Convection and Radiation During Melting of a Phase Change Material: A Simplified Model for Engineering Applications
Farah Souayfane, Farouk Fardoun, Pascal Henry Biwole

To cite this version:

HAL Id: hal-01661010
https://minesparis-psl.hal.science/hal-01661010
Submitted on 11 Dec 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract

A simplified model for combined natural convection and radiation during melting process of a phase change material (PCM) is presented. First, the simplified model for natural convection during melting is validated using a CFD model, in addition to experimental and numerical benchmark solutions for a test case. Then, the simplified model for both natural convection and radiation is applied to the melting of a fatty acid eutectic filled in glass bricks and validated against lattice Boltzmann-discrete ordinate method (LBM-DOM). Finally, the complete model is applied to study the thermal behavior of a translucent wall; then validated experimentally using a full-scale building located in southern France.

Numerical study

![Layout of the INERTRANS wall and PCM filled in glass bricks](Image)

Temperatures and solar radiation for three consecutive days in summer 3, 4, 5 August 2017 from experimental data

For the simplified model:
- a fixed-grid modified “enthalpy” method is used to solve phase change problem
- The absorption solar radiation is divided equally between the nodes representing each layer. Considering N nodes in the PCM cavity, the absorbed solar radiation to be added as a source term to the energy equation at the node P is then given as:
 \[\frac{\partial \rho C_p T}{\partial t} = \text{absorbed solar radiation} + \frac{\partial}{\partial x} \left(\rho C_p v \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\rho C_p v \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\rho C_p v \frac{\partial T}{\partial z} \right) \]
- The nodal optical properties such as the transmissivity and absorptivity of the PCM are evaluated function of the transient liquid fraction.

Results

1) Melting of Octadecane with natural convection

2) Melting of fatty acid with natural convection and radiation

3) Application to the TIM-PCM wall

Conclusions

- The proposed simplified model is simple to implement and its simulations run significantly faster than those of CFD models and LBM-DOM model. Consequently, it can be easily integrated into an energy simulation tool for yearly performance evaluation,
- During PCM melting process, natural convection has a noteworthy role as it enhances the average fraction of liquid and the position of the melting front,
- Shortwave radiation enhances the average liquid fraction,
- To be closer to reality, natural convection and radiation during melting must be considered.