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Abstract

We propose a unifying and versatile framework for a class of discrete time systems whose state is an element of a general group
G, that we call linear observed systems on groups. Those systems strictly mimic linear systems in the sense that + is replaced
with group multiplication, and linear maps with automorphisms. We argue they are the true generalization of linear systems
of the form Xn+1 = FnXn +Bnun in the context of state estimation, since 1- when G = RN the latter systems are recovered,
2- they are proved to possess the “preintegration” property, a characteristic property of linear systems that relates continuous
time to discrete time, and has recently proved extremely useful in robotics applications, and 3- we can build observers that
ensure the evolution between the true state and estimated state does not depend on the followed trajectory, a characteristic
feature of Luenberger (and invariant) observers. The theory is applied to a 3D inertial navigation example. Interestingly, this
example cannot be put in the form of an invariant system and the proposed generalization is required.

1 Introduction

Geometric observer design has been long researched, see
e.g. [16,18,20]. Symmetry-preserving (also called invari-
ant) observers [7], or more generally nonlinear observers
on Lie groups, e.g. [6,5,12,10,11] have drawn attention
over the past decade, both for their theoretical conver-
gence properties, and for their simplicity in applications.

In [6] it is advocated that invariant systems on Lie groups
with equivariant output maps yield autonomous error
equations, that is, the discrepancy between the estimate
and the true state does not explicitly depends on the
followed trajectory. This fact was also noticed and ex-
ploited in various other works, see [13,19] amongst oth-
ers. In [3], the class of systems such that the invariant er-
ror between two trajectories of the system is autonomous
was extended, and referred to as group affine systems.

In the present article we consider the discrete-time case,
and we study in Sec. 3 the class of systems obtained by
mimicking the linear systems but replacing the addition
with group law and linear maps with automorphisms.
Although this sounds simple, we do not know of previ-
ous work following this route in the context of state es-
timation. We prove the obtained class of systems share
two desirable properties of linear systems. First, in Sec.
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4, the preintegration property which does generally not
hold for nonlinear systems, and has recently been proved
for inertial navigation [15,9], a very popular result in
robotics. Then, we prove in Sec. 5 the autonomous error
equation property of linear and invariant systems, see
e.g. [6], actually carries over to the entire proposed class.
Proceeding further, we provide in Sec. 6 a characteriza-
tion explicitly based on automorphisms of all systems
that satisfy the implicit form used in [4]; and prove those
systems are in fact the only ones such that the invari-
ant error satisfies an autonomous equation. The theory
is applied to a 3D inertial navigation example.

2 Linear observed systems in RN

In this section we consider a classical discrete-time linear
system as defined below:

Definition 1 (Linear system) For all n ∈ N, let Fn ∈
RN×N , Hn ∈ RP×N , Bn ∈ RN×M and un ∈ RM . A
discrete time linear observed system with state xn ∈ RN
is defined through:

xn+1 = Fnxn +Bnun (1)

yn = Hnxn +Dnun (2)

where yn ∈ RP is the observed output.

We dedicate sections 2.1 and 2.2 to recalling two classi-
cal properties of linear systems which are central in the
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results presented in the rest of the paper, as what we
propose is generalizing them to a class of nonlinear sys-
tems. Note that, all the following properties do not hold
for nonlinear systems in general.

2.1 Desirable feature n◦1: the preintegration property

The continuous-time counterpart of (1) writes:

d

dt
x(t) = Ftx(t) +Btut. (3)

In estimation problems, we are usually interested in the
values taken by x(t) only at discrete instants t0, t1, . . . .
Thus, the system we work on is:

x(tn+1) = ψ
tn+1

tn (x(tn)). (4)

with ψ
tn+1

tn the flow of Eq. (3) between times tn and tn+1.
Now, if we want to compute xn+1 := x(tn+1) from xn :=
x(tn) for various values of xn, do we have to store the
values of the processesFt, Bt, ut between tn and tn+1 and
integrate Eq. (3) for each initial condition xn, or can we
obtain a finite set of parameters once and for all, allowing
then computing x(tn+1) from x(tn) in closed form? In
robotics, such a procedure is called preintegration and
is extremely useful to apply modern state estimation
techniques. Preintegration of linear systems proves easy:

Proposition 2 (preintegration of linear systems)
Given two instants tn < tn+1, there exist a matrix Fn
and a vector vn such that the flow ψ

tn+1

tn of Eq. (3) reads:

ψ
tn+1

tn (x) = Fnx+ vn, ∀x ∈ RN

PROOF. Let Mt ∈ RN×N and vt be defined as:

Mtn = IN ,
d

dt
Mt = FtMt,

vtn = 0,
d

dt
vt = Ftvt +Btut,

(“Preintegration”)

(5)
Then, for any value x(tn) := xn, the solution at arbitrary
time tn+1 > tn to (3) writes x(tn+1) = Mtn+1xn + vtn+1

as may be immediately verified by differentiation.

Note that, the preintegration property does not spare the
practitioner the implemention of a numerical integration
scheme for (5). But instead of running it to solve Eq.
(3) for each desired values of xn, numerical integration,
which may be costly numerically for small time steps, is
required only once to obtainFn and vn. Then, computing
the new value of xn+1 from a different initial value xn
does not require a new numerical integration.

2.2 Desirable feature n◦2 : autonomous error

Given a partially observed dynamical system, an ob-
server is another dynamical system fed with observations
coming from the first system and designed to provide an
estimation of the state, without ever differentiating the
measured signals (which are always noisy in practice).

Definition 3 (Linear observer) A linear observer,
known as Luenberger observer [14], of the system (1),
(2) is an observer of the form:

x̂n+1|n = Fnx̂n|n +Bnun, (6)

x̂n+1|n+1 = x̂n+1|n + Ln+1zn+1 (7)

where zn+1 =
(
yn+1 −Hn+1x̂n+1|n −Dn+1un+1

)
is

called innovation, and Ln+1 a tunable matrix called gain.

The property making the study of linear observers for
linear systems particularly easy, is related to the evolu-
tion of the estimation error e supposed to measure dis-
crepancy between true state and estimated state: e :=
x− x̂. The evolution of e writes:

en+1|n := xn+1 − x̂n+1|n = Fnxn − Fnx̂n|n = Fnen|n,
(8)

en+1|n+1 := xn+1 − x̂n+1|n+1 = (I − Ln+1Hn+1) en+1|n.
(9)

At both propagation (8) and update step (9), the error
variable follows an autonomous equation, i.e., indepen-
dent from the actual value of x̂. Note that the equa-
tion explicitly depends on the time step n, as such the
term “autonomous” is abusive, but is used here to insist
on the absence of explicit dependency on the estimated
state x̂. This means matrices Ln+1 can be tuned with-
out considering any specific trajectory of the system and
the tuning will then be satisfactory for all trajectories.

3 Linear observed systems on groups

In this section we use basic notions of the group theory
to build a generalization of linear observed systems, by
replacing vector addition with a generic operation.

3.1 Preliminaries

Definition 4 (Group) A group is a set G endowed
with a group composition law, i.e. a map G × G → G
denoted a · b, and referred to as “dot”, that verifies:

• Associativity: ∀x, y, z ∈ G, x · (y · z) = (x · y) · z.
• Neutral element: There exists an element Id ∈ G such

that ∀x ∈ G, x · Id = Id · x = x.
• Inversion: For any x ∈ G there exists an element
x−1 ∈ G such that x · x−1 = x−1 · x = Id.
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The neutral element is the equivalent of 0 in a vector
space. Note that Id−1 = Id and (a · b)−1 = b−1 ·a−1. To
generalize linearity to any group law in view of design-
ing observers, recall the useful property of linearity was
factorizing the addition in Section 2.2. The counterpart
of this property for a general group law is as follows.

Definition 5 (Group automorphism) An automor-
phism of G is an invertible map φ : G→ G such that:

∀a, b ∈ G, φ(a · b) = φ(a) · φ(b)

It can be easily shown that this assumption implies
φ(Id) = Id and ∀x ∈ G,φ(x−1) = φ(x)−1. The set of all
automorphisms of G is denoted by Aut(G).

Let us now consider a second class of maps which can
be considered as a generalization of linear maps suited
to the generalization of linear observations.

Definition 6 (Left group action, see e.g. [17]) Let
G be a group and Y an arbitrary set. A left group action
of G on Y is an operation we will denote by star ?:

G× Y → Y, (x, b) 7→ x ? b

and which satisfies:

∀x1, x2 ∈ G,∀b ∈ Y, x1 ? (x2 ? b) = (x1 · x2) ? b, (10)

which is a sort of associativity property. In this paper,
the argument b ∈ Y will be referred to as the “target”.

Note that this operation is closely related to the com-
patibility of the output map introduced in [1,7].

3.2 Linear observed systems on groups

For linear dynamics the propagated state (1) is of the
form “linear mapping of the state + vector”. The coun-
terpart we expect here is thus: “automorphism of the
state dot group element”. Linear observation (2) have
the form “linear mapping + vector”, which is a specific
case of group action as shown in Sect. 3.3. The natural
generalization of linear systems to groups thus writes:

Definition 7 (Left linear observed system) Let G
be a group, and for all n ∈ N, let un ∈ G. We define a
linear observed system with state xn ∈ G through:

xn+1 = φn(xn) · un (11)

yn = xn ? bn (12)

with φn a group automorphism (possibly varying with n)
and star ? a group action of xn on a “target” bn of a set
Y . Note that the group action can also depend on n, but
denoting it by ? is no source of ambiguity.

3.3 Relation to linear systems in RN

To support our claim that linear observed systems on
groups of Def. 7 are the true generalization of linear
observed systems in RN in the context of deterministic
state estimation, we start off noticing that whenG = RN
endowed with + as composition law, (11) boils down to
(1), as the only automorphisms of RN are linear maps.

As concerns (12), the operation ? : (G, Y )→ Y defined
by x ? b = Hnx + b is an action of RN on RP indeed,
as (x1 + x2) ? b = Hn(x1 + x2) + b = Hnx1 + Hnx2 +
b = Hnx1 + x2 ? b = x1 ? (x2 ? b). Thus, linear outputs
yn = Hnx+Dnun can be written as yn = x ? bn with ?
the action of RN on RP just defined and bn = Dnun.

In the remainder of this paper, we will prove that more
importantly the desirable features n◦1 and n◦2 of Section
2 both carry over to linear observed systems on groups.

3.4 Relation to invariant systems on groups

Let us comment on the relation with discrete-time left-
invariant systems onG, i.e. dynamics of the form xn+1 =
xn · vn. In the case where G = RN is endowed with ad-
dition, these dynamics boil down to xn+1 = xn + vn.
Obviously, this encompasses systems of the form xn+1 =
xn + Bnun but not (1). Invariant systems may thus be
viewed as pure integrators, while using automorphisms
φn(xn) in (11) allows recovering linear maps Fnxn in
G = RN . Thus the proposed generalization (11) encom-
passes the much wider class of linear systems (1) on RN .

4 Desirable feature n◦1: preintegration

In this section we assume G is a Lie group and remove
the “·” as for matrix Lie groups. In [3] we named “group-
affine systems” the dynamics defined for xt ∈ G by
d
dtxt = ft(xt) and where ft satisfies the condition:

ft(x1x2) = ft(x1)x2 + x1ft(x2)− x1ft(Id)x2. (13)

Note that a local version also appeared in the context
of control in [2]. Let us denote by ψ the flow of such
dynamics. Then, Proposition 2 generalizes as:

Proposition 8 (preintegration of group-affine systems)
Given two instants tn and tn+1, there exists φn ∈ Aut(G)
and an element vn ∈ G such that the flow ψ satisfies:

ψ
tn+1

tn (x) = φn(x) · un.

The dimension of Aut(G) being upper bounded by the

square of the dimension ofG,ψ
tn+1

tn can always be encoded
by a finite number of parameters, as in the linear case.
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PROOF. We first recall ψttn denotes the flow of f .
For t > tn let φttn denote the flow of the vector field
x→ ft(x)−xft(Id) from time tn. For a, b ∈ G, differen-
tiating αt := φttn(a)φttn(b) and using (13) we obtain that

αt is solution of d
dtαt = ft(αt) − αtft(Id) with initial

condition αtn = ab. By definition of the flow we have
thus αt = φttn(ab). We proved φttn(ab) = φttn(a)φttn(b),
i.e., φttn ∈ Aut(G). Now, letting ut := ψttn(Id), for x ∈ G
we have d

dt

[
φttn(x)ut

]
=
[
d
dtφ

t
tn(x)

]
ut + φttn(x) ddtut =[

f(φttn(x))− φttn(x)f(Id)
]
ut+φ

t
tn(x)ft(ut) = ft(φ

t
tn(x)ut)

using (13). As ψ is the flow of f this proves φttn(x)ut =

ψttn(x), and it suffices to set φn = φ
tn+1

tn and un := utn+1
.

The latter theoretical result is the exact counterpart of
preintegration of linear systems. We have the following
result owing to non-commutativity of multiplication.

Corollary 9 (Left-right preintegration) Consider

d

dt
xt = ft(xt) := wtxt + f̃t(xt) + xtut (14)

where f̃t verifies f̃t(x1x2) = f̃t(x1)x2 + x1f̃t(x2) and

denote by φ̃ the flow of d
dtxt = f̃t(xt). Then φ̃(·) is an

automorphism and the flow ψ of ft writes:

ψ
tn+1

tn (x) = γnφ̃
tn+1

tn (x)υn, tn+1 > tn, x ∈ G, (15)

with γn ∈ G, υn ∈ G the solutions at tn+1 of:

d

dt
γt = wtγt + f̃t(γt),

d

dt
υt = υtut + f̃t(υt), (16)

with initial condition γtn = υtn = Id.

Indeed, it is easily proved ft defined by (14) satisfies (13),
and thus Prop. 8 applies. By looking into the proof of the
latter proposition manipulations prove that un = γnvn
and φ̃n(x) = γnφn(x)γ−1

n which can in turn easily be
proved to be an automorphism.

The expression for γ, φ, υ are obtained independently
from x. This means quantities wt, f̃t, ut may be first
“preintegrated” and then applied to any initial condi-
tion, truly generalizing Prop 2. As in the linear time-
varying case, this does not mean the preintegrated fac-
tors γ, v can be computed in closed form: an integration
scheme shall still be used, but only once and for all.

5 Desirable feature n◦2 : autonomous error

5.1 Definition of generalized linear observers

We now build nonlinear observers sharing some of the
properties of linear observers:

Definition 10 (Left generalized linear pre-observer)
For the linear observed system (11), (12) a generalized
pre-observer on the group G is defined by a sequence of
estimates (x̂n|n), (x̂n+1|n) of the following form:

x̂n+1|n = φn(x̂n|n) · un (17)

x̂n+1|n+1 = x̂n+1|n · Ln+1

(
x̂−1
n+1|n ? yn

)
, (18)

with Ln+1() any operator from Y to G.

In the particular case where φn(x) = x, (11) is said
left-invariant, since if (xn)n≥0 is a solution then so is
(g · xn)n≥0 for g ∈ G. And then, (17), (18) is called a
left-invariant observer, or invariant observer [1,6].

5.2 Properties

Given a group law, Def. 4 gives all the tools we need to
transpose the definition of the error variable e = x− x̂:

Definition 11 (Left-invariant error variable) Let
x and x̂ be two elements of a group G. We define the
left-invariant error e between x̂ and x as:

e = x̂−1 · x (19)

This error is called left-invariant, since it is unchanged
by the transformation (x̂, x) 7→ (g · x̂, g ·x), for arbitrary

g ∈ G: (g · x̂)
−1 · (g ·x) = x̂−1 · g−1 · g ·x = x̂−1 ·x. Note

that if the dot is addition, we obtain e = −x̂+x = x− x̂,
the classical error variable.

Just like linear systems, linear systems on groups yield
autonomous error evolution being analog to (8), (9).
From (11) and (17), and using a left-invariant error (19)
to measure discrepancy between true state and estimate,

en+1|n := x̂−1
n+1|n · xn+1 =

[
φn(x̂n|n) · un

]−1 · [φn(xn) · un]

= u−1
n · φn(x̂n|n)−1 · φ(xn) · un

= u−1
n · φn(x̂−1

n|n) · φ(xn) · un
= u−1

n · φn(x̂−1
n|n · xn) · un = Iu−1

n
(φn(en))

(20)
where we let Ig denote the map (called the inner auto-
morphism): Ig : x 7→ g · x · g−1. We see that x̂n and xn
collapse to en at the last line and disappear from the
equation, as in the linear case. As well, innovations are
only dependent on the error variable, if defined as:

zn = x̂−1
n ?yn = x̂−1

n ?(xnb) = (x̂−1
n ·xn)?b = en?bn (21)
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The update step also yields autonomy, as:

en+1|n+1 = x̂−1
n+1|n+1 · xn+1

=
[
x̂n+1|n · Ln+1(en+1|n ? bn)

]−1 · xn+1

= Ln+1

(
en+1|n ? bn

)−1 · x̂−1
n+1|xn

· xn+1

= Ln+1

(
en+1|n ? bn

)−1 · en+1|n.

(22)

Proposition 12 Consider a linear observed system
(11),(12) as introduced in Definition 7, and a linear
pre-observer (17),(18) as introduced in Definition 10.
Then, the error evolution (including propagation step
and update step) is autonomous. Namely, it writes:

en+1|n = u−1
n · φn(en|n) · un (23)

en+1|n+1 = [Ln+1

(
en+1|n ? bn

)
]−1 · en+1|n (24)

Of course, this boils down to (8), (9), if the group is a
vector space with addition as group law.

5.3 Generalized linear observers for right group actions

When the output is a so-called right group action, gen-
eralized linear observers have a slightly different form.

Definition 13 (Right group action [17]) Let G be a
group and Y a set. A right group action of G on Y is
an operation Y ×G→ Y we will denote by a star ? and
define as (b, x) 7→ b ? x, which verifies:

∀x, y ∈ G,∀b ∈ Y, (b ? x) ? y = b ? (x · y), (25)

Considering this second type of observations we obtain
a second family of systems:

Definition 14 (Right linear observed system) A
right generalized linear system with state xn ∈ G is a sys-
tem defined by a group automorphism φn, and observed
through right group actions on a set Y :

xn+1 = φn(xn) · un (26)

yn = bn ? xn (27)

Another natural transposition of the linear difference
e = x−x̂would be e = x·x̂−1, called right-invariant error
since it is unchanged by transformation (x, x̂) 7→ (x ·
g, x̂ ·g). This error turns out to be suited to observations
defined through right group actions. In this case, linear
pre-observers read:

x̂n+1|n = φn(x̂n|n) · un (28)

x̂n+1|n+1 = Ln+1

(
yn ? x̂

−1
n+1|n

)
· x̂n+1|n, (29)

For errors en+1|n = xn · x̂−1
n+1|n and en|n = xn · x̂−1

n|n,

we have indeed en+1|n = φn(en|n), en+1|n+1 = en+1|n ·
Ln+1

(
yn ? en+1|n

)−1
ensuring error autonomy again.

5.4 Convergence properties

In the present paragraph we show that some properties
of the continuous time case proved in [3] carry over to our
discrete time framework. To linearize, we assume G is a
N -dimensional matrix Lie group G ⊂ RD×D and define
the “linearized error” ξ in the Lie algebra g through:

en|n = exp(ξn|n), en+1|n = exp(ξn+1|n). (30)

A key property of linear observed systems is that the
linearized error variable ξn|n evolves linearly during the
propagation step, i.e., there exists a matrix Fn such that:

ξn+1|n = Fnξn|n (31)

This is a consequence of the Lie group - Lie algebra
homomorphism correspondance, a classical result.

Theorem 15 (Lie gr. - Lie alg. correspondance)
Let G be a Lie group and φ : G → G an automorphism
of G. Then, there exists a linear map f : g → g such
that: φ ◦ exp = exp ◦f.

The map f appearing in Theorem 15 being linear, it can
be represented under a classical matrix form: f(ξ) = Fξ
if g is identified to RN . As Iu−1

n
◦φn of (20) is an automor-

phism by automorphism composition, Thm. 15 applies:
there exists a matrix Fn such that Iu−1

n
(φn(exp(ξ))) =

exp(Fnξ) for any ξ ∈ g, yielding (31). Let us see how to
use this property to build an observer in the case where
Y = RP . Consider the Luenberger-like observer:

Ln(zn) = exp
(
Kn(x̂−1

n ? yn − b)
)
, (32)

with exp() : RN → G the exponential map, Kn ∈ RN×P
a gain matrix and b the target of the action, appearing
in the observation. A consequence of Equation (31) is
that ξn associated to our errors has a very specific form:

Proposition 16 Let e be the left-invariant error vari-
able of a linear system on G observed via left actions.
Consider a left linear pre-observer with Ln(·) defined by
(32) and let ξ denote the linearized errors (30). Then

ξn+1|n = Fnξn|n,

ξn+1|n+1 = BCH
[
−Kn

(
exp(ξn+1|n) ? b− b

)
, ξn+1|n

]
,

(33)
where BCH : RN × RN → RN denotes the Baker-
Campbell-Hausdorff formula. A first-order approxima-
tion of the second equation readily writes ξn+1|n+1 =
(I −KnHn)ξn+1|n where Hn is defined through the first-

order Taylor expansion exp(ξ) ? b− b = Hnξ+O(||ξ||2).
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Obtaining local convergence around any trajectory is
known to be difficult for non-linear observers, owing to
the dependency of the linearized system on the estimated
trajectory. Owing to the latter proposition we obtain:

Proposition 17 Consider invertible matrices Q ∈
RN×N , R ∈ RP×P , and P0 ∈ RN×N . Let Kn be defined
through the recursion Pn+1|n = FnPnF

T
n + Q, Kn+1 =

Pn+1|nH
T
n (HnPn+1|nH

T
n + R)−1, Pn+1 = Pn+1|n −

Kn+1Pn+1|n. Then, the linear observed observer defined
through (32) converges locally around any trajectory
if the pair (Fn, Hn) is uniformly observable, owing to
standard convergence results on the Kalman filter [8].

6 Characterizing linear systems on groups

In Sect. 4 we linked the class of systems we derived in
Sect. 3 by analogy with the linear case to our previous
work on continuous-discrete estimation [3]. In this sec-
tion we relate the explicit characterization (11) to the
more less constructive discrete-time form we proposed
in [4], i.e. xn+1 = f(xn) where f satisfies f(a · b) =
f(a)(f(Id))−1f(b). As a byproduct of showing the equiv-
alence of the two approaches we provide additional char-
acterization of the same class of systems. In particular,
we prove linear observed systems are in fact the only
ones that ensure error autonomy on groups that notably
led to Prop. 17.Consider general dynamics:

xn+1 = gn(xn), (34)

with gn : G→ G a general map, not assumed to be of the
form (11) at this stage. Consider then the propagation
step of a pre-observer, which is a copy of the dynamics:

x̂n+1|n = gn(x̂n|n), (35)

For an analog of (8) to hold, all we need is the propagated
error to be a function of the error before propagation,
i.e., we need the existence of a map µn such that:

x̂−1
n+1|n · xn+1 = gn(x̂n|n)−1 · gn(xn) = µn(x̂−1

n|n · xn).

The following result proves the only dynamics ensuring
this, and thus autonomous error, have the form (11).

Theorem 18 (Characterization of autonomy) Let
G be a group and g : G → G. Then there exists a func-
tion µ on G such that ∀x1, x2 ∈ G, g(x1)−1 · g(x2) =
µ(x−1

1 · x2) if and only if there exists φ ∈ Aut(G) and
u ∈ G such that g(x) = φ(x) · u for all x ∈ G.

To prove implication⇒, let us show µ(x1 ·x2) = µ(x1) ·
µ(x2). Setting z1 = Id, z2 = x1, z3 = x1 · x2 we have
µ(z−1

1 ·z2) ·µ(z−1
2 ·z3) = g(z1)−1 ·g(z2) ·g(z2)−1 ·g(z3) =

g(z1)−1·g(z3) = µ(z−1
1 ·z3).Replacing now z1, z2, z3 with

their values we get µ(x2) · µ(x2) = µ(x1 · x2). Letting
x1 = Id, x2 = x we get g(x) = g(Id) · µ(x) and we
have proved µ ∈ Aut(G). The result is proved with u :=
g(Id). Regarding the converse ⇐, set µ = Iu−1 ◦ φ.

In Thm. 18 we considered a left-invariant error, so we
shall wonder what happens when using right-invariant
errors. Note that in (11) we also chose to put the factor
un on the right, and may wonder if it shall be on the left.
The following corollary addresses the question, and also
relates (11) to the symmetric definition proposed in [4].

Corollary 19 The following propositions are equivalent

(1) There exists φl ∈ Aut(G) and u ∈ G such that
g(x) = φl(x) · u for all x ∈ G

(2) There exists γ, υ ∈ G and φ ∈ Aut(G) such that
g(x) = γ · φ(x) · υ

(3) There exists u ∈ G and φr ∈ Aut(G) such that
g(x) = u · φr(x)

(4) A function µl on G exists, such that ∀x1, x2 ∈
G, g(x1)−1 · g(x2) = µl(x

−1
1 · x2)

(5) A function µr on G exists, such that ∀x1, x2 ∈
G, g(x1) · g(x2)−1 = µr(x1 · x−1

2 )
(6) For all a, b ∈ G we have g(ab) = g(a)·g(Id)−1 ·g(b);

which is the definition proposed in [4].

The proposition may be proved along the lines of the
proof of Theorem 18.

7 Application to 3D inertial navigation

Consider a navigating vehicle characterized by its ori-
entation Rt ∈ SO(3) (the rotation matrix mapping the
vehicle-fixed frame to a reference static frame), its ve-
locity Vt ∈ R3 and position Xt ∈ R3. Its gyroscopes
measure angular rates ωt ∈ R3 in continuous-time t, and
its accelerometers the “specific force” at ∈ R3, i.e. vehi-
cle acceleration minus gravity vector ḡ. Both sensors are
part of an Inertial Measurement Unit (IMU) attached
to the vehicle. In continuous time the dynamics write:

d

dt
Rt = Rt(ωt)×,

d

dt
Vt = Rtat + ḡ,

d

dt
Xt = Vt.

(36)

where (ωt)× is the skew-symmetric matrix defined by
(ωt)×b = ω × b ∀b ∈ R3. We consider the observations:

yn = Xtn , (37)

and/or yn = Vtn , (38)

and/or yn = Xtn +Rtnb0, (39)

and/or yn = RTtn(b− βXtn). (40)

(37) and (38) are position and velocity measurements.
(39) represents position measurement of a point with
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known lever arm b0, typically GNSS antenna having
a lever arm with respect to the IMU. Note that ob-
servations (37), (38), (39) can be used simultaneously
while still fitting the framework of the present paper.
Regrading Eq. (40), β = 1 represents measurement of a
known landmark b ∈ R3 in the vehicle’s frame whereas
β = 0 corresponds to vector measurement (e.g., mag-
netic field).

7.1 Group SE2(3)

We will make use of the group SE2(3) introduced in [3].

Definition 20 The special orthogonal group SO(3) is
defined as: SO(3) = {R ∈ R3×3, RTR = Id, det(R) =
1.} The group SE2(3) is in turn defined as the set:

SE2(3) = {(R, V,X), R ∈ SO(3), V,X ∈ R3},

endowed with the following group law: (R, V,X) ·(
R̃, Ṽ , X̃

)
=
(
RR̃,RṼ + V,RX̃ +X

)
. Neutral ele-

ment is (Id, 0, 0) and x−1 =
(
RT ,−RTV,−RTX

)
.

We introduce a novel family of group actions of SE(3):

Definition 21 (Actions of the group SE2(3)) We
call vector action of SE2(3) on R3 with parameters
(α1, α2) ∈ R2 the action of x = (R, V,X) ∈ SE2(3) on
b ∈ R3 defined by: x ? b = Rb+ α1V + α2X.

It can be checked that this defines an action of SE2(3).

7.2 Discretization of navigation equations

Embedding the state xt in G = SE2(3), we noticed in
[3] that (36) possesses the group affine property (13).
Applying our preintegration Proposition 9 yields:

Proposition 22 (Preintegration of IMU outputs)
Define Rυt , V

υ
t , X

υ
t as the solutions to d

dtR
υ
t = Rυt (ωt)×,

d
dtV

υ
t = Rυt at and d

dtX
υ
t = V υt , where Rυ0 = I3, V

υ
0 = 03

and Xυ
0 = 03. Then for arbitrary initial condition

(R0, V0, X0), the solution of (36) at all time t ≥ 0 writes:

Rt = R0R
υ
t , (41)

Vt = V0 + tḡ +R0V
υ
t , (42)

Xt = X0 + tV0 +
1

2
ḡt2 +R0X

υ
t . (43)

PROOF. The Lie algebra g of SE2(3) consists of ele-
ments of the form ((ω)×, a, b) with ω, a, b ∈ R3, see [3].

Lettingwt =
(

03, ḡ, 03,1

)
, ut =

(
(ωt)×, at, 03,1

)
, f̃t(xt) =(

03 03,1 Vt

)
it is easily checked (36) becomes ẋt =

wtxt+ f̃t(xt)+xtut. The computation of γt, υt following
Proposition 9 yields γt as Rγt = I3, V

γ
t = tḡ,Xγ

t = 1
2 ḡt

2,

and υt as d
dt (R

υ
t , V

υ
t , X

υ
t ) = (Rυt (ωt)×, R

υ
t at, V

υ
t ) with

(Rυ0 , V
υ
0 , X

υ
0 ) = (I3, 03, 03). As concerns φ̃t(x) let us

decompose it as φ̃t(x) =
(
Rφt (x), V φt (x), Xφ

t (x)
)

. By

definition we have d
dt (φ̃t(x)) = ( ddt φ̃t)(x) = f̃t(φ̃t(x)).

The equation transposes to Rφt (x), V φt (x), Xφ
t (x) as:

Rφt (x) = Rx0 , d
dtR

φ
t (x) = 03, V φt (x) = vx0 , d

dtV
φ
t (x) =

03, Xφ
t (x) = Xx0 , d

dtX
φ
t (x) = V φt (x), which gives

immediately R
φ(x)
t = Rx0 , V

φ(x)
t = V x0 , X

φ(x)
t =

Xx0 + tV x0 . This being true for any x0, we have:

φt :
(
Rxt , V

x
t , X

x
t

)
→
(
Rxt , V

x
t , X

x
t + tV xt

)
. The result

is then shown injecting the obtained values in (15) and
then back to original variables.

Of course the computation of Rνt , V
ν
t , x

ν
t relies on an

integration scheme on respectively SO(3) and R6, and
any scheme may be used. The important point, though,
is that those quantities are computed based solely on
the IMU measurements at, ωt. Thus, the solution of the
system at time t can be computed for any initialization
without having to re-integrate when starting from a dif-
ferent initial condition. Actually, this was pioneered for
inertial navigation by [15] using Euler angles, and re-
cently shown using rotation matrices in [9] using smart
linear algebra tricks without suspecting the result is ac-
tually grounded in group-theoretic properties.

The preintegration method of inertial measurements
currently enjoys much popularity in robotics, see [9] and
related papers. Indeed, it allows to apply modern op-
timization based techniques to localize robots that use
IMUs. At each optimization step, the linearization point
xtn changes, and xtn+1

may be computed without hav-
ing to re-integrate. Given the high frequency of IMUs,
real time is only made possible by preintegration.

The result now appears as a direct consequence of Propo-
sition 9, that holds for all group affine systems.

7.3 Discrete-time inertial navigation as a linear system

Consider the navigation equations (36) discretized at
times t1, t2, · · · with tn+1 − tn = ∆tn. Using Prop. 22
they write Rtn+1 = RtnR

υ
∆tn

Vtn+1 = Vtn + ∆tnḡ +

RtnV
υ
∆tn

, Xtn+1
= Xtn + ∆tnVtn + 1

2 ḡ∆tn
2 +RtnX

υ
∆tn

.

Using embedding in G = SE2(3) those equations com-
bined with observations being either (37) or (38) or (39)
or a combination of them may be re-written as

xn+1 = γ∆tn · φn(xn) · υ∆tn (44)

yn = xn ? bn (45)
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with γ∆tn , υ∆tn ∈ SE2(3) and φn = (R, V,X + ∆tnV ).

As φn(x) 6= x, (44) is not a combination of left and right
invariance and the system is not invariant.

Proposition 23 Discrete-time navigation equations
define a linear observed system on G = SE2(3).

As concerns (44), this stems from Corollary 19 since
φn(R, V,X) is obviously an automorphism of SE2(3).
As concerns (45), it can easily be verified that
(37), (38), (39) are defined using the group action of
Def. 21. Finally, as concerns (40), it is easily shown to
write x−1

n ? b, e.g., a right group action [17]. As a direct
application of the proposed framework, we have thus
the following result about error autonomy:

Proposition 24 Letting the error be e = x̂−1 · x =
(R̂TR, R̂T (V − V̂ ), R̂T (X − X̂)), any pre-observer

x̂n+1|n = γ∆tn · φn(x̂n) · υ∆tn (46)

x̂n+1|n+1 = x̂n+1|n · Ln+1(x̂−1
n ? yn) (47)

leads to the autonomous error equation en+1|n = Iγ−1
∆tn

◦

φn(en|n), en+1|n+1 = Ln+1

(
en+1|n ? bn

)−1 · en+1|n.

Using the results of Section 5.4, we have immediately:

Proposition 25 For navigation equations with position
only measurements (37), consider the observer

R̂n+1|n = R̂n|nR
υ
∆tn V̂n+1|n = V̂n|n + ∆tnḡ + R̂n|nV

υ
∆tn ,

x̂n+1|n = x̂n|n + ∆tnV̂n|n +
1

2
ḡ∆tn

2 + R̂n|nx
υ
∆tn

(R̂n+1|n+1, V̂n+1|n+1, X̂n+1|n+1) = expSE2(3)(Kn+1zn+1)

zn+1 := (R̂n+1|nyn − R̂n+1|nX̂n+1|n)

Let P0 ∈ RN×N , andKn be defined through the recursion
Pn+1|n = FnPnF

T
n +Q, Kn+1 = Pn+1|nH

T (HPn+1|nH
T+

R)−1, Pn+1 = Pn+1|n −Kn+1Pn+1|n, where Q ∈ R9×9,

R ∈ R3×3 are invertible tuning matrices. Then, this
observer is locally convergent around any trajectory
ensuring uniform observability of the linearized system.

Recalling en+1|n = Iγ−1
∆tn

◦ φn(en|n), the matrix Fn is

obtained from Theorem 15 and manipulations show:

Fn =


(Rυ∆tn)T 0 0

−(Rυ∆tn)T (V υ∆tn)× (Rυ∆tn)T 0

−(Rυ∆tn)T (Xυ
∆tn

)× (Rυ∆tn)T∆tn (Rυ∆tn)T


and Hn = (03×3, 03×3, I3). Besides we recall that
expSE2(3)(ξ1, ξ2, ξ3) = (expSO(3)(ξ1), V ξ2, V ξ3) with

V = I3 + 1−cos ||ξ1||
||ξ1||2 (ξ1)× + ||ξ1||−sin ||ξ1||

||ξ1||3 (ξ1)×.

8 Conclusion

In this paper we derive by analogy to linear systems in
RN an explicit characterization of “linear” systems on
groups based on group automorphisms and group ac-
tions. This characterization is shown to encompass clas-
sical linear systems, invariant systems [6,13,19] (note in-
variant systems are more restrictive as they don’t en-
compass all linear systems whenG = RN ), and is proved
to be related to the continuous time formluation of [3]
through a group theoretic novel preintegration property.
It is applied to a 3D inertial navigation example that
is neither left nor right invariant nor a combination of
both. In the future, we would like to apply the theoreti-
cal results to address the preintegration of inertial mea-
surements on round earth with Coriolis acceleration.
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