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Experimental-Numerical Validation Framework
for Micromechanical Simulations

Ante Buljac, Modesar Shakoor, Jan Neggers, Marc Bernacki,
Pierre-Olivier Bouchard, Lukas Helfen, Thilo F. Morgeneyer, and François Hild

Abstract A combined experimental-numerical framework is presented in order to
validate computations at the microscale. It is illustrated for a flat specimen with two
holes, which is made of cast iron and imaged via in situ synchrotron laminogra-
phy at micrometer resolution during a tensile test. The region in the reconstructed
volume between the two holes is analyzed via Digital Volume Correlation (DVC)
to measure displacement fields. Finite Element (FE) simulations, whose mesh is
made consistent with the studied material microstructure, are driven by measured
Dirichlet boundary conditions. Damage levels and gray level residuals for DVC
measurements and FE simulations are assessed for validation purposes.

1 Introduction

The prediction of forming processes and in-service life of metals and alloys raises
important issues for ductile fracture, which have led researchers to investigate ad-

Ante Buljac · Jan Neggers · François Hild
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vanced damage models. A first type of damage models, which is known as macro-
scopic postulates [1, 2, 3], is used to predict not only damage inception but also the
softening and transition to fracture. Due to their macroscopic nature, they are known
to have limited predictive capabilities and are usually calibrated and applied for spe-
cific loading conditions. For applications such as material forming, where loading
may be complex and non proportional, these limitations become problematic [4, 5].

Microscopic models [6, 7] are an alternative where the macroscopic response
is derived from averaged microscale calculations. This scale transition may be
purely analytical [6] or performed via computations on ideal microstructures [7].
The predictive capacities of such models are also limited for arbitrary loading con-
ditions [4, 5] because of restrictive assumptions used in their derivations [6, 7].
Further, the calibration of these models is challenging since they usually require ad-
vanced identification techniques [8, 9, 10]. It is worth noting that some damage vari-
ables such as porosity can now be observed experimentally thanks to X-ray imaging
techniques [11, 12, 13, 14]. Inclusions and voids can be studied individually based
on manual [13, 15] or automatic [14] procedures.

Simulations allow experimentally observed quantities such as porosity and num-
ber of fractured/debonded inclusions to be related to internal variables such as plas-
tic strain and stress-based criteria. These microscale computations are usually driven
with idealistic microstructures, constitutive behavior, and simplified kinematic or
static boundary conditions that do not capture local strain and stress states that in-
clusions and voids are subjected to [11, 16, 17, 14]. The principal aim of the present
work is to develop reliable simulations at the microscale using validated models to
describe the three steps of ductile damage (i.e., nucleation, growth and coalescence).
The first step then consists of developing an experimental-numerical framework,
which enables numerical models to be probed with respect to experimental data.

The material of interest is nodular graphite cast iron made of a ferritic matrix,
graphite nodules, and no significant initial porosity. Upon loading, ductile fracture
is caused by nodule/matrix debonding, void growth and coalescence [18, 19, 20].
Literature data [18, 21, 22, 19] show that the nodules can be modeled as voids since
their stress-carrying capacity is very small in tension. Such hypothesis will be made
herein. One of the present challenges is to test this type of assumption with local
error estimators (i.e., at the microscale). It will also allow microscopic models to be
developed in order to better capture the final stages of failure via calibrated criteria
associated with different mechanisms [23, 24].

The framework followed herein, which was first applied to another test case [25],
quantitatively compares experimental bulk data with 3D computations. It consists of
the following steps (Figure 1):

• X-ray laminography, which is a non-destructive 3D imaging technique for later-
ally extended 3D objects [26, 27, 28, 29, 30], to acquire radiographs and sub-
sequently reconstruct 3D volumes of different steps of a mechanical test. By
post-processing such bulk data, the morphology of the two-phase microstructure
can be revealed and its changes can be analyzed.

• Digital volume correlation (DVC) to measure 3D displacement fields [31, 32, 33,
34]. Small interrogation volumes are independently registered in the considered



Experimental-Numerical Validation Framework for Micromechanical Simulations 3

Region of Interest (ROI). The only information that is kept is the mean displace-
ment assigned to each analyzed Zone of Interest (ZOI) center. In the following,
FE-based approaches [35] will be considered. Registrations are performed over
the whole ROI using FE discretizations. Such DVC approaches can be directly
linked with numerical simulations of mechanical tests [36, 37, 38]. In particular,
DVC measurements serve as Dirichlet boundary conditions to the Finite Element
(FE) computations at the microscale.

• FE simulations to explicitly model the actual morphology of cast iron thanks to
laminography data (see e.g., Refs. [39, 40]). The Level-Set (LS) procedure [41,
42], which is used herein, enables interfaces to be described in FE simulations
under large deformations and complex topological events [43, 44, 45]. It is worth
noting that regularity [46] and conservation [47] issues have to be handled with
care.

• FE computations are run with an elastoplastic law to describe the nonlinear be-
havior of the ferritic matrix. The nodules are modeled as elastic media with very
low Young’s modulus.

• Comparisons between experiments (i.e., DVC measurements) and 3D FE compu-
tations driven by measured displacements (i.e., DVC-FE) are performed for dis-
placement fields and, more importantly, gray level residuals, which were shown
to be very powerful error estimators [25].

• The change of the mean volume fraction of pores is also compared by analyzing
the reconstructed volumes and the predictions with DVC-FE.
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Fig. 1 Schematic representation of the methods used in the present chapter for validating numer-
ical simulations at the microscale (after Ref. [25])
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The chapter is structured as follows. The experimental setup and laminography
are first discussed. Digital Volume Correlation is summarized next. Uncertainty
quantifications are performed. FE computations including the microstructure mesh-
ing procedure are then described. Last, the results from both methods are compared
relatively via kinematic field subtractions and absolutely by computing gray level
residuals. The predictions of the damage state are also confronted with experimen-
tal evidence.

2 Experimental and numerical framework

2.1 Experiments

The studied material is commercial nodular graphite cast iron (serial code: EN-GJS-
400). Figure 2(a) shows the sample geometry, which is inspired by Ref. [48]. The
holes have been machined via Electrical Discharge Machining (EDM). The load is
manually applied to the sample by controlling the global relative displacement via
screw rotation.
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Fig. 2 (a) Sample geometry with the scanned region between pin holes; (b) section of the recon-
structed volume with ROI position

After applying each loading step, a set of radiographs is acquired while the sam-
ple is rotated about the laminographic axis (i.e., parallel to the specimen thick-
ness direction). This axis is inclined with respect to the X-ray beam direction
by an angle θ ≈ 60 ◦. The series of radiographs is then used to reconstruct 3D
volumes via filtered-back projection [49]. A GPU-accelerated implementation of
this algorithm [50] has been utilized herein. The reconstructed volume size is
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1600× 1600× 1600 voxels (each voxel has a physical length of 1.1 µm). After
scanning the undeformed state (0) three times, 12 additional scans are performed
upon stepwise loading. The last scan corresponds to the final crack.

The scanned zone encompasses the two holes. The selected ROI for DVC and FE
calculations mainly focuses on the ligament between the two holes (Figure 2(b)).
The two machined holes are 500 µm in diameter and the nodule population, which
is assumed to behave as voids in the FE computations, has a characteristic diameter
of 60 µm. It is considered as secondary void population, which can be observed at
micrometer resolutions. Figure 3 shows mid-thickness sections of the reconstructed
volume for three different load stages. Classical void coalescence mechanisms are
accompanied by sheet coalescence between the two machined holes in the last load-
ing step (deformed state (11)).

undeformed state (0) deformed state (7) deformed state (11)x

y

F

F

thickness

250 µm

Fig. 3 Mid-thickness section of the reconstructed volume for three different loading steps

2.2 Digital Volume Correlation

Global DVC, which is used herein, is an extension of global 2D DIC [51, 52]. Re-
constructed volumes are described by discrete gray level fields of spatial (voxel)
coordinate x. DVC consists in registering the gray levels I0 in the reference configu-
ration with those of the deformed volume It such that their conservation is obtained

I0(x) = It [x+u(x)] (1)

where u is the Lagrangian displacement field. In experiments gray level conser-
vation (1) is never satisfied in laminography due to acquisition noise and recon-
struction artifacts [53]. Therefore the gray level residual ρ(x) = I0(x)− It [x+u(x)]
is globally minimized by considering its L2-norm with respect to kinematic un-
knowns, which parameterize the measured displacement field. For global DVC, the
whole ROI is considered and the global residual Φ2

c

Φ
2
c ({u}) = ∑

ROI
ρ

2(x,{u}) (2)
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is minimized with respect to the unknown degrees of freedom up gathered in the
column vector {u} when the displacement field is written as

u(x,{u}) = ∑
p

upΨΨΨ p(x) (3)

where ΨΨΨ p(x) are selected displacement fields associated with the parameterization
of u(x,{u}). Finite element shape functions are of particular interest since they pro-
vide direct links between measured displacement fields and numerical simulations.
DVC based on hexahedral finite elements with trilinear shape functions [35] is uti-
lized herein. Only a part of the reconstructed volume, which is referred to as DVC
ROI, is considered (Figure 2(b)). To keep large ROI sizes, the reconstructed volumes
are coarsened (i.e., each 8 neighboring voxels are averaged to form one supervoxel).

The measurement uncertainties are quantified by registering two volumes of the
unloaded sample (0) with (coined “rbm”) and without (i.e., “bis”) rigid body mo-
tion (RBM) applied between acquisitions. Noise and reconstruction artifacts make
these two volumes non identical. The corresponding displacement fields account
for laminography and DVC effects on the measurement uncertainties [54]. The
measurement uncertainties are assessed by the standard deviation of displacement
fields. Figure 4 shows the standard displacement uncertainties for different element
sizes `. Decreasing the element size induces an increase of the displacement un-
certainty [55, 56]. The element size used hereafter is set to ` = 16 supervoxels and
corresponds to a standard displacement uncertainty of 0.25 supervoxel. This level is
the limit below which the estimated displacement levels are no longer trustworthy.
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Fig. 4 Standard displacement uncertainties as functions of the element size ` expressed in super-
voxels for two different acquisitions of the reference configuration

Successful DVC registrations were achieved for the first 9 incremental calcula-
tions (i.e., registrations between step n−1 and step n). The measured displacement
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fields will serve as DVC-FE boundary conditions. The measured displacement fields
are interpolated for each loading step onto the FE mesh of the ROI using the shape
functions of the DVC mesh).

2.3 Simulations

To perform microscale FE simulations the numerical framework discussed in Refs. [44,
57, 46, 58, 47] is followed. The ROI selected for the FE simulations has to belong
to all DVC ROIs for each analyzed loading step and to be made as large as possi-
ble [25]. To model the experimental microstructure standard image processing op-
erations are carried out [59, 60], namely, smoothing the data, applying a gray value
threshold to separate matrix and voids, and then converting these binary data into
signed distance function. The latter is interpolated onto a first mesh of uniform size
of 10 µm of the FE ROI via trilinear interpolation. The corresponding signed dis-
tance function is then regularized with a parallel reinitialization algorithm [46], and
used to locate the interfaces [25, 47]. An adaption step is added to control the local
maximum curvature of the interface [25, 58]. These different steps are exemplified
in Figure 5 for a 2D laminography section. The final mesh has a size of 10 µm close
to matrix/void interfaces and 50 µm at a distance of 100 µm from any interface with
a linear transition. As shown in Figure 5 the FE discretization of the microstructure
is very close to the experimental observation.

The graphite nodules are modeled as zones with very low Young’s modulus [18,
21, 22, 19, 25], while the ferritic matrix is considered as an elastoplastic medium
with power law hardening

σ0(p) = σy +K pn (4)

where p is the equivalent plastic strain, σy the initial yield stress, K the plastic modu-
lus and n the hardening exponent. The properties of the matrix (Table 1) are deduced
from tensile experiments on pure ferrite [21].

Table 1 Elastoplastic properties of the ferritic matrix

E (GPa) ν σy (MPa) K (MPa) n
210 0.30 290 382 0.35

The satisfaction of equilibrium equations is obtained with a mixed velocity-
pressure formulation solved with P1+/P1 elements to avoid locking [61]. The non-
linear behavior of the matrix requires Newton-Raphson schemes to be implemented
locally and globally [62]. An updated Lagrangian scheme is used to handle large
deformations. Further, large distortions and possible flip of elements are avoided
with automatic mesh motion and adaption [47].
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Fig. 5 Image immersion and meshing. (a) Initial laminography 2D section. (b) Signed distance
function computed thanks to image processing. (c) Signed distance function interpolated and reini-
tialized on the FE mesh [46]. (d) Conforming FE mesh generated and adapted to interfaces and
local maximum curvature, (e) Zoom on the FE mesh. (f) Comparison between initial laminogra-
phy 2D section and interfaces in the final FE mesh (in white)

3 Results

The numerical results using DVC-FE are illustrated in Figure 6. This computation
considers 100 voids meshed with ≈ 1 million elements. Void growth and equivalent
plastic strains develop as more load is applied.
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(a) (b)

(c) (d)

F
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thickness

Fig. 6 ROI calculation results using DVC-FE showing the 3D meshed voids and the equivalent
plastic strain on sections when: (a) u = 0 (undeformed state), (b) u = 83.4 µm, (c) u = 192.2 µm,
(d) u = 320.8 µm

3.1 Error estimators

Relative displacement comparisons are first reported. Measured displacement fields
(via DVC) are applied to the boundaries of the FE ROI. They are also available
within the whole ROI. Thus, DVC and DVC-FE displacement fields can be interpo-
lated on the same mesh and directly compared as reported in Figure 7. The main dif-
ferences are concentrated around debond zones between the matrix and the nodules,
while those close to the boundaries are mostly zero. The fact that the differences
become significantly larger than the displacement uncertainty is a first indication of
model error.

The errors in terms of gray level residuals are now discussed. For each pair of
consecutive loading steps, the volume reconstructed for the second step can be de-
formed back with the measured or computed displacement field. This corrected vol-
ume can be compared voxelwise with the volume of the first step. With a newly
developed tetrahedral-DVC code [63, 38] FE computations with tetrahedral meshes
can be imported in the reconstructed volumes frame where the displacement fields
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Fig. 7 Mid-section normal to
z-direction showing absolute
difference between DVC and
DVC-FE displacement fields.
The displacement difference
is expressed in supervoxels
(1 supervoxel←→ 2.2 µm) x

y

F

F

are interpolated voxelwise. The deformed volume It(x) is corrected by the computed
displacement field uFE(x), i.e., It(x+uFE(x)) is obtained. The gray level residuals,
namely, differences between the volume of the reference configuration I0(x) and
the corrected deformed volume It(x+ u(x)) are assessed for DVC and FE com-
putations. Quantitative and local error measurements are evaluated for DVC and
DVC-FE procedures. Figure 8 shows the standard deviation of residual fields that
are normalized by the dynamic range of the volume (i.e., 256 gray levels). The DVC
residuals remain close to those observed in the uncertainty analysis for which no
strains occurred. Therefore the DVC results are deemed trustworthy.
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Fig. 8 Standard deviation for the dimensionless gray level residual fields for all loading steps.
For comparison purposes, the dashed line corresponds to the uncertainty analysis for the so-called
“bis” case (see Subsection 2.2)

The errors produced by the micromechanical models inside the DVC-FE domain
also remain low and slightly increase at later loading steps (from ≈ 15% initially to
≈ 20% in last loading step). However they are always higher than the DVC residuals.
This observation confirms model errors that become more significant as coalescence
sets in. Figure 9 confirms that these differences between DVC-FE simulations and
experiments are mostly concentrated around interfaces.
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Fig. 9 Absolute gray level differences at the z midsection after correction with DVC (a) and DVC-
FE (b) displacements for the ninth loading step

3.2 Damage analysis

Damage predictions of DVC-FE are qualitatively compared studying the x-midsection
of the ROI with experimental images in Figure 10. Since measured boundary condi-

(a) (b)

(c) (d)

thickness

F

F

250 µm

Fig. 10 ROI (blue line) calculation results using DVC-FE comparing the numerical matrix/void
interface (white line) with experimental images for the x-midsection. (a) u = 0 (undeformed state),
(b) u = 83.4 µm, (c) u = 192.2 µm, (d) u = 320.8 µm
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tions are expected to follow experimental images at the spatial resolution of DVC,
the matrix/void interfaces in the simulation (in white in the figure) are superim-
posed. The interfaces are very accurately meshed on average and tracked during the
simulation up to the last loading step. Quantitatively void growth is defined by

f =
void volume
ROI volume

, void growth =
f
f0

(5)

where f0 is the initial void volume fraction. Void growth plots are shown in Fig-
ure 11 in which the ‘EXP’ curve is obtained in processed laminography volumes
(i.e., images with smooth signed distance functions as shown in Figure 5(b)).

Fig. 11 Void volume change observed experimentally and predicted within the present framework

The numerical results show a small decrease of porosity p at the first loading
step. This is not observed experimentally. This first loading step is bigger than the
subsequent ones, which asks for extensive remeshing in the computations. Conse-
quently interfaces are slightly smoothened and void volume can be diffused. For the
other loading steps, void growth is overestimated numerically. This may be due to
the fact that nodules are considered as very soft media in the computations, while in
reality only the voids grow after nodule/matrix interface debonding (Figure 10).

4 Discussion

Although the results using DVC-FE look very promising, several issues need to be
addressed. There still are gaps between FE-DVC and DVC results (see Figures 9
and 10). This gap increases when reaching the final loading steps. Similarly, the
displacement difference (Figure 7) is significantly higher than the displacement un-
certainty reported in Figure 4. The differences are mainly concentrated around ma-
trix/nodule interfaces. This observation calls for better models of the nodules and
interface debonding. Further, the increase of the error at later loading steps proves
the inability of the constitutive law used for the ferritic matrix to fully capture the
acceleration of void growth and subsequent coalescence. Better calibrated and more
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advanced plasticity models may be considered at the microscale to better capture
the multiscale plastic flow. These additional developments will extensively rely on
DVC-FE and its ability to provide experimentally measured boundary conditions for
micromechanical simulations. The extension of Integrated-DVC to 4D analyses [38]
will be utilized to conduct inverse analyses based on these error measurements and
calibrate material parameters at the microscale.
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Sci. Eng. A 496(1-2), 223 (2008)
13. T. Ueda, L. Helfen, T.F. Morgeneyer, Acta Mat. 78, 254 (2014)
14. F. Hannard, T. Pardoen, E. Maire, C. Le Bourlot, R. Mokso, A. Simar, Acta Mat. 103, 558

(2016)
15. T. Morgeneyer, T. Taillandier-Thomas, A. Buljac, L. Helfen, F. Hild, J. Mech. Phys. Solids 96,

550 (2016)
16. T. Morgeneyer, J. Besson, H. Proudhon, M. Starink, I. Sinclair, Acta Mat. 57(13), 3902 (2009)
17. S. Tang, A.M. Kopacz, S. Chan O’Keeffe, G.B. Olson, W.K. Liu, J. Mech. Phys. Solids 61(11),

2108 (2013)
18. M.J. Dong, C. Prioul, D. François, Metall. Mat. Trans. A 28(11), 2245 (1997)
19. G. Hütter, L. Zybell, M. Kuna, Eng. Fract. Mech. 144, 118 (2015)
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33. M. Bornert, J. Chaix, P. Doumalin, J. Dupré, T. Fournel, D. Jeulin, E. Maire, M. Moreaud,

H. Moulinec, Inst. Mes. Métrol. 4, 43 (2004)
34. E. Verhulp, B. van Rietbergen, R. Huiskes, J. Biomech. 37(9), 1313 (2004)
35. S. Roux, F. Hild, P. Viot, D. Bernard, Comp. Part A 39(8), 1253 (2008)
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