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Abstract High-level interpreted programming languages, such as Python, are
widely used because of their concise syntax and dynamic type system, which
allow programmers to efficiently develop applications. However, they cannot
offer the same guarantees provided by lower-level languages such as C in terms
of portability on embedded systems. Is it possible for dynamic applications
to benefit from lower-level compilation toolchain in order to increase their
portability onto specialized hardware targets? We present in this paper (1) a
methodology to convert a dynamic Domain-Specific Language (DSL) into a
static one that preserves programmability, (2) a working implementation that
takes care of types, memory allocation, polymorphism and API adaptation
between the two DSLs, (3) and experimental results on portability and perfor-
mance that show the efficiency of our approach. We illustrate our methodology
with two image processing libraries: SMIL and FREIA. The SMIL library is
a C++ image processing library offering ease of programming with a Python
wrapper. However, SMIL applications also have to be executed on embedded
platforms such as FPGAs on which a Python interpreter is not available. The
generic answer to such an issue is to re-code the original Python applications
in C or C++, which will be then optimized for every hardware target, or to
try to compile Python into native code using tools such as Cython. The ap-
proach we suggest here is to ease portability of applications written in a DSL
embedded in C (the FREIA API) by using specific optimizations such as im-
age expressions evaluation, removal of temporary variables or image tiling.
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1 Introduction

Computer vision is now a fast-growing field of research and is going to play
a large role in everybody’s life in the near future. Augmented reality or au-
tonomous vehicles such as drones or cars are showing more and more promises
and may be available to consumers in the next decade. Figure 1 depicts an
image processing application that detects macular degeneration on a retina,
speeding up medical diagnoses. To support this innovative field, new image
processing libraries are being developed and compete in terms of performance
and programmability. Among them, OpenCV [1], GEGL [2], ImageMagick [3]
or NumPy [4] are the most well known. These libraries often provide APIs in
high-level programming languages, such as Python, in order to offer good pro-
grammability.

(a) Input image (b) Output image

Fig. 1: Example of an image processing application: automatic detection of
retina damage

Python is a general-purpose programming language with several key fea-
tures improving programmability: high-level abstractions, dynamic type sys-
tem, simple memory management with garbage collection and concise and
easy-to-learn syntax. It can support several programming paradigms, such
as imperative, functional or object-oriented programming. However, Python
programs are limited by the interpreter, which causes slower executions and
needs more memory than native languages such as C or C++ [5, 6]. The in-
terpreter also limits the parallelism of Python programs through the Global
Interpreter Lock [7], which prevents using more than one thread. Fortunately,
Python can easily be interfaced with low-level C or C++ code through wrap-
pers to ensure native performance on parallel architectures. As a consequence,
image processing libraries are often written C or C++, and provide Python
bindings to increase programmability.



A Dynamic to Static DSL Compiler for Image Processing Applications 3

However, in our hardware jungle era [8], substantial efforts have to be made
to have those libraries efficiently running onto all kinds of modern accelerators,
such as GPUs, FPGAs or many-core processors. Production compilers are not
yet able to target the whole range of today’s hardware: it is up to developers
to provide an optimized version of their library onto a specific hardware. Pro-
gramming models such as OpenMP [9] for shared memory, OpenCL [10] for
heterogeneous platforms or MPI [11] for distributed computing can help target
a class of accelerators at once, but further optimizations are often hardware-
specific.

New compiler techniques must arise to support complex image process-
ing applications without sacrificing programmability. This paper focuses on
compiling high-level interpreted DSLs into lower-level but more portable ones.
We validate our approach with two image processing interfaces considered as
DSLs, SMIL [12] and FREIA [13, 14], supporting each a different set of hard-
ware targets and providing different levels of programmability. We evaluate
our methodology on a set of seven image processing applications.

2 Context

Mathematical Morphology is an image processing theory based on lattice the-
ory initiated in the 1960s [15, 16]. Common applications of this theory con-
sist in detecting geometric structures in images, or partitioning an image in
regions. Several software libraries have been developed since the inception of
this theory, each providing better performance or usability. SMIL and FREIA
are two of them.

2.1 The SMIL library

1 import smilPython as smil
2

3 imin = smil.Image("input.png") # read from disk
4 imout = smil.Image(imin) # allocate imout
5 smil.dilate(imin, imout) # morphological dilatation
6 imout.save("output.png") # write to disk

Fig. 2: Morphological dilatation in SMIL

SMIL (Simple Morphological Image Library) [12, 17] is a C++ image pro-
cessing library developed at MINES ParisTech. It focuses on efficiently imple-
menting mathematical morphology operators such as erosions and dilatations
onto modern multicore CPUs. It aims at providing:
– good performance, using loop auto-vectorization through GCC compila-

tion [18] and OpenMP parallelization [9];
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– ease of programming, through several Swig [19] auto-generated interfaces
to higher-level programming languages such as Python;

– portability on several CPUs and operating systems, using the CMake [20]
compilation toolchain;

– maintainability and extensibility, through C++ templates and functors.
Figure 2 depicts an example of a SMIL script using the Python interface.

This script reads an image from a file, performs an morphological dilatation
on this input image and then saves the resulting image.

2.2 The FREIA framework

1 #include "freia.h"
2

3 int main(void) {
4 // initializations...
5

6 freia_data2d
7 *imin = freia_common_create_data(/*...*/), // allocate
8 *imout = freia_common_create_data(/*...*/);
9 freia_common_rx_image(imin, /*...*/); // read from disk

10 freia_cipo_dilate(imout, imin, 8, 1); // morpho dilatation
11 freia_common_tx_image(imout, /*...*/); // write to disk
12 freia_common_destruct_data(imin); // free memory
13 freia_common_destruct_data(imout);
14

15 // shutdown...
16 }

Fig. 3: Morphological dilatation in FREIA (excerpt)

FREIA (Framework for Embedded Image Applications) [13] is a C image
processing framework. It provides a C API divided into elementary and com-
posed image operators. This API abstracts several implementations targeting
different categories of hardware accelerators :

– multicore and vector CPUs with SMIL (through an intermediate C wrapper
around SMIL C++ code);

– CPUs with vector extensions through Fulguro [21];
– FPGAs with the SPoC [22] and Terapix [23] backends;
– manycore CPUs such as the Kalray MPPA [24] with Sigma-C [25, 26], a

dataflow programming language;
– GPUs using OpenCL [10].

Used in combination with our in-house C source-to-source compiler framework
PIPS [27], FREIA applications can be further optimized at the image oper-
ator level for the designated hardware target [14, 28]. Performed image opti-
mizations include complex operator unfolding, temporary variable elimination,
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common sub-expression elimination, backward and forward copy propagation,
operator aggregation, and target-specific code generation.

Figure 3 represents an abridged version of a morphological dilatation using
the FREIA API. In this example, image structures must be explicitly allocated
before use and freed afterwards.

2.3 Bridging the gap

The SMIL library supports several CPU targets using the GCC compiler and
the CMake toolchain. Nevertheless, porting this image processing library on
specific hardware accelerators such as GPUs to take advantage of heteroge-
neous architectures can be a hard task. Meanwhile, the FREIA framework
supports a wide range of hardware accelerators, but fails in comparison to
offer easy programmability: users still have to manage memory and write C
code.

Multicore
CPUs

Manycore
CPUs GPUs FPGAs

SMIL lib Fulguro ΣC OpenCL SPoC Terapix

SMIL Python
Swig wrapper

FREIA common
runtime

SMIL
app.py

FREIA
app.c

hardware

applications
runtimes

smiltofreia
Compiler

optimizations

Fig. 4: Compiler toolchain diagram

Several solutions are possible to reconciliate SMIL programmability and
FREIA set of hardware targets. A total port of SMIL on every FREIA target
is a hard and long task, and would not reuse work already done for FREIA.
One can try to re-implement the SMIL API using FREIA, but this solution
does not allow our C compiler PIPS to perform its optimizations. Allowing
C- and Fortran-supporting PIPS to handle C++ source code to regenerate
directly target-optimized FREIA code is also a lengthy process, and although
it can yield some long-term benefits, it is not in the scope of this project.

In this paper, we present smiltofreia, a source-to-source compiler de-
signed to convert SMIL applications written using the Python interface into



6 Pierre Guillou et al.

FREIA C. Thus a SMIL application can be automatically ported to the FREIA-
supported hardware targets and take advantage of the PIPS source-to-source
compiler optimizations. Figure 4 represents our compilation chain highlight-
ing the benefits of smiltofreia in terms of portability.

3 Manipulating and accelerating Python code

In order to analyze and convert SMIL Python applications into FREIA C, we
tried two Python tools: RedBaron [29, 30], a Python refactoring framework,
and Cython [31, 32], a Python-to-C compiler.

The Python standard library itself provides low-level tools to parse and
query Python code. Among them, inspect [33], which can be used to inspect
and modify running Python code, and ast [34], for manipulating Python code
Abstract Syntax Trees.

3.1 RedBaron, a Python refactoring tool

We built our smiltofreia compiler on top of the RedBaron refactoring tool.
RedBaron is a high-level Python interface allowing developers to easily refac-
tor their Python code without losing information. It is based on the Baron [35]
FST (Full Syntax Tree) which, unlike a traditional AST, does not drop com-
ments and formatting data. As a consequence, regenerating source code from
a FST is an invariant transformation:

1 fst_to_code(code_to_fst(source_code)) == source_code

For instance, the RedBaron FST of the SMIL dilatation call
1 smil.dilate(imin, imout)

from Figure 2 is represented in Figure 5. Note that the formatting information
(line breaks and spaces) separating the words is kept in this data structure in
order to regenerate the very same source code.

RedBaron provides an efficient and intuitive object-oriented interface to
query and manipulate this FST. Top-level nodes, corresponding to actual lines
of codes, can be accessed and modified through array subscripts and assign-
ments. Transforming the dilatation in the FST fst of Figure 2, Line 4, into
an image copy is as simple as rewriting the content of the corresponding node

1 fst[3] = "imout = imin"

The main purpose of RedBaron is to help refactoring Python code, such
as generating classes, methods, or renaming variables or functions in one or
several files. A canonical example of this usage can be found in Figure 6:
variable imin is here renamed in in.

Compared to RedBaron, the Python standard module ast provides a clum-
sier interface and drops some essential formatting information, useful when
refactoring.
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1 {"type": "atomtrailers",
2 "value": [
3 {"type": "name", "value": "smil"},
4 {"type": "dot", "first_formatting": [],
5 "second_formatting": []},
6 {"type": "name", "value": "dilate"},
7 {"first_formatting": [], "third_formatting": [],
8 "type": "call", "fourth_formatting": [],
9 "second_formatting": [],

10 "value": [
11 {"type": "call_argument",
12 "first_formatting": [],
13 "second_formatting": [], "target": {},
14 "value": {"type": "name", "value": "imin"}},
15 {"type": "comma", "first_formatting": [],
16 "second_formatting": [{"type": "space", "value": " "}]},
17 {"type": "call_argument", "first_formatting": [],
18 "second_formatting": [], "target": {},
19 "value": {"type": "name", "value": "imout"}}
20 ]}]}

Fig. 5: FST of smil.dilate(imin, imout)

1 from redbaron import RedBaron
2 red = RedBaron("smil.dilate(imin, imout)")
3 for node in red.find_all("NameNode", value="imin"):
4 node.value = "in"
5 print(red.dumps()) # smil.dilate(in, imout)

Fig. 6: Example of using RedBaron to rename a variable

3.2 Cython, a Python-to-C compiler

We investigated the use of Cython, a Python-to-C compiler, for generating
FREIA code from our SMIL Python applications. We wrapped a subset of
the FREIA API in Python using the Cython extension system, and we used
RedBaron to convert SMIL applications into FREIA Python. The Cython
compiler then generates a C source file from this Python code. Figure 7 shows
the output of the Cython Python-to-C compiler around the FREIA dilatation
call.

However, the generated source code is too low-level, and thus too far from
FREIA, for our source-to-source framework PIPS to perform additional opti-
mizations. Cython introduces a lot of new variables and functions, and uses
opaque data structures, which makes the code a lot more complex to analyze.
As a consequence, PIPS regeneration of optimized source code for the specific
hardware targets could not work. Moreover, the generated code depends on an
external library implementing a Python run-time environment, which may not
have been ported on every FREIA hardware target. The Cython approach,
which works well for interfacing Python and C code and hence accelerating
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1 static PyObject *__pyx_pf_9smil_dilate_6Data2D_14cipoDilate(
2 struct __pyx_obj_9smil_test_Data2D *__pyx_v_self,
3 struct __pyx_obj_9smil_test_Data2D *__pyx_v_imout,
4 __pyx_t_7pyfreia_int32_t __pyx_v_connexity,
5 __pyx_t_7pyfreia_uint32_t __pyx_v_size) {
6 PyObject *__pyx_r = NULL;
7 __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL;
8 __Pyx_RefNannySetupContext("cipoDilate", 0);
9 __Pyx_XDECREF(__pyx_r);

10 __pyx_t_1 = PyInt_FromLong(
11 freia_cipo_dilate(__pyx_v_imout->_c_data2d,
12 __pyx_v_self->_c_data2d,
13 __pyx_v_connexity, __pyx_v_size));
14 __Pyx_GOTREF(__pyx_t_1);
15 __pyx_r = __pyx_t_1;
16 __pyx_t_1 = 0;
17 __Pyx_XGIVEREF(__pyx_r);
18 __Pyx_RefNannyFinishContext();
19 return __pyx_r;
20 }

Fig. 7: Actual C call to FREIA dilatation after Cython compilation

Python applications, is thus not recommended for post-processing the gener-
ated C code.

4 The smiltofreia SMIL Python to FREIA C compiler

1 #include "freia.h"
2 #include "smil-freia.h"
3

4 int main(int argc, char *argv[]) {
5 smil_freia_initialize(argc, argv); // initializations
6 freia_data2d *imin;
7 imin = freia_create_image();
8 freia_data2d *imout;
9 imout = freia_create_image();

10 #define e0 SMILTOFREIA_SQUSE
11 #define e0_s 1
12 freia_cipo_dilate_generic_8c(imout, imin, e0, e0_s);
13 freia_common_tx_image(imout, &fdout);
14 freia_destruct_image(imout);
15 freia_destruct_image(imin);
16 smil_freia_finalize(); // shutdown
17 return 0;
18 }

Fig. 8: Simplified FREIA C output of our compiler for Figure 2
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Instead of using Cython for generating low-level C from Python, we devel-
oped an in-house Python-to-C compiler for SMIL applications. Our compiler,
named smiltofreia, generates directly FREIA C code from SMIL Python
applications. smiltofreia iterates over the RedBaron FST of a SMIL appli-
cation and transforms each node into a corresponding C statement. An exam-
ple of this compiler output is available in Figure 8. Some compatibility code
and wrapper functions have been placed in a dedicated smil-freia.h header
file, which explains the main differences with the original FREIA dilatation
code in Figure 3.

Algorithm 1: General description of a smiltofreia execution over
a SMIL Python application

Input: src — SMIL Python application source code
Output: dst — corresponding FREIA C application code
/* Preprocessing: ensure there is a main function */

1 src = preprocess(src);
/* Get and process the RedBaron FST */

2 fst = RedBaron.generate_fst(src);
3 dst = generate_c(fst, Scope());
4 dst.insert_freia_includes();

/* Apply clang-format to prettify the C output code */
5 dst.clang_format();
6 print(dst);

Algorithm 1 presents a broad overview of the workings of our compiler. The
RedBaron tool is used to get the Full Syntax Tree of the input code. Our com-
piler operates on the nodes of this FST to type variables and generate C code.
A pre-processing pass can generate a missing def main() function around the
input code instructions as a normalized entry point for our applications. To
prettify the generated C code, an optional application of the formatting tool
clang-format [36] is performed.

A more in-depth description of the main routine of our compiler is available
in Algorithm 2. This algorithm shows the recursive approach taken to gen-
erate the C code corresponding to a FST node. Each FST node is processed
according to its RedBaron type, from top-level nodes, which represent Python
module-level constructs such as classes, function declarations, global variable
declarations or instructions, to bottom-level ones (identifiers, operators, con-
stants or formatting data). For instance, dealing with a Python instruction
block consists in processing each sub-node.

Python is a dynamic language with a garbage collector dealing with mem-
ory allocation. A contrario, C is lower-level: variables must be declared; mem-
ory management is done by hand; and heap-allocated memory must be freed
at the end of its use. Besides, SMIL and FREIA API, although close, can
differ. Our compiler addresses these differences to generate code that respects
the C specification and the semantics of the source SMIL application. As a
consequence, our compiler input is constrained: only pure SMIL Python code
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Algorithm 2: smiltofreia RedBaron node transformation function
Input: src — SMIL Python function FST
Output: dst — corresponding FREIA C function
/* recursive bottom-up code generation and typing */

1 def generate_c(node, scope):
2 cc = Ccode();
3 switch node.type() do
4 case BlockNode do
5 foreach subnode of node do
6 cc.add(generate_c(subnode, scope));
7 end foreach
8 end case
9 case AssignNode do

10 rcode = generate_c(node.rightarg, scope);
11 var, type = node.leftarg, node.rightarg.rettype;
12 if var ∈ scope then
13 assert(scope.get_type(var) == type); // check static type
14 else
15 scope.add_type(var, type);
16 cc.add(”%s %s;”, type, var); // variable declaration
17 end if
18 cc.add(”%s = %s;”, var, rcode);
19 end case
20 case BinOpNode do

/* in1 ⊗ in2 */
21 op, in1, in2 = node.value, node.first, node.second;
22 node.out, node.rettype = gen_id(), get_rettype(op, in1, in2);
23 scope.add_type(node.out, node.rettype);
24 cc.add(”%s %s;”, node.rettype, node.out);
25 cc.add(”%s = %s;”, node.out, gen_init(node.out, node.rettype));
26 cc.add(”%s(%s,%s,%s);”, freia_call(op), node.out, in1.out, in2.out);
27 end case
28 case WhileNode do

/* deal with test and loop body separately */
29 test = generate_c(node.test, scope);
30 body = generate_c(node.value, scope);
31 cc.add(”while(%s) {%s}”, test, body);
32 end case
33 [...];
34 end switch
35 return cc;

without other Python modules is supported, and the type of all variables must
be statically inferable.

4.1 Typing

Our compiler is focused on a subset of the SMIL API that has an equivalent
in FREIA, and must also deal with issues arising when trying to generate static
code from a dynamic one. We wrote a defensive implementation that puts
programming constraints on the Python input code. The goal is to ensure
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that a successful transformation will produce a well-typed and well-memory-
managed C code. The smiltofreia compiler knows both SMIL and FREIA
APIs and the correspondence between their functions’ signatures. Variables
are typed at first initialization and cannot be mutated. The compiler fails
otherwise with a consistent error message, thanks to RedBaron FST, which
provides a convenient way to locate a specific node in Python code. Function
arguments are also typed and transformed before they are passed to FREIA
functions.

4.2 Function polymorphism

The SMIL library features polymorphism i.e., methods can have several sig-
natures, which requires some care when transforming. We also chose to keep
real-world SMIL Python as a developer would write it as an input. However,
FREIA is more rigid and needs fully-typed arguments when calling functions.
For example, we use several tricks to deal with optional parameters such as
rewriting Python code on the fly to a canonical form closer to the correspond-
ing FREIA call. For this purpose, the RedBaron ability to access and modify
FST nodes is key.

The following Python code illustrates the polymorphism of the smil.dilate
function regarding its last argument:

1 smil.dilate(imin, imout, 5)
2 smil.dilate(imin, imout, smil.SquSE(5))

– At Line 1, the last parameter is an integer; in this case it denotes a 5-pixel
wide square structuring element.

– At Line 2, the last parameter is a full-fledged structuring element.

The first line is internally modified, using RedBaron abilities to rewrite nodes,
to transform the first line version into the second line version.

4.3 Image expression atomization

The SMIL library massively uses operator overloading, which eases image ma-
nipulation such as arithmetic operations etc. This allows to write expressive
codes, but corresponds internally to nested calls. Our compiler manages this
issue, sometimes by generating intermediates variables. Operands can also be
API calls. Since FREIA calls do not return images pointers, SMIL arithmetic
expressions are decomposed into their atomic three-address code forms. Red-
Baron helps us by taking care of operators precedence. For instance, the fol-
lowing SMIL expression:

1 out = in0 * in1 + ((in2 - in4) | (in5 & in1)
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is transformed in the five following FREIA operator calls, according to the
semantics of the operators:

1 freia_aipo_mul(tmp0, in0, in1);
2 freia_aipo_sub(tmp1, in2, in4);
3 freia_aipo_and(tmp2, in5, in1);
4 freia_aipo_or(tmp3, tmp1, tmp2);
5 freia_aipo_add(out, tmp0, tmp3);

Four intermediate image variables are added.

4.4 Dealing with API variations

SMIL and FREIA, being both mathematical morphology libraries, provide
relatively close APIs: function names and parameters are similar, which eases
the conversion. The remaining differences must nonetheless be taken care of.

4.4.1 Structuring elements

One example of an API variation between SMIL and FREIA is the structuring
element data structure. A structuring element is a data structure describing a
neighborhood for stencils. They are widely used in mathematical morphology
operators.

In FREIA, structuring elements are boolean integer arrays and only take
the first neighbors into account. Operating on a larger neighborhood amounts
then to iterating several times over the operation. In SMIL, the corresponding
data structure is more complex: it involves in particular a std::vec of neigh-
bors and an integer size. When converting a SMIL morphological operator
into FREIA, smiltofreia takes care of the size of the structuring element
to generate a loop over the FREIA operator call. For instance, the following
SMIL dilatation with a structuring element of size 5:

1 smil.dilate(imin, imout, smil.SquSE(5))

is translated into the following FREIA code:

1 #define e0 SMILTOFREIA_SQUSE
2 #define e0_s 5
3 freia_cipo_dilate_generic_8c(imout, imin, e0, e0_s);

Common-used structuring elements are stored in a separate smil-freia.h
compatibility header as constants. Preprocessor macros are used to mimic the
SMIL data structure while keeping track of the structuring element size; this
allows our source-to-source compiler to fully forward-substitute these variables.
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4.4.2 Altering FREIA

During the development of smiltofreia, we came to realize that some trans-
formations would be eased by adapting directly the FREIA API. For example,
part of the FREIA API implies that we always use a default structuring ele-
ment, whereas the SMIL equivalent accepts arbitrary ones. Functions having
the following signature

1 freia_status freia_cipo_dilate(freia_data2d *imout, freia_data2d *imin,
2 uint32_t size) {
3 unsigned int i;
4 int32_t square_strelt[9] = { 1, 1, 1, 1, 1, 1, 1, 1, 1};
5 freia_aipo_dilate_8c(imout, imin, square_strelt);
6 for (i = 1; i < size; i++)
7 freia_aipo_dilate_8c(imout, imout, square_strelt);
8 return FREIA_OK;
9 }

only use square structuring elements (a boolean array of nine ones), but of
arbitrary size: internally, a loop around freia_aipo_dilate is used.

Instead of adding additional constraints into smiltofreia inputs, we can
alter and improve FREIA to support such cases. New functions have thus been
added to FREIA to bring it closer to the SMIL API:

1 void freia_cipo_dilate_generic_8c(freia_data2d *imout,
2 freia_data2d *imin,
3 const int32_t *se,
4 uint32_t size);

These new functions ease the generation of FREIA code from SMIL.
Another example is the smil.mask() function, which had no direct equiv-

alent in FREIA prior to this work. A workaround combining two existing
FREIA functions but adding temporary images would be easier to implement,
although at the expense of the global performance.

5 Performance Evaluation

We evaluated our compilation chain using seven image processing FREIA ap-
plications taken from [14], which we rewrote entirely in idiomatic SMIL C++,
on the one hand, and SMIL Python, on the other hand. We are thus able to
compare the performance of the output of our smiltofreia compiler to the
original application.

We first compare the number of lines of code used for writing these seven
applications in FREIA and in SMIL Python. The results are assembled in Ta-
ble 1, which shows that SMIL applications are on average three times shorter
than FREIA ones, mainly due to the concise syntax and the memory manage-
ment model of Python. The SMIL C++ applications have roughly the same
number of lines of code than their Python counterparts, but the C++ syntax
is more complex and intrusive.
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Apps #LoC Gain
SMIL FREIA

anr999 23 88 3.8
antibio 61 172 2.8
burner 55 140 2.5
deblocking 74 162 2.2
licensePlate 37 202 5.5
retina 40 133 3.3
toggle 40 144 3.6
GMEAN 44.4 144.7 3.2

Table 1: Number of lines of SMIL and FREIA code for seven image processing
applications

5.1 General-purpose CPU

SMIL
app.cpp

SMIL
app.py

FREIA
app.c

SMIL Python
Swig wrapper

FREIA common
runtime

SMIL lib
(C++, OpenMP)

Intel Sandy Bridge Core i7-3820
4 cores, AVX

hardware

applications
runtimes

smiltofreia

Fig. 9: Compiler toolchain diagram

We then compare the execution times of our seven applications, written
in SMIL C++, SMIL Python and FREIA, and the impact of using smilto-
freia to convert SMIL Python applications into FREIA. FREIA applications
can also be further optimized by the source-to-source compiler PIPS. This
optimized version is compared below to the non-optimized one. We executed
these applications using the SMIL backend of FREIA on an Intel Sandy Bridge
Core i7-3820 CPU. Figure 9 represents the simplified software used for this
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evaluation. All applications are in the end calling the SMIL library and are
being executed on the same hardware.

Hand-written
FREIA app

Manual conversion

SMIL Python
app

smiltofreia

Generated
FREIA app

PIPS

init

+ opts

PIPS

init

+ opts

Fig. 10: Evaluation methodology

As shown in Figure 10, FREIA applications are tested with and without
PIPS source-to-source optimizations. Execution times of original and smil-
tofreia-generated applications are similarly compared. The applications are
executed with a fixed number of OpenMP threads equal to the number of
physical cores of the current CPU, which has four of them. Input images are
scaled to a 4K resolution of 3840 × 2160 to ensure correctly fed threads.

Apps
SMIL FREIA

C++ Python Hand-written Generated
init + opts init + opts

anr999 80.9 84.2 81.5 61.8 81.8 63.2
antibio 2795 2800 3470 3540 3500 3500
burner 1220 1210 1612 1630 1630 1585
deblocking 828 852 864 866 860 861
licensePlate 196 198 195 84.3 195 84.3
retina 1010 1020 1110 964 1115 1105
toggle 47.0 47.0 47.4 48.1 46.6 46.6

Table 2: Execution times (ms) of seven image processing image applications
written in SMIL (C++ and Python) and FREIA (Column “Hand-written”).
The SMIL Python applications are converted to FREIA using the smilto-
freia compiler and their execution time is measured as well (Column “Gen-
erated”). FREIA applications are executed with and without compile-time
optimizations.
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The resulting execution times of our seven applications are available in
Table 2. This table represents the figures of the original FREIA applications,
their optimized version using PIPS and their port on SMIL Python. Here,
Column “SMIL” refers to both the C++ and Python applications; Column
“Hand-written” is the original FREIA applications, which have been rewritten
in SMIL and executed in their original form in Sub-column “init” or optimized
by PIPS in Sub-column “+ opts”. Similarly, Column “Generated” represents
the output of our smiltofreia compiler. Two sub-columns, “init” and “+
opts”, show original and optimized execution times.
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Fig. 11: Comparison of the relative execution times of seven image processing
applications written in SMIL using the C++ and the Python API

The three plots in Figure 11, Figure 12 and Figure 13 serve as a visual
representation of the data in Table 2. Figure 11 compares the execution times
of SMIL C++ and SMIL Python applications, and shows a minimal overhead,
amounting to less than 2%, when the Python language is used. The Python
wrapper has therefore little to no impact on the global performance of our
applications. SMIL applications in Python are as fast as SMIL C++ ones,
while benefiting from the Python syntax.

We then compare the execution times of our SMIL Python applications,
before and after being converted to FREIA by our smiltofreia compiler. We
also tested applying our PIPS optimizing compiler on the generated FREIA
code. Results are displayed in Figure 12. The “anr999”, “deblocking”, “li-
censePlate”, and “toggle” applications yield similar performance before and
after being converted into FREIA. Source-to-source optimizations performed
by PIPS have a major impact on the execution times of the “anr999” and “li-
censePlate” applications, especially by removing unnecessary copies between
operations and merging identical computation sequences. The “antibio” and
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Fig. 12: Comparison of the relative execution times of seven image processing
applications written in SMIL Python, executed using the Python interpreter,
then converted into FREIA and executed with and without compile-time op-
timizations

“burner” FREIA applications are somewhat around 30% slower than their
SMIL versions. This stems from the use of a peculiar mathematical morphol-
ogy operator called geodesic reconstruct by closing, which has a coarse-grain
implementation in SMIL, whereas in FREIA it is decomposed into several
other simpler operators. The “retina” application is also affected by this issue.
The SMIL implementation uses complex data structures, such as hierarchical
queues, which are quite efficient on large images, as in the present case. Imple-
menting algebraic optimizations [37, 38] to detect this coarse-grain operator
in a sequence of FREIA atomic operators and replace it by the correspond-
ing SMIL call can help to reduce this slowdown. On average, these result show
that FREIA generated code is about 10% slower than SMIL Python code, al-
though applying PIPS optimizations can lead to 10% faster code.

Figure 13 compares the execution times of the original FREIA applica-
tions to those generated from Python by smiltofreia. Generated FREIA
applications perform on average as well as original ones. As seen in the pre-
vious Figure, applying PIPS optimizations leads to increased performance in
the “anr999” and the “licensePlate” applications in both cases, whereas the
generated version of the “retina” application does not seem to benefit from it.
This can be explained by the introduction of compatibility code for bridging
the gap between SMIL and FREIA, which in this case slows down the gen-
erated code. To mitigate these slowdowns, a small speedup of the generated
version of the “toggle” application can be linked to the use of newly introduced
FREIA functions, such as freia_aipo_mask, which allow more direct calls
to SMIL functions in the FREIA API. We show through these figures that
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Fig. 13: Comparison of the relative execution times of seven image processing
applications written in SMIL Python and converted into FREIA, and genuine
hand-written FREIA applications, executed with and without compile-time
optimizations

smiltofreia-generated FREIA applications perform very closely to original
FREIA applications, with or without PIPS optimizations, the average execu-
tion times ratio amounting to less than 1% in both cases.

5.2 Specific hardware

Apps
SPoC Terapix

Hand-written Generated Hand-written Generated
init + opts init + opts init + opts init + opts

anr999 1.8 0.1 1.8 0.1 0.7 0.4 0.7 0.4
antibio 46.4 5.1 46.4 5.2 17.9 7.5 17.9 9.8
burner 28.9 2.1 28.9 3.6 11.7 8.2 11.6 8.3
deblocking 2.0 0.9 2.4 1.1 0.9 0.3 1.0 0.3
licensePlate 7.5 0.4 7.5 0.4 1.6 1.2 1.6 1.2
retina 16.8 1.0 16.7 1.6 6.6 3.5 6.6 3.5
toggle 0.8 0.4 0.9 0.4 0.4 0.1 0.4 0.3

Table 3: Execution times (s) of seven image processing image applications
written in SMIL Python and FREIA (Column “Hand-written”) and executed
on the SPoC and Terapix image processing hardware accelerators. The SMIL
Python applications are converted to FREIA using the smiltofreia compiler
and their execution time is measured as well (Column “Generated”). All ap-
plications are executed with and without compile-time optimizations.



A Dynamic to Static DSL Compiler for Image Processing Applications 19

an
r99

9

an
tib

io

bu
rn

er

de
blo

ck
ing

lic
en

seP
lat

e
ret

ina
tog

gle

GM
EAN

0

0.5

1

1.5

R
el

at
iv

e
ex

ec
ut

io
n

ti
m

e Hand-written FREIA SPoC Hand + opts
Generated FREIA SPoC Gen + opts

Fig. 14: Relative execution times of hand-written FREIA C and smiltofreia-
generated FREIA applications executed on the SPoC embedded accelerator,
with and without PIPS optimizations

Converting SMIL Python applications to FREIA is also a way to auto-
matically port Python applications onto embedded accelerators dedicated to
image processing. Thanks to FREIA portability, we executed our image pro-
cessing applications onto two hardware accelerators implemented on FPGA:
SPoC [22] and Terapix [23]. There is no Python interpreter available for these
accelerators, nor any SMIL implementation, which prevent SMIL applications
to be directly executed on these platforms. In Figure 14 and Figure 15, we
compare the execution times of the original hand-written FREIA applications
to the SMIL Python ones after being converted through smiltofreia. Raw
results are also available in Table 3.

Results show that generated FREIA code performs identically to hand-
written code on these accelerators, except for the “deblocking” and “toggle”
applications. The corresponding slowdown stems from the original conversion
of these applications from FREIA to SMIL Python: a FREIA operator that
was not implemented in SMIL has been replaced by a combination of two SMIL
operators. smiltofreia does not yet look for such a combination to regenerate
the original FREIA operator. Due to these two applications, smiltofreia-
generated code performs on average 4% slower on SPoC and 3% slower on
Terapix.

We also studied the impact of PIPS optimizations and target-specific code-
generation in both cases. These optimizations are a bit less effective for smil-
tofreia-generated code than for hand-written FREIA. One of the reasons of
this slowdown again comes from the original rewriting of FREIA applications
to SMIL Python. We translated FREIA application functions into idiomatic
Python, and returned the produced image pointers instead of passing them
by reference, thus preventing PIPS from performing some useful operator ag-
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Fig. 15: Relative execution times of hand-written FREIA C and smiltofreia-
generated FREIA applications executed on the Terapix embedded accelerator,
with and without PIPS optimizations

gregation. These slowdowns amount to 20% for SPoC and 19% for Terapix,
which is quite acceptable, considering the average speedups of 7.2× for SPoC
and 1.8× for Terapix given by PIPS optimizations. Further improvements of
smiltofreia-generated applications may be attainable by generating more
idiomatic C code.

These tables and plots show that SMIL applications easily benefit from
our FREIA compilation toolchain with minimal performance impairment com-
pared to hand-written code. What’s more, SMIL applications can now directly
target the whole set of FREIA hardware backends (FPGAs, manycore and
GPUs) without modifying the input code. Improved performance can still be
achievable in the current case by using PIPS not only to clean the generated
FREIA applications, but also by regenerating aggregated SMIL C++ calls,
hence getting rid of the FREIA API and the C wrapper intermediary layers.

6 Related Work

Python is a versatile general-purpose programming language especially used
for fast application prototyping. However, the Python interpreter performance
pales compared to native compiled languages such as C or C++. Other re-
search projects use subsets of Python as inputs to accelerate applications on
several hardware targets.

Cython [31], which we already described in subsection 3.2, is both an inter-
facing tool between Python and C and a Python-to-C compiler. Yet Cython
output is overly complex and implements parts of the Python interpreter.
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Pythran [39] is a Python-to-C++ compiler for scientific programs targeting
multicore CPUs with SIMD extensions. Pythran generates C++ source code or
shared libraries from Python code, which can be reused directly in a Python
application.

Numba [40] is a Python-to-LLVM JIT compiler dedicated to accelerating
Python code, but still needs the Python interpreter to work. Similarly, Para-
keet [41] is a JIT compiler to parallelize Python code on CPUs or GPUs.

Theano [42] and Tensorflow [43] are DSL compilers for Python linear alge-
bra applications for deep learning which generate optimized C++ or CUDA.
Image processing compilers such as Halide [44] and PolyMage [45] also aim at
performing domain-specific optimizations while still offering ease of program-
ming through high-level DSLs. While PolyMage is still limited to CPU exe-
cution, Halide is able to generate OpenCL and CUDA code for running onto
GPUs.

7 Conclusion

We study in this paper a static to dynamic DSL compilation scheme that pre-
serves programmability. As a use case, we developed a fully-functional imple-
mentation, called smiltofreia, that converts image processing applications
written in a high-level DSL running on a small set of hardware targets to a
lower-level DSL that supports a greater number of backends. Our proposed
solution relies on transformations on an AST-like data structure of the origi-
nal application for generating corresponding calls and variable declarations in
the output language. Since the source DSL is embedded in Python, and the
target DSL is embedded in C, typing and polymorphism have been taken care
of. Experimental results on a set of seven image processing applications show
that generated code is competitive with its input in terms of execution times.
Moreover, additional target-specific optimization, such as these provided by
the source-to-source compiler PIPS, can lead to improved performance for
target DSL applications.

Acknowledgments: This work was funded by Investissements d’Avenir as
part of the CAPACITES project.

References

[1] OpenCV: Open Source Computer Vision. url: http://opencv.org/.
[2] GEGL: GEneric Graphics Library. url: http://www.gegl.org/.
[3] ImageMagick: Convert, Edit, Or Compose Bitmap Images. url: https:

//www.imagemagick.org/script/index.php.
[4] NumPy: scientific computing with Python. url: http://www.numpy.

org/.
[5] Is Python faster and lighter than C++? url: https://stackoverflow.

com/questions/801657/is-python-faster-and-lighter-than-c/.

http://opencv.org/
http://www.gegl.org/
https://www.imagemagick.org/script/index.php
https://www.imagemagick.org/script/index.php
http://www.numpy.org/
http://www.numpy.org/
https://stackoverflow.com/questions/801657/is-python-faster-and-lighter-than-c/
https://stackoverflow.com/questions/801657/is-python-faster-and-lighter-than-c/


22 Pierre Guillou et al.

[6] Is C/C++ really faster than Python? url: https://news.ycombinator.
com/item?id=9753366.

[7] CPython Global Interpreter Lock. url: https://wiki.python.org/
moin/GlobalInterpreterLock.

[8] Herb Sutter. Welcome to the Jungle. 2011. url: http://herbsutter.
com/welcome-to-the-jungle/.

[9] OpenMP: Open Multi-Processing. url: http://openmp.org/wp/.
[10] Khronos Group. OpenCL: The open standard for parallel programming

of heterogeneous systems. url: https://www.khronos.org/opencl/.
[11] The MPI Forum. The Message Passing Interface. url: http://www.

mpi-forum.org/.
[12] Matthieu Faessel. SMIL: Simple (but efficient) Morphological Image Li-

brary. 2011. url: http://smil.cmm.mines-paristech.fr/.
[13] Michel Bilodeau et al. FREIA: FRamework for Embedded Image Ap-

plications. French ANR-funded project with ARMINES (CMM, CRI),
THALES (TRT) and Télécom Bretagne. 2008.

[14] Fabien Coelho and François Irigoin. “API Compilation for Image Hard-
ware Accelerators”. In: ACM Transactions on Architecture and Code
Optimization (Jan. 2013).

[15] Jean Serra. Image analysis and mathematical morphology. London New
York: Academic Press, 1982. isbn: 0126372411.

[16] Edward Dougherty. An introduction to morphological image processing.
Bellingham, Wash., USA: SPIE Optical Engineering Press, 1992. isbn:
081940845X.

[17] Matthieu Faessel and Michel Bilodeau. “SMIL: Simple Morphological
Image Library”. In: Séminaire Performance et Généricité, LRDE. Ville-
juif, France, Mar. 2013. url: https://hal-mines-paristech.archives-
ouvertes.fr/hal-00836117.

[18] Auto-vectorization in GCC. url: https://gcc.gnu.org/projects/
tree-ssa/vectorization.html.

[19] Swig: Simplified Wrapper and Interface Generator. url: http://www.
swig.org/.

[20] CMake: Build, Test and Package Your Software. url: https://cmake.
org/.

[21] Christophe Clienti. Fulguro image processing library. Source Forge. 2008.
[22] Christophe Clienti, Serge Beucher, and Michel Bilodeau. “A System On

Chip Dedicated To Pipeline Neighborhood Processing For Mathematical
Morphology”. In: European Signal Processing Conference. Aug. 2008.

[23] Philippe Bonnot et al. “Definition and SIMD Implementation of a Multi-
Processing Architecture Approach on FPGA”. In: Design Automation
and Test in Europe. IEEE, Dec. 2008.

[24] Benoit Dupont de Dinechin, Renaud Sirdey, and Thierry Goubier. “Ex-
tended Cyclostatic Dataflow Program Compilation and Execution for
an Integrated Manycore Processor”. In: Procedia Computer Science 18.
2013.

https://news.ycombinator.com/item?id=9753366
https://news.ycombinator.com/item?id=9753366
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
http://herbsutter.com/welcome-to-the-jungle/
http://herbsutter.com/welcome-to-the-jungle/
http://openmp.org/wp/
https://www.khronos.org/opencl/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://smil.cmm.mines-paristech.fr/
https://hal-mines-paristech.archives-ouvertes.fr/hal-00836117
https://hal-mines-paristech.archives-ouvertes.fr/hal-00836117
https://gcc.gnu.org/projects/tree-ssa/vectorization.html
https://gcc.gnu.org/projects/tree-ssa/vectorization.html
http://www.swig.org/
http://www.swig.org/
https://cmake.org/
https://cmake.org/


A Dynamic to Static DSL Compiler for Image Processing Applications 23

[25] Thierry Goubier et al. “ΣC: A Programming Model and Language for
Embedded Manycores”. In: 2011.

[26] Pascal Aubry et al. “Extended Cyclostatic Dataflow Program Compi-
lation and Execution for an Integrated Manycore Processor.” In: ICCS.
Ed. by Vassil N. Alexandrov et al. Vol. 18. Procedia Computer Science.
Elsevier, 2013, pp. 1624–1633.

[27] François Irigoin, Pierre Jouvelot, and Rémi Triolet. “Semantical inter-
procedural parallelization: an overview of the PIPS project”. en. In: Pro-
ceedings of ICS 1991. ACM Press, 1991, pp. 244–251. isbn: 0897914341.
doi: 10 . 1145 / 109025 . 109086. url: http : / / portal . acm . org /
citation.cfm?doid=109025.109086 (visited on 05/21/2014).

[28] Pierre Guillou, Fabien Coelho, and François Irigoin. “Automatic Streamiza-
tion of Image Processing Applications”. In: Languages and Compilers for
Parallel Computing. 2014.

[29] Redbaron: Bottom-up approach to refactoring in python. url: http :
//github.com/PyCQA/redbaron.

[30] Laurent Peuch. RedBaron, une approche bottom-up au refactoring en
Python. Oct. 2014.

[31] Cython: C-Extensions for Python. url: http://cython.org/.
[32] S. Behnel et al. “Cython: The Best of Both Worlds”. In: Computing in

Science Engineering 13.2 (Mar. 2011), pp. 31–39. issn: 1521-9615. doi:
10.1109/MCSE.2010.118.

[33] inspect — Inspect live objects. url: https://docs.python.org/3/
library/inspect.html.

[34] ast — Abstract Syntax Trees. url: https://docs.python.org/3/
library/ast.html.

[35] Baron: a Full Syntax Tree library for Python. url: https://github.
com/PyCQA/baron.

[36] clang-format:A tool to format C/C++/Java/JavaScript/Objective-C/Pro-
tobuf code. url: http://clang.llvm.org/docs/ClangFormat.html.

[37] Julien Zory. “Contribution à l’optimisation de programmes scientifiques”.
PhD thesis. MINES ParisTech, Dec. 1999.

[38] Julien Zory and Fabien Coelho. “Using Algebraic Transformations to
Optimize Expression Evaluation in Scientific Codes”. In: PACT: Paral-
lel Architectures and Compilation Techniques. Paris: IEEE, Dec. 1998,
pp. 376–384.

[39] Serge Guelton et al. “Pythran: enabling static optimization of scientific
Python programs”. In: Computational Science & Discovery (2015).

[40] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. “Numba: A LLVM-
based Python JIT Compiler”. In: Proceedings of the Second Workshop on
the LLVM Compiler Infrastructure in HPC. LLVM ’15. Austin, Texas:
ACM, 2015, 7:1–7:6. isbn: 978-1-4503-4005-2. doi: 10.1145/2833157.
2833162. url: http://doi.acm.org/10.1145/2833157.2833162.

[41] Alex Rubinsteyn et al. “Parakeet: A Just-In-Time Parallel Accelerator
for Python”. In: Berkeley, CA: USENIX, 2012.

https://doi.org/10.1145/109025.109086
http://portal.acm.org/citation.cfm?doid=109025.109086
http://portal.acm.org/citation.cfm?doid=109025.109086
http://github.com/PyCQA/redbaron
http://github.com/PyCQA/redbaron
http://cython.org/
https://doi.org/10.1109/MCSE.2010.118
https://docs.python.org/3/library/inspect.html
https://docs.python.org/3/library/inspect.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://github.com/PyCQA/baron
https://github.com/PyCQA/baron
http://clang.llvm.org/docs/ClangFormat.html
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
http://doi.acm.org/10.1145/2833157.2833162


24 Pierre Guillou et al.

[42] James Bergstra et al. “Theano: a CPU and GPU Math Expression Com-
piler”. In: Python for Scientific Computing Conference (SciPy). Austin,
TX, June 2010.

[43] M. Abadi et al. “TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Distributed Systems”. In: ArXiv e-prints (Mar. 2016). arXiv:
1603.04467 [cs.DC].

[44] Jonathan Ragan-Kelley et al. “Halide: A Language and Compiler for Op-
timizing Parallelism, Locality, and Recomputation in Image Processing
Pipelines”. In: PLDI 2013 (June 2013), p. 12.

[45] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. “PolyMage:
Automatic Optimization for Image Processing Pipelines”. en. In: ACM
Press, 2015, pp. 429–443. isbn: 9781450328357. doi: 10.1145/2694344.
2694364. url: http://dl.acm.org/citation.cfm?doid=2694344.
2694364.

http://arxiv.org/abs/1603.04467
https://doi.org/10.1145/2694344.2694364
https://doi.org/10.1145/2694344.2694364
http://dl.acm.org/citation.cfm?doid=2694344.2694364
http://dl.acm.org/citation.cfm?doid=2694344.2694364

	Introduction
	Context
	Manipulating and accelerating Python code
	The smiltofreia SMIL Python to FREIA C compiler
	Performance Evaluation
	Related Work
	Conclusion

