[Table 8] 

 



Based on Tables 6 and 7 and Figures 2 to 4, one may say that the geochemical model and the 

GC-PR-CPA give similar predictions for gas solubilities in water. Concerning the E-PPR78 

EoS, while its predictions are in good agreement with experimental data for carbon dioxide or 

methane solubilities in water, it gives qualitative rather than quantitative predictions for 

nitrogen, oxygen and hydrogen solubilities in water. Solubilities and water contents from the 

geochemical model are satisfactory using literature parameters and once again, it shall be 

pointed out that the whole water speciation is calculated and potential minerals 

dissolution/precipitation reactions could also be taken into account. 

3.2. Multicomponent gas mixtures + water systems 

While fair amount of data are available for binary systems with water, limited data for ternary 

or multicomponent systems containing carbon dioxide, water and impurities are available in 

the open literature, particularly at conditions of interest. Scarce data have been found for the 

CO2-CH4-H2O ternary system (Qin et al., 2008; Chapoy et al., 2016; Song and Kobayashi, 

1990; Dhima et al., 1999, Al Ghafri, 2014) (Figures 5 Figure 8), one reference for the CO2-

N2-H2O system (Liu et al., 2012) (Figures 9 and 10) and the CO2-CH4-H2S-H2O quaternary 

system (Robinson et al., 1982) (Figures 11 and 12). 

 

[Figures 5 and 12] 

Deviations between experimental data and models are given in Table 9. 

 

[Table 9] 

 

Based on previous figures, one might observe that the presence of impurities decreases the 

solubility of carbon dioxide in the water rich phase. 

According to Table 9, deviations for multicomponent systems are of the same order of 

magnitude than for binary systems. However, there are some concerns about the 

measurements for the CO2-CH4-H2O ternary system. Indeed, for a similar composition of the 

gas phase (about 50% CO2-50% CH4), there are discrepancies between water content data 

(Figure 7). Moreover, the trend does not follow neither other data (Chapoy et al., 2016) 

(Figure 8) nor the one given by the PR-CPA EoS with a binary interaction parameter kij set to 

0. Yet, it has been shown in the paper of (Hajiw et al. 2015), that for such systems, adjusted 

binary interaction parameters are necessary for solubility predictions but not for water 

content. The modelling of the quaternary system CO2-CH4-H2S-H2O shows relatively good 



results regarding the experimental data (Robinson et al., 1982), and regarding another model 

from the literature (Zirrahi et al., 2012) as well for our three models. This last comparison 

tends to demonstrate the ability of these three approaches to handle complex gas mixtures. 

4. CONCLUSION 

Thermodynamic and geochemical models have been applied to binary and ternary systems 

with water. Compared to literature data, the geochemical model and the GC-PR-CPA Eos 

give satisfactory results. However, predictions are strongly dependent on the availability and 

quality of experimental data, and consequently on the quality of the selected parameters for 

the geochemical model. Solubility data for SO2 and O2 at storage conditions (higher pressures 

and temperatures) and solubility data for NO are missing. Very few data for multicomponent 

systems are available in the open literature to validate the three models. 

It is noticeable that the three models are built around the same general cubic EOS (i.e. Peng-

Robinson) using different methods (i.e. associating term, group contribution, 

symmetrical/dissymmetrical approach…). Nevertheless, they all demonstrate ability to deal 

with complex gas mixtures over relatively large temperature and pressure ranges. Providing 

sufficient experimental data to calibrate their associated parameters, the models are able to 

handle some computations involving CO2 and potential impurities within the context of its 

capture, transport (group contribution models) and geological storage (geochemical model).  
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APPENDIX 

 Pure compounds 

With the presence of water or associating molecules, an associating term (from Wertheim’s 

theory and perturbation theory) is added to the PR EoS. Two functions must be defined: the 

radial distribution function g(d) of the reference fluid (hard sphere) (eq. A.2) and the fraction 

of non-bonded associating molecules X
A
 (eq. A.3): 
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 Mixtures 

Classical mixing rules are used in both E-PPR78 and GC-PR-CPA EoSs. They are given by 

equations A.4 and A.5 
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The binary interaction parameter kij is defined as follow for the E-PPR78 EoS (eq. A.6 and 

A.7) 
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This binary interaction parameter has been modified when considering water in the GC-PR-

CPA EoS. Equation A.7 becomes equation A.8: 

                                                     

   

   

                        

   

   

       
                

(A.8) 

Finally, combining rules have to be used in the associating term of the GC-PR-CPA EoS. The 

Combining Rule CR1 (Hajiw et al., 2015) is used in our GC-PR-CPA EoS (eq. A.9 and A.10). 
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Figure 3: Pressure-Temperature diagram. Solid line: pure CO2. Broken dotted line: Case A. 

Dashed line: Case B. Dotted line: Case C. Grey square: storage conditions in saline aquifers. 
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Figure 4: CO2 solubility in water at 323 K (♦), 373 K (▲) and 423 K () (Hou et al. 2013). 

Solid lines: GC-PR-CPA EoS. Dotted lines: E-PPR78 EoS. Dashed lines: geochemical model 
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Figure 3: SO2 solubility in water at 333 K (♦), 363 K (▲) and 393 K () (Rumpf and Maurer, 

1992). Solid lines: GC-PR-CPA EoS. Dotted lines: E-PPR78 EoS. Dashed lines: geochemical 

model 
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Figure 4: Water content at 323 K (♦, (Hou et al. 2013)), 373 K (▲, (Hou et al. 2013) and Δ, 

(Caumon et al., 2016)) and 423 K (,(Hou et al. 2013)). Solid lines: GC-PR-CPA EoS. Dotted 

lines: E-PPR78 EoS. Dashed lines: geochemical model 

  

0 

40 

80 

120 

160 

200 

240 

0 10 20 30 40 50 

y
 H

2
O

 /
 ‰

 

Pressure / MPa 



 

 

 

Figure 5: CO2 aqueous mole fraction versus pressure for the CO2-CH4-H2O system at 375 K. 

Experimental data (Qin et al., 2008): (♦) pure CO2, (▲) 72% CO2, () 53% CO2 and (■) 41% 

CO2. Solid lines: GC-PR-CPA EoS. Dotted lines: E-PPR78. Dashed lines: geochemical model 
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Figure 6: CH4 aqueous mole fraction versus pressure for the CO2-CH4-H2O system at 375 K. 

Experimental data (Qin et al., 2008): (♦) pure CH4, (▲) 72% CO2, () 53% CO2 and (■) 41% 

CO2. Solid lines: GC-PR-CPA EoS. Dotted lines: E-PPR78. Dashed lines: geochemical model 
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Figure 7: Water content versus pressure for the 50% CO2-50% CH4-H2O system at 373 K. 

Experimental data: (♦) (Qin et al., 2008) and (◊) (Al Ghafri et al., 2014).Solid lines: GC-PR-

CPA EoS. Dotted lines: E-PPR78. Dashed lines: geochemical model. Broken dotted line: PR-

CPA EoS with kij=0. 
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Figure 8: Water content versus pressure for the 50% CO2-50% CH4-H2O system (Chapoy et 

al., 2016)at 293 (♦) and 313 K (▲).Solid lines: GC-PR-CPA EoS. Dotted lines: E-PPR78. 

Dashed lines: geochemical model. Broken dotted line: PR-CPA EoS with kij=0. 
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Figure 9: CO2 aqueous mole fraction versus pressure for the CO2-N2-H2O system at 318 K. 

Experimental data (Liu et al., 2012): (♦) pure CO2, (▲) 89% CO2, () 72% CO2 and (■) 57% 

CO2. Solid lines: GC-PR-CPA EoS. Dotted lines: E-PPR78. Dashed lines: geochemical model 
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Figure 10: N2 aqueous mole fraction versus pressure for the CO2-N2-H2O system at 318 K. 

Experimental data (Liu et al., 2012): (♦) pure N2, (▲) 89% CO2, () 72% CO2 and (■) 57% 

CO2. Solid lines: GC-PR-CPA EoS. Dotted lines: E-PPR78. Dashed lines: geochemical model 

  

0,0 

0,1 

0,2 

0 5 10 15 20 

x
 N

2
 /
%

 

Pressure /  MPa 



 

 

 

Figure 11: CO2 (♦), CH4 (▲) and H2S () aqueous mole fraction versus pressure for the 30% 

CO2-15% CH4-5% H2S-50% H2O system at 380 K (Robinson et al., 1982). Solid lines: GC-

PR-CPA EoS. Dotted lines: E-PPR78. Dashed lines: geochemical model 
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Figure 12: Water content (♦) versus pressure for the 30% CO2-15% CH4-5% H2S-50% H2O 

system at 380 K (Robinson et al., 1982). Solid lines: GC-PR-CPA EoS. Dotted lines: E-

PPR78. Dashed line: geochemical model 
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Table 10: Example of compositions of flue gases from thermal power plant (Case A, (Meunier 

et al., 2014)), a cement plant (Case B, (Meunier et al., 2014)) and a coal IGCC plant (Case C, 

European Communities, 2011)). 

Component 
Composition in mole % 

Case A  Case B Case C 

CO2 72 83.13 98.1 

H2O 5.6 1 376 ppm 

N2 14 11.11 196 ppm 

O2 5.9 3.27 - 

Ar 2.4 1.34 178 ppm 

CO - 397 ppm 0.13 

NO 320 ppm 861 ppm - 

NO2 51 ppm 96 ppm - 

SO2 700 ppm 156 ppm - 

H2S - - 0.17 

CH4 - - 112 ppm 

H2 - - 1.5 

 

  



 

Table 11: Gas solubility data in pure water.  

Component References 
Range of 

temperatures [K] 

Range of 

pressures [MPa] 

CO2 [1- 6]  273 – 623 0.008 – 150 

N2 [7- 11]  273 – 636.5 0.02 – 101 

O2 [11 - 32]  273 – 616.5 0.02 – 20 

Ar [11, 17, 27, 33-40]  273 – 568 0.02 – 15 

CO [41- 48]  273 – 478 0.06 – 14 

NO - - - 

NO2 - - - 

SO2 [49, 50]  293 – 393 0.035 – 2 

H2S [2, 46, 51- 64]  273 – 518 0.01 – 31 

CH4 [42, 65-74]  273 – 523 0.08 – 197 

H2 [15, 43-45, 66, 75- 86]  273 – 498 0.1 – 101 
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Table 12: PR-CPA parameters for pure water (Hajiw et al., 2015)  

 

a0 

[bar.L².mol
-
²] 

b 

[L.mol
-1

] 

C1 

 

ε 

[bar.L.mol
-1

] 

β 

[10
3
] 

Temperature 

range [K] 

ΔP 

 [%] 

Δρ  

[%] 

Water 2.2 0.015 0.64 146.4 68.3 273 – 643 1.1 2.7 

 

  



Table 13: Group interaction parameters with water (Ck,H2O, Dk,H2O and Ek,H2O)  

k Ck,H2O / 10
3
 Pa.K

-2
 Dk,H2O / 10

6
 Pa.K

-1
 Ek,H2O / 10

9
 Pa 

CO2  -5.7 4.9 -8.8 

N2 -12.3 10.9 -18.5 

O2 -16.4 14.1 -23.5 

Ar -18.2 15.3 -25.7 

CO 210 -141 239 

SO2 -4.5 2.8 -5.9 

H2S -4.8 3.9 -6.0 

CH4 -11.2 9.7 -15.9 

H2 -10.5 9.5 -14.7 

 

 

  



 

Table 14: Sources for Henry’s law constants, HKF parameters for molar volume at infinite 

dilution, values for critical temperature and pressure, acentric factors and fitted water binary 

interaction parameters. 

Compound              
  
  [cm

3
.mol

-

1
] 

Tc 

[K] 

Pc 

[bar] 

Acentric 

factor 
       

[1] [1] [1] This study 

CO2 [2] [9] 304.19 73.82 0.228 0.198 

N2 [3]  [10, 11] 126.10 33.94 0.040 0.455 

O2 [4] [10, 11] 154.58 50.43 0.022 0.621 

Ar [3] [10, 11] 150.86 48.98 0.000 0.590 

CO [3] [10, 11] 132.92 34.99 0.066 0.266 

SO2 [5] [10] 430.75 78.84 0.245 - 

H2S [6] [12] 373.53 89.63 0.083 0.151 

CH4 [7] [11, 12] 190.58 46.04 0.011 0.507 

H2 [8] [10] 33.18 13.13 -0.220 0.529 
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Table 15: AAE (Absolute Average Error) and AAD (Absolute Average Deviation)) between 

experimental data and predictions 

 

GC-PR-CPA 

EoS 
E-PPR78 EoS 

Geochemical 

model 
Duan 

Number of 

experimental 

points 

AAE 

(mole 

fraction) 

AAD 

(%) 

AAE 

(mole 

fraction) 

AAD 

(%) 

AAE 

(mole 

fraction) 

AAD 

(%) 

AAE 

(mole 

fraction) 

AAD 

(%) 

x CO2 1.10
-3

 8.9 1.10
-3

 6.3 1.10
-3

 5.6 6.10
-4

 4.1 1803 

y H2O 7.10
-3

 13.2 8.10
-3

 14.3 8.10
-3

 9.0 2.10
-2

 28.5 413 

x N2 5.10
-5

 3.7 6.10
-4

 84.0 5.10
-5

 3.9 4.10
-5

 3.8 561 

y H2O 2.10
-3

 9.8 2.10
-3

 4.7 3.10
-3

 5.3 3.10
-3

 5.2 163 

x O2 2.10
-5

 4.4 2.10
-4

 71.2 3.10
-5

 4.5 3.10
-5

 4.8 835 

y H2O 2.10
-4

 13.0 1.10
-3

 69.1 1.10
-5

 0.6 - - 14 

x Ar 7.10
-6

 2.6 - - 1.10
-5

 2.6 - - 296 

y H2O 4.10
-4

 8.9 - - 1.10
-3

 1.3 - - 28 

x CO 4.10
-5

 9.6 - - 5.10
-5

 9.8 - - 187 

y H2O 3.10
-3

 1.9 - - 7.10
-3

 3.0 - - 17 

x SO2 2.10
-3

 17.6 3.10
-3

 14.7 2.10
-3

 16.7   393 

x CH4 1.10
-4 6.8 5.10

-4 10.2 1.10
-4 6.7 1.10

-4
 6.3 678 

y H2O 2.10
-3 15.9 2.10

-3 6.5 2.10
-3 6.2 1.10

-3
 5.3 319 

x H2S 1.10
-3

 6.1 6.10
-4

 3.4 3.10
-3

 9.9 7.10
-4

 3.5 704 

y H2O 6.10
-3

 11.6 6.10
-3

 8.1 1.10
-2

 7.1 - - 183 

x H2 4.10
-4

 7.4 9.10
-2

 >100 6.10
-4

 10.5   571 

y H2O 3.10
-3

 5.4 6.10
-3

 21.4 8.10
-3

 3.3   17 

 

  



 

Table 16: AAE (Absolute Average Error) and AAD (Absolute Average Deviation)) between 

experimental data and predictions at limited pressure conditions 

 

GC-PR-CPA 

EoS 
E-PPR78 EoS 

Geochemical 

model 
Duan 

Number of 

experimental 

points 

AAE 

(mole 

fraction) 

AAD 

(%) 

AAE 

(mole 

fraction) 

AAD 

(%) 

AAE 

(mole 

fraction) 

AAD 

(%) 

AAE 

(mole 

fraction) 

AAD 

(%) 

x CO2 8.10
-4

 6.3 8.10
-4

 5.5 6.10
-4

 4.1 5.10
-4

 4.0 725 

y H2O 4.10
-3

 13.5 4.10
-3

 14.9 3.10
-3

 9.4 8.10
-3

 24.7 235 

x N2 6.10
-5

 4.7 8.10
-4

 74.4 7.10
-4

 5.1 7.10
-5

 5.4 152 

y H2O 1.10
-3

 7.6 6.10
-4

 4.9 3.10
-3

 5.1 9.10
-4

 5.9 59 

x O2 5.10
-5

 5.6 5.10
-4

 52.9 7.10
-5

 8.2 5.10
-5

 6.6 127 

y H2O 3.10
-4

 10.1 2.10
-3

 60.0 2.10
-5

 0.6 - - 9 

x Ar 6.10
-5

 3.2 - - 9.10
-5

 4.4 - - 11 

y H2O 4.10
-4

 3.5 - - 9.10
-5

 0.5 - - 14 

x CO 5.10
-5

 11.2 - - 6.10
-5

 12.5 - - 97 

y H2O 5.10
-4

 1.8 - - 4.10
-4

 1.5 - - 12 

x SO2 2.10
-3

 10.6 1.10
-2

 27.6 6.10
-3

 25.9   30 

x CH4 1.10
-4 7.4 2.10

-4 10.0 1.10
-4 7.6 1.10

-4
 7.6 430 

y H2O 2.10
-3 15.6 1.10

-3 5.8 2.10
-3 5.5 1.10

-3
 5.2 270 

x H2S 2.10
-3

 7.7 8.10
-4

 3.7 3.10
-3

 13.9 1.10
-3

 3.8 450 

y H2O 8.10
-3

 15.4 9.10
-3

 10.6 1.10
-2

 9.2 - - 131 

x H2 1.10
-4

 6.8 1.10
-1

 >100 2.10
-4

 10.4 - - 298 

y H2O 3.10
-3

 5.7 6.10
-3

 23.4 8.10
-3

 3.3 - - 15 

 

  



 

Table 17: Deviations (AAD %) between experimental data and predictions for CO2-H2O and 

SO2-H2O binary systems 

System Solubility 

GC-PR-

CPA EoS 

(%) 

 

E-PPR78 

EoS (%) 

Geochemical 

model (%) 

Duan and 

Sun [101] 

(%) 

CO2-H2O 

x CO2 (Hou et al., 

2013)  
3.0 5.2 5.0 5.6 

y H2O 

(Hou et al., 2013 ; 

Caumon et al., 2016) 

15.4 15.1 14.9 15.8 

SO2-H2O 
x SO2 (Hou et al., 

2013 ) 
5.5 24.6 22.3 - 

 



 

Table 18: Deviations (AAD %) between experimental data and predictions for ternary 

systems 

System Solubility GC-PR-CPA EoS (%) E-PPR78 EoS (%) Geochemical model (%) 
(Zirrahi et al. , 

2012)(%) 

CO2-N2-H2O  (Liu et 

al., 2012)  

x CO2 7.1 3.6 2.5 - 

x N2 18.6 84.4 7.3 - 

CO2-CH4-H2O (Qin 

et al., 2008)  

x CO2 11.1 6.9 4.4 - 

x CH4 8.1 6.1 11.4 - 

CO2-CH4-H2O  

y H2O (Chapoy et al., 

2016)  
4.0 1.8 1.3 - 

y H2O (Qin et al., 2008)  45.7 36.7 35.3 - 

y H2O (Al Ghafri et al., 

2014)  
32.8 32.3 31.5 - 

CO2-CH4-H2S-H2O  

(Robinson et al., 

1982)  

x CO2 3.0 2.9 2.4 1.1 

x CH4 2.0 12.6 15.1 2.2 

x H2S 7.1 12.6 2.6 3.9 

y H2O 14.2 2.7 2.4 15.1 

 

 


