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High-level interpreted programming languages, such as Python, are widely used because of their concise syntax and dynamic type system, which allow programmers to efficiently develop applications. However, they cannot offer the same guarantees provided by lower-level languages such as C in terms of portability on embedded systems. Is it possible for dynamic applications to benefit from lower-level compilation toolchain in order to increase their portability onto specialized hardware targets? We present in this paper (1) a methodology to convert a dynamic Domain-Specific Language (DSL) into a static one that preserves programmability, (2) a working implementation that takes care of types, memory allocation, polymorphism and API adaptation between the two DSLs, (3) and experimental results on portability and performance that show the efficiency of our approach. We illustrate our methodology with two image processing libraries: SMIL and FREIA. The SMIL library is a C++ image processing library offering ease of programming with a Python wrapper. However, SMIL applications also have to be executed on embedded platforms such as FPGAs on which a Python interpreter is not available. The generic answer to such an issue is to re-code the original Python applications in C or C++, which will be then optimized for every hardware target, or to try to compile Python into native code using tools such as Cython. The approach we suggest here is to ease portability of applications written in a DSL embedded in C (the FREIA API) by using specific optimizations such as image expressions evaluation, removal of temporary variables or image tiling.

Introduction

Computer vision is now a fast-growing field of research and is going to play a large role in everybody's life in the near future. Augmented reality or autonomous vehicles such as drones or cars are showing more and more promises and may be available to consumers in the next decade. Figure 1 depicts an image processing application that detects macular degeneration on a retina, speeding up medical diagnoses. To support this innovative field, new image processing libraries are being developed and compete in terms of performance and programmability. Among them, OpenCV [START_REF]OpenCV: Open Source Computer Vision[END_REF], GEGL [START_REF] Irigoin | GEneric Graphics Library[END_REF], ImageMagick [START_REF]Or Compose Bitmap Images[END_REF] or NumPy [START_REF]NumPy: scientific computing with Python[END_REF] are the most well known. These libraries often provide APIs in high-level programming languages, such as Python, in order to offer good programmability. Python is a general-purpose programming language with several key features improving programmability: high-level abstractions, dynamic type system, simple memory management with garbage collection and concise and easy-to-learn syntax. It can support several programming paradigms, such as imperative, functional or object-oriented programming. However, Python programs are limited by the interpreter, which causes slower executions and needs more memory than native languages such as C or C++ [START_REF]Is Python faster and lighter than C++?[END_REF][START_REF]Is C/C++ really faster than Python[END_REF]. The interpreter also limits the parallelism of Python programs through the Global Interpreter Lock [START_REF]CPython Global Interpreter Lock[END_REF], which prevents using more than one thread. Fortunately, Python can easily be interfaced with low-level C or C++ code through wrappers to ensure native performance on parallel architectures. As a consequence, image processing libraries are often written C or C++, and provide Python bindings to increase programmability. However, in our hardware jungle era [START_REF] Sutter | Welcome to the Jungle[END_REF], substantial efforts have to be made to have those libraries efficiently running onto all kinds of modern accelerators, such as GPUs, FPGAs or many-core processors. Production compilers are not yet able to target the whole range of today's hardware: it is up to developers to provide an optimized version of their library onto a specific hardware. Programming models such as OpenMP [START_REF]OpenMP: Open Multi-Processing[END_REF] for shared memory, OpenCL [START_REF] Group | OpenCL: The open standard for parallel programming of heterogeneous systems[END_REF] for heterogeneous platforms or MPI [START_REF]The Message Passing Interface[END_REF] for distributed computing can help target a class of accelerators at once, but further optimizations are often hardwarespecific.

New compiler techniques must arise to support complex image processing applications without sacrificing programmability. This paper focuses on compiling high-level interpreted DSLs into lower-level but more portable ones. We validate our approach with two image processing interfaces considered as DSLs, SMIL [START_REF] Faessel | SMIL: Simple (but efficient) Morphological Image Library[END_REF] and FREIA [START_REF] Bilodeau | FREIA: FRamework for Embedded Image Applications[END_REF][START_REF] Coelho | API Compilation for Image Hardware Accelerators[END_REF], supporting each a different set of hardware targets and providing different levels of programmability. We evaluate our methodology on a set of seven image processing applications.

Context

Mathematical Morphology is an image processing theory based on lattice theory initiated in the 1960s [START_REF] Serra | Image analysis and mathematical morphology[END_REF][START_REF] Dougherty | An introduction to morphological image processing[END_REF]. Common applications of this theory consist in detecting geometric structures in images, or partitioning an image in regions. Several software libraries have been developed since the inception of this theory, each providing better performance or usability. SMIL and FREIA are two of them. good performance, using loop auto-vectorization through GCC compilation [START_REF]Auto-vectorization in GCC[END_REF] and OpenMP parallelization [START_REF]OpenMP: Open Multi-Processing[END_REF];

The SMIL library

ease of programming, through several Swig [START_REF]Swig: Simplified Wrapper and Interface Generator[END_REF] auto-generated interfaces to higher-level programming languages such as Python; portability on several CPUs and operating systems, using the CMake [START_REF]CMake: Build, Test and Package Your Software[END_REF] compilation toolchain; maintainability and extensibility, through C++ templates and functors. Figure 2 depicts an example of a SMIL script using the Python interface. This script reads an image from a file, performs an morphological dilatation on this input image and then saves the resulting image. FREIA (Framework for Embedded Image Applications) [START_REF] Bilodeau | FREIA: FRamework for Embedded Image Applications[END_REF] is a C image processing framework. It provides a C API divided into elementary and composed image operators. This API abstracts several implementations targeting different categories of hardware accelerators :

The FREIA framework

1 #include "freia.h"
multicore and vector CPUs with SMIL (through an intermediate C wrapper around SMIL C++ code); -CPUs with vector extensions through Fulguro [START_REF] Clienti | Fulguro image processing library[END_REF]; -FPGAs with the SPoC [START_REF] Clienti | A System On Chip Dedicated To Pipeline Neighborhood Processing For Mathematical Morphology[END_REF] and Terapix [START_REF] Bonnot | Definition and SIMD Implementation of a Multi-Processing Architecture Approach on FPGA[END_REF] backends; manycore CPUs such as the Kalray MPPA [START_REF] Dupont De Dinechin | Extended Cyclostatic Dataflow Program Compilation and Execution for an Integrated Manycore Processor[END_REF] with Sigma-C [START_REF] Goubier | ΣC: A Programming Model and Language for Embedded Manycores[END_REF][START_REF] Aubry | Extended Cyclostatic Dataflow Program Compilation and Execution for an Integrated Manycore Processor[END_REF], a dataflow programming language; -GPUs using OpenCL [START_REF] Group | OpenCL: The open standard for parallel programming of heterogeneous systems[END_REF].

Used in combination with our in-house C source-to-source compiler framework PIPS [START_REF] Irigoin | Semantical interprocedural parallelization: an overview of the PIPS project[END_REF], FREIA applications can be further optimized at the image operator level for the designated hardware target [START_REF] Coelho | API Compilation for Image Hardware Accelerators[END_REF][START_REF] Guillou | Automatic Streamization of Image Processing Applications[END_REF]. Performed image optimizations include complex operator unfolding, temporary variable elimination, common sub-expression elimination, backward and forward copy propagation, operator aggregation, and target-specific code generation.

Figure 3 represents an abridged version of a morphological dilatation using the FREIA API. In this example, image structures must be explicitly allocated before use and freed afterwards.

Bridging the gap

The SMIL library supports several CPU targets using the GCC compiler and the CMake toolchain. Nevertheless, porting this image processing library on specific hardware accelerators such as GPUs to take advantage of heterogeneous architectures can be a hard task. Meanwhile, the FREIA framework supports a wide range of hardware accelerators, but fails in comparison to offer easy programmability: users still have to manage memory and write C code. Several solutions are possible to reconciliate SMIL programmability and FREIA set of hardware targets. A total port of SMIL on every FREIA target is a hard and long task, and would not reuse work already done for FREIA. One can try to re-implement the SMIL API using FREIA, but this solution does not allow our C compiler PIPS to perform its optimizations. Allowing C-and Fortran-supporting PIPS to handle C++ source code to regenerate directly target-optimized FREIA code is also a lengthy process, and although it can yield some long-term benefits, it is not in the scope of this project.

In this paper, we present smiltofreia, a source-to-source compiler designed to convert SMIL applications written using the Python interface into FREIA C. Thus a SMIL application can be automatically ported to the FREIAsupported hardware targets and take advantage of the PIPS source-to-source compiler optimizations. Figure 4 represents our compilation chain highlighting the benefits of smiltofreia in terms of portability.

Manipulating and accelerating Python code

In order to analyze and convert SMIL Python applications into FREIA C, we tried two Python tools: RedBaron [START_REF]Redbaron: Bottom-up approach to refactoring in python[END_REF][START_REF] Peuch | une approche bottom-up au refactoring en Python[END_REF], a Python refactoring framework, and Cython [START_REF]Cython: C-Extensions for Python[END_REF][START_REF] Behnel | Cython: The Best of Both Worlds[END_REF], a Python-to-C compiler.

The Python standard library itself provides low-level tools to parse and query Python code. Among them, inspect [START_REF]inspect -Inspect live objects[END_REF], which can be used to inspect and modify running Python code, and ast [START_REF]ast -Abstract Syntax Trees[END_REF], for manipulating Python code Abstract Syntax Trees.

RedBaron, a Python refactoring tool

We built our smiltofreia compiler on top of the RedBaron refactoring tool. RedBaron is a high-level Python interface allowing developers to easily refactor their Python code without losing information. It is based on the Baron [START_REF] Baron | a Full Syntax Tree library for Python[END_REF] FST (Full Syntax Tree) which, unlike a traditional AST, does not drop comments and formatting data. As a consequence, regenerating source code from a FST is an invariant transformation:

fst_to_code(code_to_fst(source_code)) == source_code
For instance, the RedBaron FST of the SMIL dilatation call smil.dilate(imin, imout) from Figure 2 is represented in Figure 5. Note that the formatting information (line breaks and spaces) separating the words is kept in this data structure in order to regenerate the very same source code.

RedBaron provides an efficient and intuitive object-oriented interface to query and manipulate this FST. Top-level nodes, corresponding to actual lines of codes, can be accessed and modified through array subscripts and assignments. Transforming the dilatation in the FST fst of Figure 2, Line 4, into an image copy is as simple as rewriting the content of the corresponding node

fst[3] = "imout = imin"
The main purpose of RedBaron is to help refactoring Python code, such as generating classes, methods, or renaming variables or functions in one or several files. A canonical example of this usage can be found in Figure 6: variable imin is here renamed in in.

Compared to RedBaron, the Python standard module ast provides a clumsier interface and drops some essential formatting information, useful when refactoring.

{"type": "atomtrailers", "value": [ {"type": "name", "value": "smil"}, {"type": "dot", "first_formatting": [],

"second_formatting": []}, {"type": "name", "value": "dilate"}, {"first_formatting": [], "third_formatting": [],

"type": "call", "fourth_formatting": [],

"second_formatting": [],

"value": [ {"type": "call_argument", "first_formatting": [],

"second_formatting": [], "target": {}, "value": {"type": "name", "value": "imin"}}, {"type": "comma", "first_formatting": [],

"second_formatting": [{"type": "space", "value": " "}]}, {"type": "call_argument", "first_formatting": [],

"second_formatting": [], "target": {}, "value": {"type": "name", "value": "imout"}} ]}]} We investigated the use of Cython, a Python-to-C compiler, for generating FREIA code from our SMIL Python applications. We wrapped a subset of the FREIA API in Python using the Cython extension system, and we used RedBaron to convert SMIL applications into FREIA Python. The Cython compiler then generates a C source file from this Python code. Figure 7 shows the output of the Cython Python-to-C compiler around the FREIA dilatation call.

However, the generated source code is too low-level, and thus too far from FREIA, for our source-to-source framework PIPS to perform additional optimizations. Cython introduces a lot of new variables and functions, and uses opaque data structures, which makes the code a lot more complex to analyze. As a consequence, PIPS regeneration of optimized source code for the specific hardware targets could not work. Moreover, the generated code depends on an external library implementing a Python run-time environment, which may not have been ported on every FREIA hardware target. The Cython approach, which works well for interfacing Python and C code and hence accelerating Instead of using Cython for generating low-level C from Python, we developed an in-house Python-to-C compiler for SMIL applications. Our compiler, named smiltofreia, generates directly FREIA C code from SMIL Python applications. smiltofreia iterates over the RedBaron FST of a SMIL application and transforms each node into a corresponding C statement. An example of this compiler output is available in Figure 8. Some compatibility code and wrapper functions have been placed in a dedicated smil-freia.h header file, which explains the main differences with the original FREIA dilatation code in Figure 3. Algorithm 1 presents a broad overview of the workings of our compiler. The RedBaron tool is used to get the Full Syntax Tree of the input code. Our compiler operates on the nodes of this FST to type variables and generate C code. A pre-processing pass can generate a missing def main() function around the input code instructions as a normalized entry point for our applications. To prettify the generated C code, an optional application of the formatting tool clang-format [START_REF]clang-format:A tool to format C/C++/Java/JavaScript/Objective-C/Protobuf code[END_REF] is performed.

Algorithm 1: General description of a smiltofreia execution over a SMIL Python application

A more in-depth description of the main routine of our compiler is available in Algorithm 2. This algorithm shows the recursive approach taken to generate the C code corresponding to a FST node. Each FST node is processed according to its RedBaron type, from top-level nodes, which represent Python module-level constructs such as classes, function declarations, global variable declarations or instructions, to bottom-level ones (identifiers, operators, constants or formatting data). For instance, dealing with a Python instruction block consists in processing each sub-node.

Python is a dynamic language with a garbage collector dealing with memory allocation. A contrario, C is lower-level: variables must be declared; memory management is done by hand; and heap-allocated memory must be freed at the end of its use. Besides, SMIL and FREIA API, although close, can differ. Our compiler addresses these differences to generate code that respects the C specification and the semantics of the source SMIL application. As a consequence, our compiler input is constrained: only pure SMIL Python code without other Python modules is supported, and the type of all variables must be statically inferable.

Typing

Our compiler is focused on a subset of the SMIL API that has an equivalent in FREIA, and must also deal with issues arising when trying to generate static code from a dynamic one. We wrote a defensive implementation that puts programming constraints on the Python input code. The goal is to ensure that a successful transformation will produce a well-typed and well-memorymanaged C code. The smiltofreia compiler knows both SMIL and FREIA APIs and the correspondence between their functions' signatures. Variables are typed at first initialization and cannot be mutated. The compiler fails otherwise with a consistent error message, thanks to RedBaron FST, which provides a convenient way to locate a specific node in Python code. Function arguments are also typed and transformed before they are passed to FREIA functions.

Function polymorphism

The SMIL library features polymorphism i.e., methods can have several signatures, which requires some care when transforming. We also chose to keep real-world SMIL Python as a developer would write it as an input. However, FREIA is more rigid and needs fully-typed arguments when calling functions.

For example, we use several tricks to deal with optional parameters such as rewriting Python code on the fly to a canonical form closer to the corresponding FREIA call. For this purpose, the RedBaron ability to access and modify FST nodes is key.

The following Python code illustrates the polymorphism of the smil.dilate function regarding its last argument:

smil.dilate(imin, imout, 5) smil.dilate(imin, imout, smil.SquSE( 5))

-At Line 1, the last parameter is an integer; in this case it denotes a 5-pixel wide square structuring element. -At Line 2, the last parameter is a full-fledged structuring element.

The first line is internally modified, using RedBaron abilities to rewrite nodes, to transform the first line version into the second line version.

Image expression atomization

The SMIL library massively uses operator overloading, which eases image manipulation such as arithmetic operations etc. This allows to write expressive codes, but corresponds internally to nested calls. Our compiler manages this issue, sometimes by generating intermediates variables. Operands can also be API calls. Since FREIA calls do not return images pointers, SMIL arithmetic expressions are decomposed into their atomic three-address code forms. Red-Baron helps us by taking care of operators precedence. For instance, the following SMIL expression:

out = in0 * in1 + ((in2 -in4) | (in5 & in1)
is transformed in the five following FREIA operator calls, according to the semantics of the operators: freia_aipo_mul(tmp0, in0, in1); freia_aipo_sub(tmp1, in2, in4); freia_aipo_and(tmp2, in5, in1); freia_aipo_or(tmp3, tmp1, tmp2); freia_aipo_add(out, tmp0, tmp3); Four intermediate image variables are added.

Dealing with API variations

SMIL and FREIA, being both mathematical morphology libraries, provide relatively close APIs: function names and parameters are similar, which eases the conversion. The remaining differences must nonetheless be taken care of.

Structuring elements

One example of an API variation between SMIL and FREIA is the structuring element data structure. A structuring element is a data structure describing a neighborhood for stencils. They are widely used in mathematical morphology operators.

In FREIA, structuring elements are boolean integer arrays and only take the first neighbors into account. Operating on a larger neighborhood amounts then to iterating several times over the operation. In SMIL, the corresponding data structure is more complex: it involves in particular a std::vec of neighbors and an integer size. When converting a SMIL morphological operator into FREIA, smiltofreia takes care of the size of the structuring element to generate a loop over the FREIA operator call. For instance, the following SMIL dilatation with a structuring element of size 5: Common-used structuring elements are stored in a separate smil-freia.h compatibility header as constants. Preprocessor macros are used to mimic the SMIL data structure while keeping track of the structuring element size; this allows our source-to-source compiler to fully forward-substitute these variables.

Altering FREIA

During the development of smiltofreia, we came to realize that some transformations would be eased by adapting directly the FREIA API. For example, part of the FREIA API implies that we always use a default structuring element, whereas the SMIL equivalent accepts arbitrary ones. Functions having the following signature freia_status freia_cipo_dilate(freia_data2d *imout, freia_data2d *imin, These new functions ease the generation of FREIA code from SMIL.

uint32_t size) { unsigned int i; int32_t square_strelt[9] = { 1, 1, 1, 1, 1, 1,
Another example is the smil.mask() function, which had no direct equivalent in FREIA prior to this work. A workaround combining two existing FREIA functions but adding temporary images would be easier to implement, although at the expense of the global performance.

Performance Evaluation

We evaluated our compilation chain using seven image processing FREIA applications taken from [START_REF] Coelho | API Compilation for Image Hardware Accelerators[END_REF], which we rewrote entirely in idiomatic SMIL C++, on the one hand, and SMIL Python, on the other hand. We are thus able to compare the performance of the output of our smiltofreia compiler to the original application.

We first compare the number of lines of code used for writing these seven applications in FREIA and in SMIL Python. The results are assembled in Table 1, which shows that SMIL applications are on average three times shorter than FREIA ones, mainly due to the concise syntax and the memory management model of Python. The SMIL C++ applications have roughly the same number of lines of code than their Python counterparts, but the C++ syntax is more complex and intrusive. We then compare the execution times of our seven applications, written in SMIL C++, SMIL Python and FREIA, and the impact of using smiltofreia to convert SMIL Python applications into FREIA. FREIA applications can also be further optimized by the source-to-source compiler PIPS. This optimized version is compared below to the non-optimized one. We executed these applications using the SMIL backend of FREIA on an Intel Sandy Bridge Core i7-3820 CPU. Figure 9 represents the simplified software used for this evaluation. All applications are in the end calling the SMIL library and are being executed on the same hardware. As shown in Figure 10, FREIA applications are tested with and without PIPS source-to-source optimizations. Execution times of original and smiltofreia-generated applications are similarly compared. The applications are executed with a fixed number of OpenMP threads equal to the number of physical cores of the current CPU, which has four of them. Input images are scaled to a 4K resolution of 3840 × 2160 to ensure correctly fed threads. The SMIL Python applications are converted to FREIA using the smiltofreia compiler and their execution time is measured as well (Column "Generated"). FREIA applications are executed with and without compile-time optimizations.
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Hand-written FREIA app

Manual conversion

SMIL Python app

Apps

The resulting execution times of our seven applications are available in Table 2. This table represents the figures of the original FREIA applications, their optimized version using PIPS and their port on SMIL Python. Here, Column "SMIL" refers to both the C++ and Python applications; Column "Hand-written" is the original FREIA applications, which have been rewritten in SMIL and executed in their original form in Sub-column "init" or optimized by PIPS in Sub-column "+ opts". Similarly, Column "Generated" represents the output of our smiltofreia compiler. Two sub-columns, "init" and "+ opts", show original and optimized execution times. The three plots in Figure 11, Figure 12 and Figure 13 serve as a visual representation of the data in Table 2. Figure 11 compares the execution times of SMIL C++ and SMIL Python applications, and shows a minimal overhead, amounting to less than 2%, when the Python language is used. The Python wrapper has therefore little to no impact on the global performance of our applications. SMIL applications in Python are as fast as SMIL C++ ones, while benefiting from the Python syntax.

We then compare the execution times of our SMIL Python applications, before and after being converted to FREIA by our smiltofreia compiler. We also tested applying our PIPS optimizing compiler on the generated FREIA code. Results are displayed in Figure 12. The "anr999", "deblocking", "li-censePlate", and "toggle" applications yield similar performance before and after being converted into FREIA. Source-to-source optimizations performed by PIPS have a major impact on the execution times of the "anr999" and "li-censePlate" applications, especially by removing unnecessary copies between operations and merging identical computation sequences. The "antibio" and Relative execution time SMIL Python Generated FREIA Generated FREIA + opts Fig. 12: Comparison of the relative execution times of seven image processing applications written in SMIL Python, executed using the Python interpreter, then converted into FREIA and executed with and without compile-time optimizations "burner" FREIA applications are somewhat around 30% slower than their SMIL versions. This stems from the use of a peculiar mathematical morphology operator called geodesic reconstruct by closing, which has a coarse-grain implementation in SMIL, whereas in FREIA it is decomposed into several other simpler operators. The "retina" application is also affected by this issue. The SMIL implementation uses complex data structures, such as hierarchical queues, which are quite efficient on large images, as in the present case. Implementing algebraic optimizations [START_REF] Zory | Contribution à l'optimisation de programmes scientifiques[END_REF][START_REF] Zory | Using Algebraic Transformations to Optimize Expression Evaluation in Scientific Codes[END_REF] to detect this coarse-grain operator in a sequence of FREIA atomic operators and replace it by the corresponding SMIL call can help to reduce this slowdown. On average, these result show that FREIA generated code is about 10% slower than SMIL Python code, although applying PIPS optimizations can lead to 10% faster code.

Figure 13 compares the execution times of the original FREIA applications to those generated from Python by smiltofreia. Generated FREIA applications perform on average as well as original ones. As seen in the previous Figure, applying PIPS optimizations leads to increased performance in the "anr999" and the "licensePlate" applications in both cases, whereas the generated version of the "retina" application does not seem to benefit from it. This can be explained by the introduction of compatibility code for bridging the gap between SMIL and FREIA, which in this case slows down the generated code. To mitigate these slowdowns, a small speedup of the generated version of the "toggle" application can be linked to the use of newly introduced FREIA functions, such as freia_aipo_mask, which allow more direct calls to SMIL functions in the FREIA API. We show through these figures that 

Relative execution time

Hand-written FREIA Hand-written FREIA + opts Generated FREIA Generated FREIA + opts Fig. 13: Comparison of the relative execution times of seven image processing applications written in SMIL Python and converted into FREIA, and genuine hand-written FREIA applications, executed with and without compile-time optimizations smiltofreia-generated FREIA applications perform very closely to original FREIA applications, with or without PIPS optimizations, the average execution times ratio amounting to less than 1% in both cases. Converting SMIL Python applications to FREIA is also a way to automatically port Python applications onto embedded accelerators dedicated to image processing. Thanks to FREIA portability, we executed our image processing applications onto two hardware accelerators implemented on FPGA: SPoC [START_REF] Clienti | A System On Chip Dedicated To Pipeline Neighborhood Processing For Mathematical Morphology[END_REF] and Terapix [START_REF] Bonnot | Definition and SIMD Implementation of a Multi-Processing Architecture Approach on FPGA[END_REF]. There is no Python interpreter available for these accelerators, nor any SMIL implementation, which prevent SMIL applications to be directly executed on these platforms. In Figure 14 and Figure 15, we compare the execution times of the original hand-written FREIA applications to the SMIL Python ones after being converted through smiltofreia. Raw results are also available in Table 3.

Specific hardware

Results show that generated FREIA code performs identically to handwritten code on these accelerators, except for the "deblocking" and "toggle" applications. The corresponding slowdown stems from the original conversion of these applications from FREIA to SMIL Python: a FREIA operator that was not implemented in SMIL has been replaced by a combination of two SMIL operators. smiltofreia does not yet look for such a combination to regenerate the original FREIA operator. Due to these two applications, smiltofreiagenerated code performs on average 4% slower on SPoC and 3% slower on Terapix.

We also studied the impact of PIPS optimizations and target-specific codegeneration in both cases. These optimizations are a bit less effective for smiltofreia-generated code than for hand-written FREIA. One of the reasons of this slowdown again comes from the original rewriting of FREIA applications to SMIL Python. We translated FREIA application functions into idiomatic Python, and returned the produced image pointers instead of passing them by reference, thus preventing PIPS from performing some useful operator ag- 
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Hand-written FREIA Terapix Hand + opts Generated FREIA Terapix Gen + opts Fig. 15: Relative execution times of hand-written FREIA C and smiltofreiagenerated FREIA applications executed on the Terapix embedded accelerator, with and without PIPS optimizations gregation. These slowdowns amount to 20% for SPoC and 19% for Terapix, which is quite acceptable, considering the average speedups of 7.2× for SPoC and 1.8× for Terapix given by PIPS optimizations. Further improvements of smiltofreia-generated applications may be attainable by generating more idiomatic C code. These tables and plots show that SMIL applications easily benefit from our FREIA compilation toolchain with minimal performance impairment compared to hand-written code. What's more, SMIL applications can now directly target the whole set of FREIA hardware backends (FPGAs, manycore and GPUs) without modifying the input code. Improved performance can still be achievable in the current case by using PIPS not only to clean the generated FREIA applications, but also by regenerating aggregated SMIL C++ calls, hence getting rid of the FREIA API and the C wrapper intermediary layers.

Related Work

Python is a versatile general-purpose programming language especially used for fast application prototyping. However, the Python interpreter performance pales compared to native compiled languages such as C or C++. Other research projects use subsets of Python as inputs to accelerate applications on several hardware targets.

Cython [START_REF]Cython: C-Extensions for Python[END_REF], which we already described in subsection 3.2, is both an interfacing tool between Python and C and a Python-to-C compiler. Yet Cython output is overly complex and implements parts of the Python interpreter.

Pythran [START_REF] Guelton | Pythran: enabling static optimization of scientific Python programs[END_REF] is a Python-to-C++ compiler for scientific programs targeting multicore CPUs with SIMD extensions. Pythran generates C++ source code or shared libraries from Python code, which can be reused directly in a Python application.

Numba [START_REF] Siu Kwan Lam | Numba: A LLVMbased Python JIT Compiler[END_REF] is a Python-to-LLVM JIT compiler dedicated to accelerating Python code, but still needs the Python interpreter to work. Similarly, Parakeet [START_REF] Rubinsteyn | Parakeet: A Just-In-Time Parallel Accelerator for Python[END_REF] is a JIT compiler to parallelize Python code on CPUs or GPUs.

Theano [START_REF] Bergstra | Theano: a CPU and GPU Math Expression Compiler[END_REF] and Tensorflow [START_REF] Abadi | TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems[END_REF] are DSL compilers for Python linear algebra applications for deep learning which generate optimized C++ or CUDA. Image processing compilers such as Halide [START_REF] Ragan-Kelley | Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing Pipelines[END_REF] and PolyMage [START_REF] Teja Mullapudi | PolyMage: Automatic Optimization for Image Processing Pipelines[END_REF] also aim at performing domain-specific optimizations while still offering ease of programming through high-level DSLs. While PolyMage is still limited to CPU execution, Halide is able to generate OpenCL and CUDA code for running onto GPUs.

Conclusion

We study in this paper a static to dynamic DSL compilation scheme that preserves programmability. As a use case, we developed a fully-functional implementation, called smiltofreia, that converts image processing applications written in a high-level DSL running on a small set of hardware targets to a lower-level DSL that supports a greater number of backends. Our proposed solution relies on transformations on an AST-like data structure of the original application for generating corresponding calls and variable declarations in the output language. Since the source DSL is embedded in Python, and the target DSL is embedded in C, typing and polymorphism have been taken care of. Experimental results on a set of seven image processing applications show that generated code is competitive with its input in terms of execution times. Moreover, additional target-specific optimization, such as these provided by the source-to-source compiler PIPS, can lead to improved performance for target DSL applications.
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 1 Fig. 1: Example of an image processing application: automatic detection of retina damage
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 73 Fig. 3: Morphological dilatation in FREIA (excerpt)
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 56 Fig. 5: FST of smil.dilate(imin, imout)
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 78 Fig. 7: Actual C call to FREIA dilatation after Cython compilation

Algorithm 2 :

 2 smiltofreia RedBaron node transformation function Input: src -SMIL Python function FST Output: dst -corresponding FREIA C function /* recursive bottom-up code generation and typing */ 1 def generate_c(node, scope): (node.rightarg, scope);

  smil.dilate(imin, imout, smil.SquSE[START_REF]Is Python faster and lighter than C++?[END_REF]) is translated into the following FREIA code:#define e0 SMILTOFREIA_SQUSE #define e0_s 5 freia_cipo_dilate_generic_8c(imout, imin, e0, e0_s);
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 10 Fig. 10: Evaluation methodology
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 11 Fig. 11: Comparison of the relative execution times of seven image processing applications written in SMIL using the C++ and the Python API
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 14 Fig. 14: Relative execution times of hand-written FREIA C and smiltofreiagenerated FREIA applications executed on the SPoC embedded accelerator, with and without PIPS optimizations

  only use square structuring elements (a boolean array of nine ones), but of arbitrary size: internally, a loop around freia_aipo_dilate is used.Instead of adding additional constraints into smiltofreia inputs, we can alter and improve FREIA to support such cases. New functions have thus been added to FREIA to bring it closer to the SMIL API:

	1, 1, 1};
	freia_aipo_dilate_8c(imout, imin, square_strelt);
	for (i = 1; i < size; i++)
	freia_aipo_dilate_8c(imout, imout, square_strelt);
	return FREIA_OK;
	}
	void freia_cipo_dilate_generic_8c(freia_data2d *imout,
	freia_data2d *imin,
	const int32_t *se,
	uint32_t size);

Table 1 :

 1 Number of lines of SMIL and FREIA code for seven image processing applications

			#LoC	Gain
			SMIL FREIA
	anr999	23	88	3.8
	antibio	61	172	2.8
	burner	55	140	2.5
	deblocking	74	162	2.2
	licensePlate	37	202	5.5
	retina		40	133	3.3
	toggle		40	144	3.6
	GMEAN	44.4	144.7	3.2
	5.1 General-purpose CPU			
				smiltofreia
	SMIL	SMIL			FREIA
	app.cpp	app.py			app.c
					applications
					runtimes
	SMIL Python		FREIA common
	Swig wrapper		runtime
	SMIL lib		
	(C++, OpenMP)	
					hardware
	Intel Sandy Bridge Core i7-3820
	4 cores, AVX	
	Fig. 9: Compiler toolchain diagram

Table 2 :

 2 Execution times (ms) of seven image processing image applications written in SMIL (C++ and Python) and FREIA (Column "Hand-written").

		SMIL			FREIA	
		C++ Python	Hand-written init + opts	Generated init + opts
	anr999	80.9	84.2	81.5	61.8	81.8	63.2
	antibio	2795	2800 3470	3540 3500	3500
	burner	1220	1210 1612	1630 1630	1585
	deblocking	828	852	864	866	860	861
	licensePlate	196	198	195	84.3	195	84.3
	retina	1010	1020 1110	964 1115	1105
	toggle	47.0	47.0	47.4	48.1	46.6	46.6

Table 3 :

 3 Execution times (s) of seven image processing image applications written in SMIL Python and FREIA (Column "Hand-written") and executed on the SPoC and Terapix image processing hardware accelerators. The SMIL Python applications are converted to FREIA using the smiltofreia compiler and their execution time is measured as well (Column "Generated"). All applications are executed with and without compile-time optimizations.
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