

Multi-Objective Decision Making Optimization of a Residential Net Zero Energy Building in Cold Climate

Fatima Harkouss^{a, b}, Farouk Fardoun^a, Pascal-Henry Biwole^{b, c}

^aUniversity Institute of Technology, Department GIM, Lebanese University, Saida, Lebanon

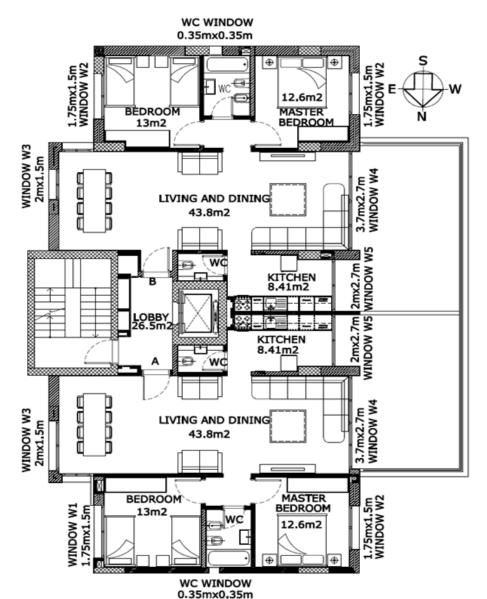
^bUniversité Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France

^cMINES Paris Tech, PSL Research University, PERSEE - Center for Processes, Renewable Energies and Energy Systems, CS 10207, 06 904 Sophia Antipolis,

France

Presentation outline

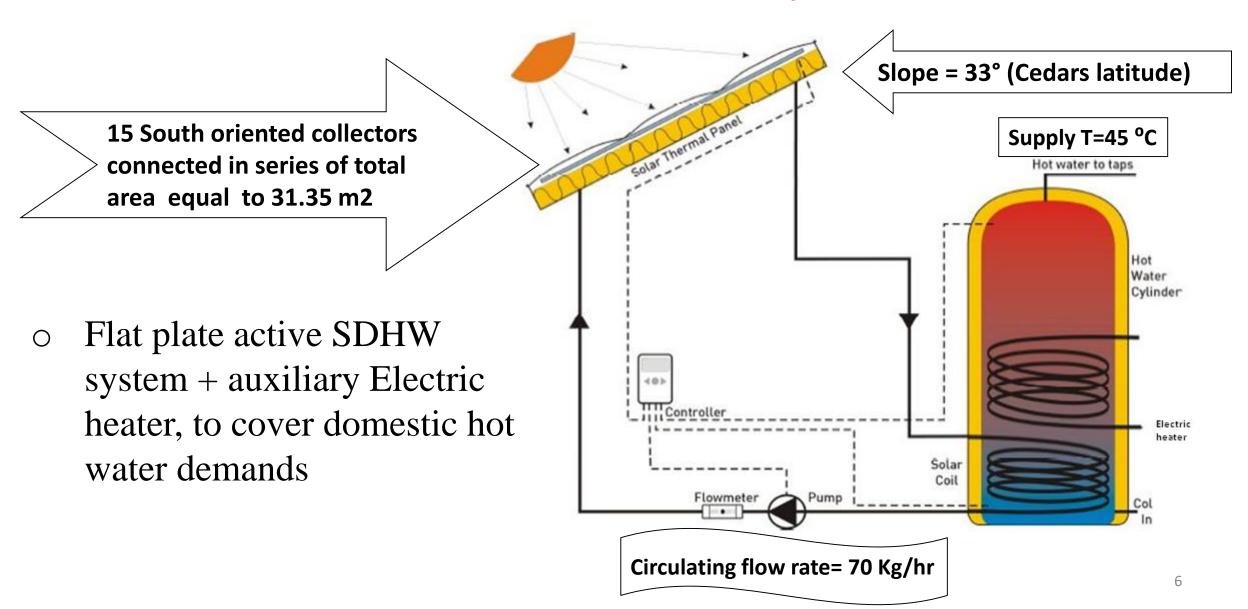
- Introduction / Objective
- Case Study Description / Simulation
- Multi-Objective Optimization / Multi-Criteria Decision making
- Results / Discussion
- Conclusion / Future Studies


Introduction-Objective

 Net Zero Energy Buildings (NZEBs) are suggested to limit buildings energy consumption

 Investigate Cost-effective design options of a residential NZEB in Cedars, through Multi-Objective Optimization, followed by a Decision Making

Case Study



- Three stories building in Cedars
- Consisting of two apartments, each apartment is 102 m2

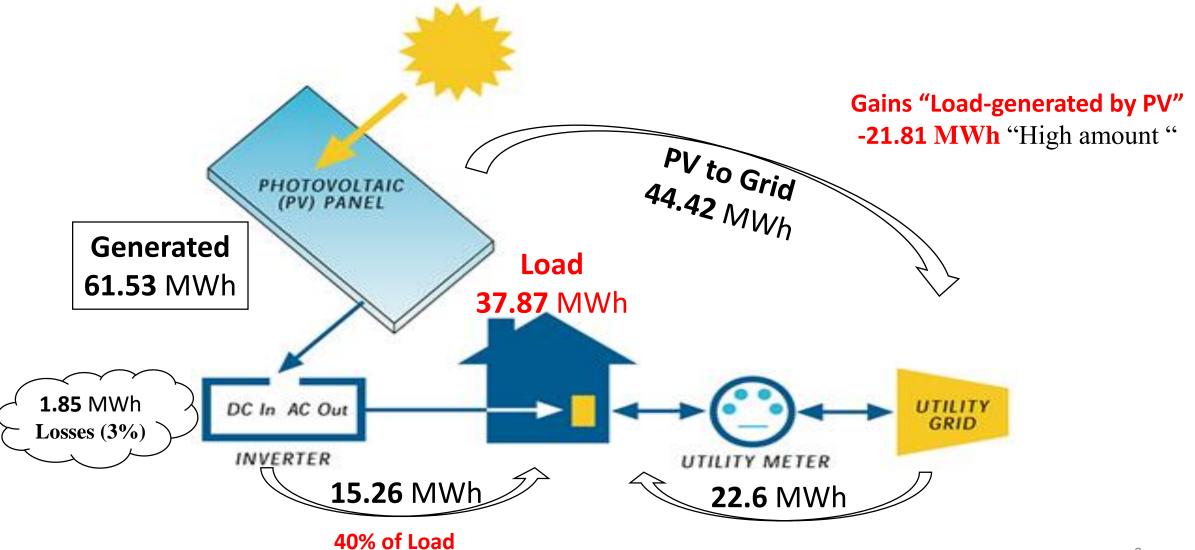
Design conditions

- O Heating loads covered by natural gas condensing boiler, η=98.3%
- \circ Heating set point = 20° C
- Cooling loads covered by air source heat pump, COP= 2.9
- \circ Cooling set point = 24°C

Solar Domestic Hot Water System (SDHW)


Base case demands simulation

- Buildings different demands are simulated using TRNSYS
- o Buildings' electrical loads are **61.57 KWh/y.m2** (37.78 MWh/y)
- o Buildings' thermal loads are **73.47 KWh/y.m2** (45.19 MWh/y)


Photovoltaic System (PV)

- South oriented PV system on rooftop to generate electricity
- OBuilding exploits utility power grid for storage
- Analytical calculation yield to 90PV modules (Each 1.94 m2)

(15 in series, 6 in parallel)

Base case Annual Electric balances

Base case Life Cycle Cost (LCC)

Economic evaluation of projects cost effectiveness

$$LCC = IC + f(N, rd) \times EC$$

IC	Initial cost for implementing design features for building envelope and HVAC system (\$),
	"Cost of PV + SDHW + Construction cost"
rd	Annual discount rate (%), "5% in this study"
N	Life period (year), "20 years in this study"
EC	Annual energy cost required to maintain building indoor comfort for the selected design and
	operating features (\$), "Cost of Electricity from grid + Cost of fuel for boiler"

LCC, life period 20 years, is 181180 \$ (125 \$/month/ apartment)

Formulation of the optimization problem

- Multi-Objective Optimization (MOO) an effective technique to get the perfect design solution for a specific intention
- To start MOO, define the following:
- 1-Objective functions to Minimize/ Maximize
- 2- Decision variables
- 3-Constraints

Objective functions to Minimize/ Maximize

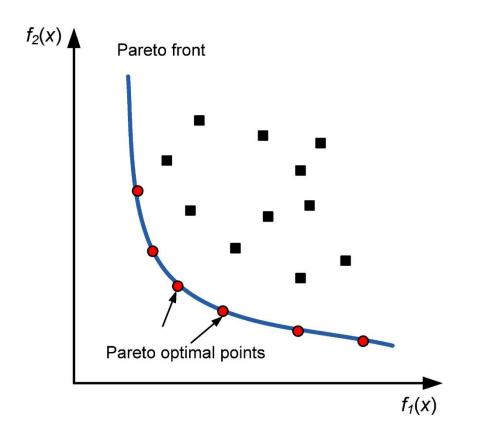
- Electrical consumption = consumption of (cooling+ heating + appliances+ lighting+ SDHW ("Auxiliary electric heater + Pump"))
- Consumption from appliances and lighting not concerned in this study
- o f1=Min ("Auxiliary electric heater + Pump" consumptions)
- o f2=Min (Thermal demand)
- o f3=Min (Difference between load and generation)
- o f4=Min (LCC)

Decision variables

Description	Type	Values	Step
External walls, Roof insulation thickness (cm)	D	1,3,5,7,10	-
Type of double glazing: Krypton or Argon, U-value (W/m ² .K)	D	0.86, 1.4	-
Cooling set point (°C)	D	24, 25, 26	-
Heating set point (°C)	D	19, 20	-
Width window bedroom, master bedroom, kitchen, (m)	C	1 to 2	0.25
Width window Living and dining, (m)	C	1 to 3	0.25
Width window Living and dining, (m)	С	1 to 3.7	0.25
Number of solar collectors in series	C	1 to 20	1
SDHW pump flow rate (Kg/h)	C	50 to 120	5
Number of solar panels in series	C	1 to 20	1
Number of solar panels in parallel	С	1 to 40	1

D: Discrete, C: Continuous

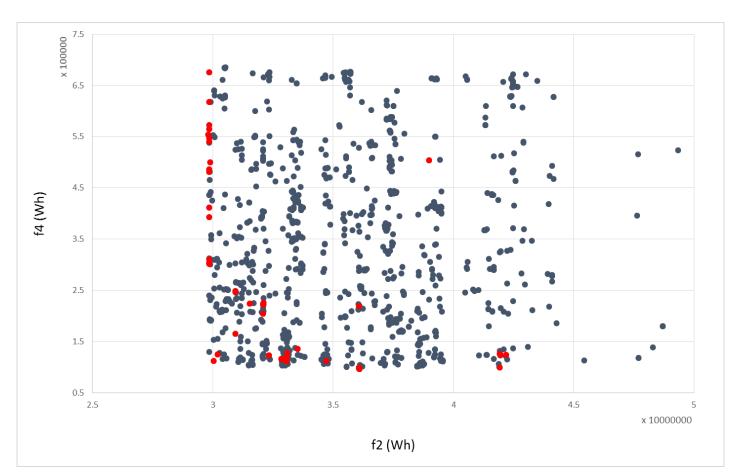
Constraint


○ Keep Comfort -> Average Predicted Mean Vote $|PMV| \le 0.5$

Optimization tool / Algorithm

- Optimization using TRNSYS coupled with MOBO "Multi-Objective Building Optimization Tool"
- The non-sorting genetic algorithm (NSGA-II), is adopted
- o The used parameters' setting of NSGA are:
- 1- Population size = 40
- 2- Generation number = 25

Pareto Front



- MOO results are sets of non-dominated solutions called Pareto optimal solutions represented as a Pareto Front
- Each point of the Pareto Front is a possible best solution

Black: design Variable Space, Dominated Variants

Red: Possible Solutions, Non-Dominated Variants

Pareto Front

- Four-objective optimization
 generates Four-dimensional (4D)
 problem space
- Projecting 4D-Pareto-front on 2D-Graph, points belonging to Pareto
 Front may incorrectly appear to be dominated variants

f2: Thermal Load, f4: LCC

Blue: Dominated Variants, Red: Non-Dominated Variants

Multi-Criteria Decision making (MCDM)

- MCDM process to select the final optimal solution among all available possibilities
- Elimination and Choice Expressing the Reality (ELECTRE III) method classifies Pareto front solutions, to choose the most adequate solution
- o To start ELECTRE III, the decision maker must assign the following:
- 1-Indifference, Preference and Veto Thresholds
- 2-Weights for each objective function using Analytical Hierarchy Process (AHP)

Multi-Criteria Decision making (MCDM)

• ELECTRE III parameters:

Threshold	Percentage relative to objective function average		
Indifference	5%		
Preference	10%		
Veto	30%		

	f 1	f 2	f 3	f 4
Weights	0.25	0.25	0.25	0.25

Decision making Results

Best solution after ELECTRE III ranking

	f1 (MWh) "SDHW electric consumption"	f2 (MWh) "Thermal Loads"	f3 (MWh) "Load-generation"	f4 (1000\$) "LCC"
Best solution	3.94	30.19	-0.33	124.84
Base case value	4.80	45.19	-21.82	181.18
% difference	17.91	33.19	-98.48	31.09

Decision making Results

Best solution after ELECTRE III ranking

	Walls insulation	Roof insulation	Windows U-value	Cooling set point	Heating set point
Unit	(cm)	(cm)	$(W/m^2.K)$	$(^{\circ}C)$	(°C)
Base case	5	1	1.4	24	20
Optimal case	10	10	0.86	25	19
	Solar	Dumn flow	Number	Eastern	Western
	collectors	Pump flow	PV	WWR	WWR
Unit	-	(Kg/h)	-	(%)	(%)
Base case	15	70	90	23.43	59.46
Optimal case	8	115	72	21.87	35.15

Conclusion

- Significant potential to improve energy performance of residential NZEB in cold climate of Cedars by using proven passive strategies
- The optimum design parameters decreases annual thermal load and LCC by 33.19% and 31.09% respectively, compared to the baseline model
- Envelop high level of insulation is a key parameter to decrease the high heating demands

Future studies

- Investigate other passive design, and Renewable Energy options
- Investigate different climatic zones in Lebanon and France
- Sensitivity analyses of Decision maker preferences and design parameters
- Final goal is an attempt to define certain weighting factors for the key parameters to attain NZEB