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Abstract
Because of the cloud‐induced variability of the solar resource, the growing contributions of

photovoltaic plants to the overall power generation challenges the stability of electricity grids.

To avoid blackouts, administrations started to define maximum negative ramp rates. Storages

can be used to reduce the occurring ramps. Their required capacity, durability, and costs can be

optimized by nowcasting systems. Nowcasting systems use the input of upward‐facing cameras

to predict future irradiances. Previously, many nowcasting systems were developed and

validated. However, these validations did not consider aggregation effects, which are present in

industrial‐sized power plants. In this paper, we present the validation of nowcasted global

horizontal irradiance (GHI) and direct normal irradiance maps derived from an example system

consisting of 4 all‐sky cameras (“WobaS‐4cam”). The WobaS‐4cam system is operational at 2

solar energy research centers and at a commercial 50‐MW solar power plant. Besides its

validation on 30 days, the working principle is briefly explained. The forecasting deviations are

investigated with a focus on temporal and spatial aggregation effects. The validation found that

spatial and temporal aggregations significantly improve forecast accuracies: Spatial aggregation

reduces the relative root mean square error (GHI) from 30.9% (considering field sizes of 25 m2)

to 23.5% (considering a field size of 4 km2) on a day with variable conditions for 1 minute

averages and a lead time of 15 minutes. Over 30 days of validation, a relative root mean square

error (GHI) of 20.4% for the next 15 minutes is observed at pixel basis (25 m2). Although the

deviations of nowcasting systems strongly depend on the validation period and the specific

weather conditions, the WobaS‐4cam system is considered to be at least state of the art.
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1 | INTRODUCTION, AIM, AND APPROACH

The solar resource shows variabilities, which influence the frequency,

voltage, and overall stability of electrical grids with high penetrations

of solar power plants. Facing this challenge, legal limitations of the

fluctuations of generated electricity (ramp rates) are already effective

or being discussed.1 Unsurprisingly, small island grids with high solar

penetration had to rush ahead: Hawaii has defined a maximum

negative ramp rate of 1 MW/min during certain times,1 and Puerto

Rico has specified a maximum negative 1‐minute ramp rate of 10%

of the rated capacity.2 For short‐term periods between 0 and

30 minutes, the origins of these ramp rates for photovoltaic (PV) plants

are predominantly transient clouds. Forecasts covering this period are

called nowcasts and can be achieved by all‐sky imager–based

systems.3-11 By providing such forecasts, nowcasting systems can help

the power plant to fulfill these ramp rate regulations. Moreover, they

help to optimize the required size and the operations of combined

PV‐battery systems.12,13 Thus, optimized operations potentially

increase the lifespan of electrical storages and auxiliary devices.14

The 4‐camera WobaS system (WobaS‐4cam), which is presented

in this work, is installed at PSA (Plataforma Solar de Almería, Spain).11

WobaS stands for the research project “Wolkenkamera‐basierte

Betriebsstrategien für Solarkraftwerke”—all‐sky imager–based

operational strategies for solar power plant. Another WobaS‐4cam

system operates at the commercial solar power plant La Africana (near

Córdoba, Spain),15 and a third WobaS‐4cam system is running at a

solar research center of the University of Evora, Portugal.16 Further,

WobaS systems based on 1 and 2 camera configurations have been

developed (not presented here). WobaS‐4cam systems use the inputs

of 4 off‐the‐shelf surveillance cameras (Mobotix Q24 or Q25). Besides

their low costs, these cameras were found to be easy to operate and

reliable in harsh weather conditions. Synchronized by an NTP server,

the cameras take images every 30 seconds with resolutions of 3 MP

(Mobotix Q24) or 6 MP (Mobotix Q25). In these images, clouds are

segmented using a 4‐dimensional clear sky library (CSL).11 The 3‐D

positions and shapes of all visible clouds are determined via voxel

carving.17 Voxel is an abbreviation for volume element, and voxel

carving is the process to derive 3‐D objects out of multiple camera

perspectives. This way, a voxel space filled with individual cloud

objects is derived (Figure 1, left). Since the ground cameras cannot

see on the top of the clouds (self‐occlusion), the raw cloud voxels must

be partially modelled.
FIGURE 1 Several cloud objects in the voxel space (left) and corresponding
solar power plant [Colour figure can be viewed at wileyonlinelibrary.com]
By tracking 3‐D cloud objects over multiple timestamps, cloud

velocities and directions are derived and used to predict cloud

movements. Future cloud positions are calculated for lead times up

to 15 minutes ahead. With the sun position and the surface elevations

known, the shadows on the ground are deduced.17 If available,

reference real‐time irradiance measurements are used to determine

cloud transmittances. With cloud transmittances derived, shadow

maps are transformed into irradiance maps (see Figure 1, right). WobaS

systems can use ground measurement stations for direct normal

irradiance (DNI) and global horizontal irradiance (GHI). Without

available ground measurements, modelled irradiance data can be used.

The validated WobaS‐4cam system is located at PSA and has

access to DNI, GHI, and DHI (diffuse horizontal irradiance) measure-

ments and is able to predict GHI, DNI, and GTI (global tilted irradiance)

maps. Spatial and temporal resolutions for these maps are 25 m2,

updated every 30 seconds for predictions up to 15 minutes ahead.

The working principle of the WobaS system is illustrated in Figure 2.

This publication is structured as follows: In Section 2, as an exam-

ple for the validation of a subtask, the cloud detection within all‐sky

images is presented. The validation of nowcasted irradiance maps is

presented in Section 3. The focus of this validation lies on the investi-

gation of spatial and temporal aggregation effects. Spatial aggregation

effects are relevant for large solar plants, covering several square

kilometers: Since the aggregated total electricity production of the

PV plant is the most important parameter to forecast, the accuracies

and validations of the average nowcasted irradiances over the com-

plete plant area are of special interest. The validation of the nowcasted

irradiance maps is conducted via pyranometer (GHI) and pyrheliometer

(DNI) measurements (Section 3.1) and with a reference shadow camera

system (Section 3.2). The conclusion is given in Section 4.
2 | VALIDATION OF CLOUD
SEGMENTATION

As an example for the validation of a subtask, the validation of a cloud

detection approach is discussed in this section. Validations of other

subtask, for instance, the derivation of cloud heights18 and cloud

speeds,19 are presented elsewhere.

Segmenting clouds in all‐sky images is one key task of the

nowcasting system and is surprisingly difficult. This originates from

color and intensity dependencies within the images regarding pixel
nowcasted direct normal irradiance (DNI) map (right) at the La Africana

http://wileyonlinelibrary.com


FIGURE 2 Working principle of the WobaS all‐sky imager–based
nowcasting system. All‐sky imagers (ASIs) are used to detect, 3‐D
geo‐locate, and track clouds to predict cloud shadows on the ground.
This way, future irradiances in high spatial and temporal resolutions
can be derived [Colour figure can be viewed at wileyonlinelibrary.com]
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and sun positions as well as from artefacts due to saturation and glare

effects in the circumsolar region. Many approaches, eg, based on

neural networks20,21 or ratios of the red‐green‐blue (RGB) color

channels,22,23 are validated and discussed in the literature. The

WobaS‐4cam nowcasting system uses a 4‐dimensional CSL.11 In the

CSL, clear sky RGB values for every pixel depending on sun pixel angle

(SPA), the pixel zenith angle (PZA), air mass (related to solar elevation

for a given altitude), and Linke turbidity are stored. The 2 angles are

illustrated in Figure 3A: The PZA is the angle between the zenith above

the camera and the pixel in the fisheye projection. The SPA is the

angular distance between the positions of the sun and the pixel.

The Linke turbidity is calculated from DNI or GHI measurements

using the Linke turbidity model from.24 Via the temporal variation of

the Linke turbidity, shaded ground measurements are excluded using

a Linke turbidity–based method presented in the previous studies.25,26

Afterwards, the current Linke turbidity is determined using a linearly

time‐weighted average of the most recent Linke turbidities derived

from unshaded irradiance measurements.

The CSL consists of 80 layers per color channel. Each layer

corresponds to a specific jointed air mass and Linke turbidity bin.

Within a layer, the RGB values of images taken during clear sky

conditions are stored relative to 2 angles (SPA, PZA; see Figure 3A). In

Figure 3B, 8 layers of the red‐to‐blue ratio are depicted, which are

calculated from the corresponding color channel layers.
FIGURE 3 A, Imaged semi‐dome of the all‐sky
imager with relevant angles of the clear sky
library (CSL) marked. B, Layers of the CSL for a
Linke turbidity range betweenTL = 1 and TL =
2.3 and the air masses between 0 and 10. In
the CSL, a total of 80 layers per color channel
for various Linke turbidities and air masses are
stored. RBR, red‐to‐blue ratio [Colour figure
can be viewed at wileyonlinelibrary.com]
If a pixel in the image under consideration is clouded, its RGB

values deviate from the CSL, and this way a cloud is detected. The

detection is based on CSL color channel ratios (as depicted in Figure 3

B) or differences and situational thresholds. Figure 4 illustrates the

approach in a simplified manner: From the raw image, ratios and differ-

ence of the color channels are calculated. On the basis of the current air

mass and Linke turbidity, 1 CSL layer per color channel is selected. From

these CSL layers, ratios (depicted: red‐to‐blue ratio) and differences are

calculated and compared to the current image. Using multiple thresh-

olds, cloud detection is then performed. The thresholds used for the

segmentation depend on PSA, PZA, and on the current weather situa-

tion (eg, overcast, clear sky). The current weather situation is deter-

mined considering irradiance and illuminance fluctuations, detected

movements, and cloud coverages found in the previous segmentations.

The CSL‐based segmentation is validated with approximately 600

manually segmented images per camera model. The approach is

illustrated in Figure 5 for the Mobotix Q24 camera model, for which

a total of 612 reference images for various situations were manually

segmented. In this approach, all‐sky images are automatically

segmented by the algorithm and pixel‐wise compared to manually

segmented references.

In Figure 6, the results of the validation on 460 Mobotix Q24

images are presented for several weather situations divided into

groups with high (above 30°) and low sun elevation angles (below

20°), hazy (Linke turbidity above 3.25) and less hazy conditions (Linke

turbidity below 2.75) as well as different cloud coverages. Further,

152 manually segmented reference images are available to validate

specific approaches for the circumsolar area (not presented). The cloud

coverages are categorized into clear sky situations with less than 2.5%,

scattered situations with coverages between 2.5% and 80%, and

(nearly) overcast situations with more than 80% cloud coverage. Clear

sky situations are defined to have cloud coverages below 2.5%, not

exactly 0%, as the field of vision of an all‐sky imager includes objects

with heights of 10 km at distances of more than 50 km (Figure 10B).

Situations with exactly 0% cloud coverage inside an all‐sky image are

thus rare, even in southern Spain.

The 3 cloud coverage categories (“clear sky,” “scattered,”

“overcast”) were chosen as segmentation approaches might detect

the sun or the circumsolar area, especially for high Linke turbidities,

incorrectly as clouds during clear sky situations and simple

http://wileyonlinelibrary.com
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FIGURE 4 Working principle of the clear sky library (CSL)–based cloud detection algorithm. Raw images are compared to clear sky reference
images corresponding to similar Linke turbidities and air masses. One layer of the CSL is shown, showing the ratio of the corresponding red and
blue CSL layers. The color bar, depicting the red‐to‐blue ratios (RBRs), relates to the RBR image, the CSL layer, the CSL reference image, and the
difference image [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Validation approach of the clear
sky library–based cloud detection algorithm:
All‐sky images segmented by the algorithm
(“automatic,” left) are compared to
approximately 600 manually segmented
images (“manual,” right) per camera model. In
this example, some clouds at the very edge of
the fisheye projection are not correctly
detected by the algorithm (filled red area in
the left image) [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 6 Validation results is visualized for
several weather situations including large
(above 30°) and small (below 20°) sun
elevation angles, dusty and clear air as well as
different cloud coverages [Colour figure can
be viewed at wileyonlinelibrary.com]
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threshold‐based approaches are known to struggle with overcast

situations. Cloud segmentation is easiest for single‐layer scattered

optically thick cumulus clouds, low turbidities, and high solar elevations

because of high contrast. Optically thin clouds are challenging for all

segmentation approaches. Thus, the reference images for scattered
cloud coverages put emphasis on such (ice) clouds. The Linke turbidity

is divided into “low” withTL < 2.75 and “high” withTL > 3.25 based on

a study of the Linke turbidity distribution as measured for our site.25

With one exception, the probability of correct detection is at 80%

or above, even exceeding 95% for many situations. The probability of

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


KUHN ET AL. 5
correct detection is defined as the percentage of pixels correctly

detected as “cloud” or as “clear sky.” This probability of correct

detection drops to 66% for low solar elevations, high Linke turbidities,

and medium cloud coverages between 2.5% and 80%. Because of the

low solar elevation and the high Linke turbidity, the saturation of the

blue color of the sky is low, and the sky in these circumstances appears

whitish‐gray. These situations are challenging, even for a human

observer, as only partially illuminated clouds do not pose a strong

contrast against the aerosol layers around them and can hardly be

distinguished from them. The thin border between cloud and aerosols

is discussed in Calbó et al.27

For low sun elevations, the most relevant clouds near the sun are

at the edge of the fisheye lens, therefore, strongly distorted and are

imaged from similar angles from all 4 cameras of the WobaS‐4cam

system. Deriving 3‐D shapes of such clouds is challenging, and small

pixel‐wise errors in the cloud detection result in large deviations in

the corresponding 3‐D positions. Thus, for sun elevations below

15°, a persistence forecast based on recently measured irradiance

data was found to be more effective. In the following validations,

timestamps with such low solar elevations are excluded. Because of

the rather low irradiance levels in these situations, this approach is

considered acceptable, at least for a preliminary step. If low

elevations were of special interest, an additional camera tracking the

sun could be used.
3 | VALIDATION OF NOWCASTED
IRRADIANCE MAPS

In this section, we focus on the validation of DNI and GHI maps. These

irradiance maps are the final output of the WobaS system. From DNI
FIGURE 7 Overview of the 30‐day validation period. During the validatio
measured by a ceilometer) are present. The pyranometer and the pyrheliom
the southernmost X in Figure 8. The ceilometer for the cloud height measur
can be viewed at wileyonlinelibrary.com]
and GHI maps, GTI maps can be derived using regional‐specific

models.28-30 In Section 3.1, the irradiance maps are validated using 3

independent ground measurement stations on 30 days. These days

are selected to reflect a wide range of irradiance variabilities and cloud

heights. GHI, DNI, and measured cloud heights of the 30‐day

validation period are depicted in Figure 7.

A shadow camera system,31 providing reference irradiance maps,

is used for the validation in Section 3.2. An auto‐evaluation of the

WobaS system was conducted on 30 days and is briefly discussed in

Section 4. The validation setup at PSA is depicted in Figure 8. The

30 days of the validation are

• in 2015: September 8 to 11, 15, 18, 19, October 2, 4, 8 to 11, 15,

17, 18, November 14, 22, 24 to 29; and

• in 2016: May 11, 14, June 3, September 27, 28 and October 28.

As discussed in the previous section, only timestamps with

minimum solar elevations of 15° are considered in the validations.

Bias, relative bias, mean absolute error (MAE), relative MAE, root

mean square error (RMSE), relative RMSE, standard deviation (std),

and relative std are calculated for each station (Section 3.1) or each

field size (Section 3.2) and each day. The relative deviations are

derived from the absolute deviations and the mean irradiance

measured over the validation period. The formulas are defined in

the following with oi as the irradiance values from the observations

in the reference data set and pi as the predicted irradiance values

from the nowcasted data set at timestamp index i. N is the total

number of timestamps included in the evaluated validation interval

(excluding low elevation angles). Om is set to the mean observed

irradiance of the validation period.
n period, a wide range of irradiance fluctuations and cloud heights (as
eter, which measured the irradiances depicted here, are located at

ements is at the position of the white triangle in Figure 8 [Colour figure

http://wileyonlinelibrary.com


FIGURE 8 Orthoimage generated from the shadow camera system
with ground measurements stations included: The square marks the
position of the shadow camera system. The Xs mark the location of 3
groups comprising each a pyranometer, a pyrheliometer, and an all‐sky
imager. The fourth all‐sky imager and a ceilometer are located at the
position of the triangle [Colour figure can be viewed at
wileyonlinelibrary.com]
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The bias is the arithmetic average of the values of the differences:

bias ¼ 1
N

∑
N

i¼1
pi−oi

The relative bias is given by

relative bias ¼ 100%
Om

bias
FIGURE 9 A, Absolute and relative RMSE (GHI) for a validation period of 30
deviation, and (D) bias. The deviations rise with higher lead times and decrea
GHI, global horizontal irradiance [Colour figure can be viewed at wileyonlin
The MAE is

MAE ¼ 1
N

∑
N

i¼1
∣pi−oi∣

The relative MAE is defined as follows:

relative MAE ¼ 100%
Om

MAE

The RMSE is

RMSE ¼ ∑
N

i¼1
pi−oið Þ2=N

� �1=2

The relative RMSE is defined as follows:

relative RMSE ¼ 100%
Om

RMSE

The standard deviation (std) of the fluctuations is

std ¼ 1
N−1

∑
N

i¼1
pi−oið Þ−biasð Þ2

� �1=2

The relative std is defined as follows:

relative std ¼ 100%
Om

std

3.1 | Comparing nowcasts with ground
measurements stations

We look first at the root mean squared error (RMSE) and the MAE

derived from 3 ground measurements stations in comparison to the
days and 3 pyranometers. (B) mean absolute error (MAE), (C) standard
se if temporal averages are considered. RMSE, root mean square error;
elibrary.com]

http://wileyonlinelibrary.com
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FIGURE 10 Field of view of a camera for
cloud heights of (A) 2 km and (B) 10 km.
Depicted is the undistorted orthoimage
derived from the fisheye projection of one
camera, which highlights the occlusion from
near‐by objects [Colour figure can be viewed
at wileyonlinelibrary.com]
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corresponding pixels in the nowcasted irradiance maps of the WobaS

system over the 30 days of validation.

The deviations are depicted for GHI and DNI in Figures 9 and 11,

respectively. The absolute values are the average of the 90 daily

stations‐wise deviations (30 days and 3 stations). Each relative value

is derived from the corresponding absolute values and the mean

irradiance during the 30 days. On the y‐axis, temporal averages from

1 to 15 minutes are shown. The x‐axis shows medium lead times from

−0.5 to 14.5 minutes.

Looking at Figure 9A, both the absolute and the relative RMSE

values for GHI are displayed. As expected from the previous

studies,32,33 higher lead times show higher deviations for RMSE,

MAE, and standard deviation as the more distant future is more

difficult to predict. Temporal aggregations reduce these deviations

because of averaging effects. However, the behavior of the bias must

be explained differently: Similar to the other deviations depicted in

Figure 9, but on a lower level, the bias rises with increasing lead times

and falls for higher temporal averages. Also, the bias found on 30 days

is always positive (see Figure 9D).

All 3 effects hold for the depicted bias of 30 days. However, bias

values for singular days within the 30 days show negative values and

different behaviors. In general, there seems to be a minor tendency

for positive biases within nowcasting systems (also observed in Kuhn

et al32) as usually more clouds remain undetected than sky clear pixels

being incorrectly assigned to be clouded. This is especially true for

large lead times where the relevant clouds might be outside the

cameras' field of view or outside the WobaS‐4cam voxel space of

27.6 km*27.6 km*10 km. Figure 10 depicts the field of view of a cam-

era for cloud heights of 2 and 10 km. Clouds at an altitude of 2 km,

which are 10 km away can be seen in the all‐sky imager. However, with

cloud speeds of, eg, 20 m/s, only physical forecasts up to a lead time of

500 seconds (8.3 min) are possible. For southern Spain, a mean cloud

speed of 7.36 m/s was found,19 resulting in an average physical

forecast horizon for clouds at 2 km height of more than 22 minutes.
TABLE 1 Minimum and maximum GHI deviations found as the average da
Figure 9)

GHI Metrics Minimum Value
Medium Lead Time,
min

Temporal Av
min

RMSE 18.7% (95 W/m2) 2.5 7

MAE 11.4% (58 W/m2) 1 4

Standard deviation 18.2% (92 W/m2) 2.5 7

Bias 1.8% (9 W/m2) −0.5 1

Abbreviations: GHI, global horizontal irradiance; MAE, mean absolute error; RM
One potential reason for the underdetection of clouds and the

subsequent positive bias is that the WobaS‐4cam system uses its

redundancy of 4 all‐sky imagers to counter incorrect cloud detections:

Only clouds seen by at least 3 of the 4 cameras are considered, the

others are rejected. This effect potentially increases the bias, but mainly

increases the robustness of the system against a camera occluded by

near‐by objects or dirt. With the bias ranging between 1.8% and 3.4%,

these effects seem to be minor compared to the standard deviation

and the RMSE. InTable 1, the minimum andmaximum values are shown

for the error metrics as the average daily deviations of 30 days.

Figure 11 displays the error metrics found for the DNI predictions

of the WobaS system similar to Figure 9. In general, the observed

deviations for DNI are larger than the deviations found for the GHI

predictions. This effect is caused by the DHI, which damps abrupt

changes by scattering irradiance onto the areas shaded by clouds.

Usually, inside the shadows of cumulus clouds, the DNI drops to zero

and the GHI is equal to the DHI. Therefore, the relative changes of the

DNI are larger than the relative changes of the GHI, which results in

larger deviations for the same forecasts. Besides that, the behavior of

the DNI deviations is similar to the GHI deviations: Temporal

aggregations reduce deviations, whereas higher lead times result in

larger deviations. Table 2 shows the maximum and minimum values of

the DNI deviations.

In Figure 12, temporal aggregation effects are shown differently by

considering the deviations of the WobaS system for the next minutes

ahead. For this so‐called operator mode, the irradiances predicted for

the positions of the ground measurements stations and the average of

the next X min are compared to the aggregated measurements of these

stations. The error metrics for GHI and DNI are depicted respectively in

Figure 12A,B. Because of temporal aggregations, the predictions for the

next minute and the temporally aggregated predictions for the next

15minutes ahead show similar deviations. These deviations are of inter-

est if a back‐up electricity generator of a solar plant requires time to be

operational and the aggregated irradiance for the next, eg, 15 minutes
ily and station‐wise deviations on 30 d (compare with the graphs in

erage,
Maximum Value

Medium Lead Time,
min

Temporal Average,
min

27.9% (141 W/m2) 14.5 1

18.1% (92 W/m2) 14.5 1

27.2% (138 W/m2) 14.5 1

3.4% (17 W/m2) 14.5 1

SE, root mean square error.

http://wileyonlinelibrary.com


FIGURE 11 (A) Absolute and relative RMSE (DNI) for a validation period of 30 days and 3 pyrheliometers. (B) mean absolute error (MAE), (C)
standard deviation, (D) bias. The deviations rise with higher lead times and decrease if temporal averages are considered. RMSE, root mean
square error; DNI, direct normal irradiance [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Minimum and maximum DNI deviations found as the average daily and station‐wise deviations on 30 d (compare with the graphs in
Figure 11)

DNI Metrics Minimum Value
Medium Lead Time,
min

Temporal Average,
min

Maximum Value,
min

Medium Lead Time,
min

Temporal Average,
min

RMSE 23.7% (154 W/m2) 2.5 7 35.5% (232 W/m2) 14.5 1

MAE 13.6% (89 W/m2) 0.5 3 22.0% (144 W/m2) 14.5 1

Standard deviation 23.0% (150 W/m2) 2.5 7 34.7% (226 W/m2) 14.5 1

Bias 2.2% (14 W/m2) −0.5 1 4.6% (30 W/m2) 14.5 1

Abbreviations: DNI, direct normal irradiance; MAE, mean absolute error; RMSE, root mean square error.

FIGURE 12 Error metrics for global horizontal
irradiance (GHI) (A) and direct normal
irradiance (DNI) (B) using the operator mode.
Three ground‐based reference stations are

compared to corresponding pixels in the
nowcasted irradiance maps for temporal
averages up to 15 min. Depicted are the
relative deviations of 30 days. Because of
temporal averaging, the deviations for the
next minute ahead and the deviations for the
next 15 min ahead are found to be similar. This
effect is of interest for plants with back‐up
generators. ASI, all‐sky imager; RMSE, root
mean square error; MAE, mean absolute error
[Colour figure can be viewed at
wileyonlinelibrary.com]
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must be predicted. The deviations displayed in Figure 12 correspond to

the left‐most value of each row in each graph of Figures 9 and 11. Note

the difference in the x‐axis in these graphs: In Figures 9 and 11, the
medium lead times for various temporal averages are considered,

whereas in Figure 12 the deviations for the next minutes ahead are

displayed.

http://wileyonlinelibrary.com
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In the graphs of Figure 12 (“ASI”—all‐sky imager–based WobaS

system), the RMSE and MAE deviations found for 0 minute ahead

are slightly higher than the deviations found for 15 minutes ahead

(RMSE [GHI]: 19.8% [0 min] to 19.0% [15 min]; RMSE [DNI]: 24.8%

[0 min] to 24.2% [15 min]). This is caused by interplay of 2 effects:

With larger lead times, the predictions become less accurate, which

can be seen in the graphs of Figures 9 and 11. On the other hand, it

is also visible in these graphs that with larger temporal aggregations,

the deviations are reduced. In the operator modus, these 2 effects

are combined and balance themselves: The increase of the deviations

with larger lead times is compensated by the larger temporal

aggregations.

The results found for the WobaS system are in alignment with

publications on other all‐sky imager–based nowcasting systems:

RMSE values between 155 and 250 W/m2 for 10 minutes GHI

forecasts are reported in Bernecker et al34 (validated on 15 d in

Germany) and RMSE values for GHI forecasts up to 250 W/m2 for

23 minutes lead time in Schmidt et al35 for a validation period of 2

months in Germany. A two all‐sky imager–based system validated on

9 days at the same location as the WobaS system (Spain) showed

larger deviations for 1 minute averages of above 250 W/m2 (RMSE,

DNI) and similar deviations (RMSE, DNI: 31.6%, lead time 15 min)

for the operator mode.32 A hybrid all‐sky imager/stochastic learning

approach presented in Xia et al21 achieved RMSE values between 55

and 140 W/m2 for DNI forecasts and a lead time of 10 minutes on a

validation period of 6 months in California, United States. In Fu et al,36

RMSE values for DNI forecasts between 169 W/m2 (25%) for

5 minutes lead time and 191 W/m2 (28%) for 15 minutes lead time

as well as MAE values between 139 W/m2 (22%, 5 min) and

152 W/m2 (24%, 15 min) are found on a 4‐week validation period in

Taiwan.
FIGURE 13 Working principle of the shadow camera system, providing re
cameras acquire an image every 15 s. The set of 6 images are combined to
and overcast conditions, available, shadows are detected and irradiance map
DNI, direct normal irradiance [Colour figure can be viewed at wileyonlineli
Comparing observed deviations of nowcasting systems, which

were validated on different days and in different weather situations,

must be done with extreme precaution: The specific weather situations

strongly influence the performance of nowcasting systems and the days

included in the validation have a strong impact on the final errormetrics.

For the 30‐day validation period used for the WobaS system, a wide

range of different weather situations was chosen (Figure 7). Moreover,

the weather above southern Spain with multiple cloud layers being

frequently presentmight bemore complex than theweather elsewhere.

For instance, on the pacific coast of theUnited States, cumulus clouds at

low altitudes seem to be predominantly present.37
3.2 | Comparing nowcasts with a shadow
camera–based reference system

At the Plataforma Solar de Almería, Spain, a unique and innovative

shadow camera system is operational,31 which provides reference

irradiance maps for the validation of nowcasts.10,32 The shadow

camera system consists of 6 cameras taking photos from the top of

an 87‐m high tower. Out of the 6 photos, taken every 15 seconds,

an orthoimage is calculated. To detect shadows in the current

orthoimage, 2 reference orthoimages corresponding to similar solar

positions are compared to the current orthoimage. One reference

orthoimage was taken when no shadow fell on the imaged area. The

second orthoimage was taken when the whole imaged area was

shaded. Using the 2 reference orthoimages, consisting out of 6 raw

images each, the current orthoimage can be segmented into shaded

and unshaded areas. For the irradiances in the unshaded area, the clear

sky irradiance is taken. The irradiances in the shaded areas are derived

from the camera measurements, which are normalized with high‐
ference irradiance maps for the WobaS system. Six downward‐facing
an orthoimage. With reference orthoimages, taken during cloud‐free
s in high spatial (25 m2) and temporal resolutions of 15 s are generated.
brary.com]

http://wileyonlinelibrary.com
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precision irradiance measurements. Thus, irradiance maps (DNI, GHI,

GTI) for the current situation are calculated. These irradiance maps

have a spatial resolution of 25 m2 over an area of 4 km2. Comparing

pixels of the derived irradiance maps to corresponding ground

measurements, the shadow camera system shows RMSE (DNI)

between 4.2% and 16.7% for 1 minute averages. RMSE (GHI)

deviations are below 10%. Like theWobaS system, the shadow camera

system benefits from spatial and temporal averaging with resulting

spatially aggregated RMSE (GHI) between 3.3% and 8.7% and RMSE

(DNI) between 4.3% and 10%. Figure 13 illustrates the approach. The

shadow camera system is presented in detail in Kuhn et al.31 Using

the spatially resolved irradiance maps generated by the shadow

camera system, spatial aggregation effects regarding the deviations
FIGURE 15 Absolute and relative error metrics for the 1‐min global horizo
the shadow camera system for aggregated field sizes from 25 m2 to 4 km2
[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 14 Global horizontal irradiance (GHI) and direct normal
irradiance (DNI) ground measurements (green, “Ref”), compared to
the WobaS forecasts of the pixel corresponding to the measurement
station (blue, “ASI”—all‐sky imager) for lead time 15 min (“LT”) and 1
min time average (“AVG”). As can be seen, this example day shows a
high variability [Colour figure can be viewed at wileyonlinelibrary.com]
of nowcasting systems can be studied. Studying spatial aggregation

effects on forecasting deviations is of importance as these effects

are inherently present in industrial solar power plants, covering up to

several square kilometers.

The effects of spatial aggregations are discussed by looking at one

example day (September 9, 2015). The irradiances of this day are

depicted in Figure 14, showing a high level of variability.

Figure 15 displays the GHI deviations found for the WobaS

system in comparison to the shadow camera system for 1‐minute tem-

poral averages. Considered field sizes vary between 25 m2 and 4 km2

(x‐axis). Lead times from 0 to 15 minutes are depicted on the y‐axis.

The deviations increase with larger lead times. Because of spatial

aggregation effects, the deviations decrease for larger field sizes. For

instance, an RMSE value of 21.4% (120 W/m2) is found for lead time

0 minute and a field size of 25 m2, which shrinks to 13.0% (73 W/

m2) for a field size of 4 km2.

The DNI deviations are depicted in Figure 16. Because of effects

explained in the previous section, the deviations observed for the

DNI are larger than the GHI deviations. In general, the DNI deviations

show similar behavior in comparison to the GHI deviations. However,

the DNI deviations drop more for larger field sizes. This effect can be

explained with typical cloud sizes of this day: If clouds on that day have

a usual diameter of 500 to 1000 m, then for field sizes above 1000 m

the exact position of the cloud inside the considered field is not

relevant for spatially aggregated irradiances. Prior to this critical size,

small errors in the predictions of the shadow locations lead to large

deviations as the shadow misses the field completely. This drop in

the deviations is blurred out for the GHI because of the DHI reducing

the offsets for small field sizes.

In the previous section, the operator mode was introduced. The

operator mode considers deviations for the next minutes ahead.
ntal irradiance (GHI) forecasted by the WobaS system in comparison to
and lead times ranging from 0 to 15 min. MAE, mean absolute error

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 16 Direct normal irradiance (DNI) deviations corresponding to Figure 15. MAE, mean absolute error [Colour figure can be viewed at
wileyonlinelibrary.com]
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Because of temporal aggregation effects, the deviations found for the

next minute ahead and the next 15 minutes ahead are similar if pixels

in the nowcasted irradiance maps are compared to reference ground

measurements (see Figure 12 and corresponding discussion). In

Figures 17 (GHI) and 18 (DNI), the operator mode is depicted

considering different field sizes, lead times, and deviations.

As an example, for field sizes of 4 km2 and considering the next

4 minutes ahead, the observed relative RMSE values are 12.5% for GHI

(Figure 17A). Without using the operator mode, the deviation
FIGURE 17 Global horizontal irradiance (GHI) deviations for the operator m
camera system. MAE, mean absolute error [Colour figure can be viewed at
observed for a lead time of 4 minutes and field sizes of 4 km2

correspond to an RMSE of 15.0% (GHI), as shown in Figure 15A. If only

1 pixel is considered, temporal aggregation reduces the deviations

from 24.9% (RMSE, GHI, lead time 4 min) to 20.3% (next 4 min ahead).

For DNI deviations, temporal aggregations reduce the deviations

found for 1 pixel from RMSE 30.6% (Figure 16A, lead time 4 min) to

RMSE 26.2% (Figure 18A, next 4 min ahead). For 1 pixel, temporal

aggregations also reduce the DNI deviations from RMSE 34.8% (lead

time 15 min) to RMSE 27.6% (next 15 min ahead). For field sizes of
odus, various field sizes, and lead times, in comparison to the shadow
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 18 Direct normal irradiance (DNI) deviations corresponding to Figure 17. MAE, mean absolute error [Colour figure can be viewed at
wileyonlinelibrary.com]
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4 km2 and considering the next 15 minutes ahead, spatio‐temporal

aggregation reduces the RMSE to 14.2% (Figure 18A).

As illustrated with 1 day considered as an example in this section,

spatial aggregation effects significantly reduce forecasting errors.

Since spatial aggregation effects are present in every industrial solar

plant, these effects must be considered in the validations of

nowcasting systems. For the total dispatched power of solar plants,

this effect is discussed in Marcos et al.38

In the absence of a shadow camera system acting as a reference,

auto‐evaluations could be considered. For the whole validation period,

such auto‐evaluations of the WobaS‐4cam system were performed.

Auto‐evaluations compare predicted irradiance maps for future

timestamps with irradiance maps predicted on and for these

timestamps. The WobaS‐4cam system thus evaluates itself

(“auto‐evaluation”). Auto‐evaluations of nowcasting systems should

be treated with great precaution, especially regarding irradiance

forecasts. In direct comparison, both the values of the deviations and

their behavior as observed via auto‐evaluations differ significantly

from the deviations observed via reference measurements. Auto‐eval-

uations could be used to test the robustness of a nowcasting system as

well as the combined errors of inconsistent cloud detections, tracking

errors, and deviations in cloud height determinations. However, it is

suggested to validate these subtasks separately with additional

references to enable optimization. Validating subtask separately leads

to small improvements, which in the end add up to a generally

improved and robust nowcasting system.
4 | CONCLUSION AND FUTURE WORK

In this publication, the WobaS‐4cam nowcasting system was validated

on 30 days representing various weather conditions with special focus
on temporal and spatial aggregation effects. Temporal aggregation

effects are relevant for defining storage requirements. Spatial aggrega-

tion effects are inherent in industrial‐size solar plants when the

resulting energy production is under consideration. The deviations

observed for the WobaS‐4cam system for 1‐minute averages are

coherent with other recently published nowcasting systems. However,

directly comparing nowcasting systems using different data sets is

delicate as the specifics of the meteorological situation during the

selected days strongly influence the error metrics.

As key findings, both temporal and spatial aggregation significantly

reduces forecasting errors. This was not studied in detail before for the

temporal and spatial resolutions considered in this publication. Indeed,

most nowcasting systems are validated on the basis of few ground

measurement stations, which yields error metrics that do not represent

fitness‐for‐use and might not be relevant for industrial applications.

The validation period should reflect all possible weather situations

and their relative occurrence. In literature, because of technical

constraints, often only few days are used for validation and this could

be critical for the representability of the conclusions. Spatial aggrega-

tions are found to reduce RMSE (GHI) values from 21.4% to 13.0%

for lead time 0 minute and field sizes between 25 m2 and 4 km2.

Temporal averaging reduces RMSE (GHI) deviations from 25.3%

(medium lead time 7.5 min, 1 min temporal average) to 19.0% (medium

lead time 7.5 min, 15 min temporal average). Furthermore, the effects

of increased accuracies for larger temporal aggregations and increased

deviations for larger lead times are found to be equivalent. Another

key finding concerns auto‐evaluations, which were found unfit for

the validation of irradiance maps.

The WobaS‐4cam system is currently operational at a commercial

solar power plant. In the near future, nowcasting systems such as the

WobaS systems will contribute to handle ramp rate limitations. By

providing nowcasts, the WobaS‐4cam system helps to comply with

http://wileyonlinelibrary.com
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such regulations, eg, by reducing the required battery size. The

conducted validation found the WobaS‐4cam system to be reliable

for operation in industry. Thus, with all‐sky imager–based nowcasting

tools and relatively small batteries, the cloud induced variability of

the solar resource will not lead to severe instabilities of electrical grids.

Future work will conduct benchmarking of different 1 and 2

camera‐based nowcasting systems in comparison to the WobaS‐

4cam system presented here. Moreover, there will be an on‐going

optimization of all WobaS nowcasting systems. This way, the WobaS

nowcasting family will be improved step by step.
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