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SUMMARY

Structural reliability methods aim at computing the probability of failure of systems with respect to pre-
scribed limit state functions. A common practice to evaluate these limit state functions is using Monte Carlo 
simulations. The main drawback of this approach is the computational cost, because it requires computing 
a large number of deterministic finite element solutions. Surrogate models, which are built from a limited 
number of runs of the original model, have been developed, as substitute of the original model, to reduce the 
computational cost. However, these surrogate models, while decreasing drastically the computational cost, 
may fail in computing an accurate failure probability. In this paper, we focus on the control of the error intro-
duced by a reduced basis surrogate model on the computation of the failure probability obtained by a Monte 
Carlo simulation. We propose a technique to determine bounds of this failure probability, as well as a strat-
egy of enrichment of the reduced basis, based on limiting the bounds of the error of the failure probability 
for a multi-material elastic structure. 

KEY WORDS: structural reliability; finite element analysis; model reduction; reduced basis; error bounds;
failure probability

1. INTRODUCTION

Many applications in structural analysis require taking into account stochastic properties of material,
geometry, or loads. Given a probabilistic description of the stochastic properties of the structure
(i.e., a random vector Θ associated with a probability density function fΘ), reliability analysis aims
at computing the probability of failure of systems with respect to a prescribed limit state function
G. The failure is defined as an event F = {G(Θ) ⩽ 0}, and the failure probability Pf is defined
by Pf = Prob({G(Θ) ⩽ 0}) = ∫G(𝜽) ⩽ 0 fΘ(𝜽)d𝜽. The computation of this failure probability by a
direct Monte Carlo simulation would necessitate between 103 and 106 finite element (FE) simulations
(depending on the value of Pf) and is too computationally expensive in practice. In order to reduce
the number of simulation runs, different alternatives have been proposed.

A first approach is the first-order reliability method and the second-order reliability method
(SORM) [1, 2] that consists in building a simple analytical approximation of the limit-state function
around the so-called design point followed by a direct estimation of the failure probability [3–9].

A second approach consists in building a surface response as a surrogate of the limit state function
(quadratic response surfaces, polynomial chaos expansions, kriging surrogates, etc.) [10–14]. The
Monte Carlo simulation can be then applied on this surrogate model.
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A third approach consists in building a reduced-order model (ROM) of the complex FE model 
[15–19] and using the Monte Carlo method along with the ROM.

Three main sources of errors are introduced in a reliability analysis: an error due to the FE anal-
ysis, an error due to the approximations introduced by the method used to reduce the number of FE 
simulation runs, and finally an error due to the Monte Carlo process (or due to the analytical formula 
used to compute the failure probability for the first-order reliability method/second-order reliability 
method). Methods have been developed over many years to evaluate the quality of the FE analysis 
[20–22] and have been extended more recently to the stochastic framework [23–25]; the quality of 
the Monte Carlo simulation can be assessed via the central limit theorem. Error estimators have been 
developed for ROM applied to parametrized model [26–30] and for ROM applied to the estimation 
of mean values [17]. However, as far as we know, there is no work on the estimation of the error 
introduced by a reduced-order modeling on the computation of the failure probability Pf.

In this paper, we focus on the control of the error introduced by a reduced basis approximation 
[30] on the computation of the failure probability Pf. We propose to use the concept of error in the
constitutive relation to provide bounds of the failure probability for a given reduced basis. In a first
step, these bounds are obtained following the methodology proposed in [26] by extracting a reduced
basis that is equilibrated in the FE sense from a classical reduced basis (which satisfies the kinematic
boundary conditions). In a second step, we propose a strategy to construct this reduced basis along
with the Monte Carlo simulation, in order to provide controlled bounds of the failure probability Pf.

The paper is organized as follows: Section 2 describes the problem to be solved. In Section 3, the 
reduced basis formulation used to solve the problem is presented. The technique used to compute 
bounds on quantities of interest is reminded in Section 4. Its extension to the bounding of a failure 
probability as well as the algorithm used to build the reduced basis are developed in Section 5. 
Finally, Section 6 presents an application to multilayered structures in 2D plane elasticity.

2. THE PROBLEM TO BE SOLVED

2.1. Linear elastic model

Let us consider an elastic structure defined in a domain Ω bounded by Γ. The external actions on the 
structure are represented by a surface force density T defined over a subset Γ N of the boundary and 
a body force density b defined in Ω. We assume that a prescribed displacement u  =  u d is imposed 
on ΓD = 𝜕Ω − ΓN. The material is assumed to be linear elastic, being C the Hooke tensor. We 
consider that the problem is dependent of a vector 𝜽 ∈ D ⊂ Rp of uncertain system parameters. 
These parameters are characterized in a probabilistic manner by means of a joint probability density 
function f(𝜽). The problem can be formulated as follows: Find a displacement field u  ∈  U  and a 
stress field 𝝈  defined in Ω that verify

• the kinematic constraints

u(x,𝜽) = ud(x) on ΓD, (1)

• the equilibrium equations

div 𝝈(x,𝜽) + b(x,𝜽) = 0 in Ω and 𝝈(x,𝜽)n = T(x,𝜽) in ΓN , (2)

• the constitutive equation

𝝈(x,𝜽) = C(x,𝜽)𝜺(u(x,𝜽)) in Ω. (3)

n denotes the outer normal to Ω. U is the space in which the displacement field is being sought;
U 0 is the space of the fields in U that are zero on ΓD; and 𝜺(u) denotes the linearized deformation
associated with the displacement: [𝜺(u)]ij = 1∕2(ui,j + uj,i).



We assume that the Hooke tensor C, the body forces b, and the traction forces T can be 
decomposed as the sum of functions of 𝜽 multiplied by deterministic functions of x.

C(x,𝜽) =
Qc∑

q=1

Θc
q(𝜽)Cq(x), b(x,𝜽) =

Qb∑
q=1

Θb
q(𝜽)bq(x) T(x,𝜽) =

QT∑
q=1

ΘT
q (𝜽)Tq(x), (4)

where Θc
q,Θb

q, and ΘT
q are known functions of 𝜽; each Cq(x) is a fourth-order tensor defined in Ω;

bq(x) are vector fields defined in Ω; and Tq(x) are vector fields defined on ΓN.

Remark
This decomposition can be obtained by the use of the Karhunen–Loeve expansion [31] as proposed
in [25].

Remark
For the sake of simplicity, assume that ud is a deterministic value (i.e., ud(x,𝜽) = ud(x)). For an
interested reader, the development of a reduced basis algorithm where ud is also described by a
stochastic approach can be found in [27].

Furthermore, we assume that the inverse of the Hooke tensor can be decomposed as the sum of
functions of 𝜽 multiplied by deterministic functions of x.

C−1(x,𝜽) =
Qs∑

q=1

Θs
q(𝜽)Sq(x), (5)

where each Sq(x) is a fourth-order tensor defined on Ω.
The strong form of the problem (Equations (1)–(3)) is equivalent to the classical weak form

formulation: Find u ∈ {v ∈ U; v|ΓD
= ud} such that

a(u(𝜽), u∗;𝜽) = f (u∗;𝜽) ∀u∗ ∈ U 0, (6)

where

a(u(𝜽), u∗;𝜽) = ∫Ω
C(𝜽)𝜺(u(𝜽)) ∶ 𝜺(u∗) dΩ and f (u∗;𝜽) = ∫Ω

b(𝜽) · u∗ dΩ + ∫ΓN

T(𝜽) · u∗ dΓ.

To compute the solution u(𝜽) of Equation (6), an FE approximation uh of u is introduced such that
uh ∈ Uh ⊂ U. Let Ph be a partition of Ω into elements Ek(k ∈ {1, … ,NFE}). This partition formed
by the union of all elements is assumed to coincide exactly with the domain Ω, and any two elements
are either disjoint or share a common edge. We assume that ud can be represented by a displacement
field in Uh. The discretized problem is as follows: Find a displacement field uh(𝜽) ∈ Uh and a stress
field 𝝈h(𝜽) defined in Ω that verify

• the kinematic constraints

uh(x,𝜽) = ud(x) on ΓD, (7)

• the FE equilibrium equations

∫Ω
𝝈h(𝜽) ∶ 𝜺(u∗

h) dΩ = ∫Ω
b(𝜽) · u∗

h dΩ + ∫ΓN

T(𝜽) · u∗
hdΓ ∀u∗

h ∈ U 0
h , (8)

• the constitutive equation

(9)𝝈h(x, 𝜽) =  C(x, 𝜽)𝜺(uh(x, 𝜽)) in Ω.



The classical weak form formulation is find uh ∈ {v ∈ Uh; v|ΓD
= ud} such that

a(uh(𝜽),u∗
h;𝜽) = f (u∗

h;𝜽) ∀u∗
h ∈ U 0

h , (10)

where U 0
h = {v ∈ Uh;v|ΓD

= 0}.

2.2. Quantity of interest

The goal of the computation is often to obtain (or characterize) some specific quantity of interest
(QoI). Thus, in this context, the QoI is also a random output. The QoI is denoted by Q(uh(𝜽);𝜽), and
it is given as a linear output of uh(𝜽), namely,

Q(uh(𝜽);𝜽) = ∫Ω
bΣ(𝜽) · uh(𝜽) dΩ + ∫ΓN

TΣ(𝜽) · uh(𝜽) dΓ, (11)

where bΣ and TΣ are the given extractors that define the output of interest and can be decomposed
as the sum of functions of 𝜽 multiplied by deterministic functions of x.

bΣ(x,𝜽) =
QbΣ∑
q=1

ΘbΣ
q (𝜽)bΣq

(x), TΣ(x,𝜽) =
QTΣ∑
q=1

ΘTΣ
q (𝜽)TΣq

(x).

2.3. Structural reliability model

In this section, we describe the problem of reliability assessment [1, 13, 32]. Let us denote by
S(𝜽) = Q(uh(𝜽);𝜽) the computational output of interest and R(𝜽) the threshold associated with this
computational output.

Classically, the structure failure state is defined by a limit state function

G(𝜽) = R(𝜽) − S(𝜽) (12)

such that

• G(𝜽) < 0 is a failure state for the structure;
• G(𝜽) = 0 is the limit state;
• G(𝜽) > 0 is a safe state for the structure.

According to this definition, the system fails when G is lower or equal to zero. The failure
probability Pf is then given by

Pf = ∫Df ={𝜽 ∈Rn; G(𝜽) ⩽ 0}
fΘ(𝜽) d𝜽, (13)

where n is the dimension of the vector 𝜽 and fΘ(𝜽) is a density probability function. The evaluation
of the integral defined by Equation (13) is not easy because it represents a very small quantity and
because the integration domain is defined implicitly. Monte Carlo simulation is the main approach
to solving the reliability problem. Recasting Equation (13) as

Pf = ∫
Rn

1Df
(𝜽)fΘ(𝜽) d𝜽 = E

[
1Df

]
, (14)

where 1Df
is the failure indicator function being equal to one if G(𝜽) ⩽ 0 and zero otherwise. The

probability of failure is equal to the expectation of 1Df
. The Monte Carlo technique consists in gen-

erating a number NMC of realizations 𝜽 k of the random vector Θ using the actual probability density
function, then computing the Monte Carlo estimator P̂f :

P̂f =
1

NMC

NMC∑
k=1

1Df
(𝜽 k). (15)



According to the central limit theorem, this estimator is asymptotically unbiased and normally 
distributed with variance

Var
[
P̂f
]
=

P̂f (1 − P̂f )
NMC − 1

.

When the failure probability is small, the coefficient of variation of the estimator is

𝛿 =

√
Var

[
P̂f
]

P̂f

≈ 1√
NMC

√
P̂f

. (16)

From Equation (16), it can be seen that obtaining a coefficient of variation 𝛿 ⩽ 10% for a probability
of failure of 10−n requires about 10n+2 FE simulations.

3. REDUCED BASIS FORMULATION

The purpose of a reduced basis method is to provide a fast evaluation urb(𝜽) of the value of the dis-
placement field uh(𝜽) and hence a fast evaluation Q(urb(𝜽);𝜽) of any QoI Q(uh(𝜽);𝜽). In Section 3.1,
we recall a classical displacement approach that consists in performing a Galerkin projection onto a
reduced basis space that is assumed to represent accurately the solutions of the problem to be solved.
In this paper, the construction of this reduced basis space, which will be detailed in Section 5, is aimed
to control the accuracy of the computed failure probability. To control this accuracy, we define and
compute an error estimator that is an upper bound of the error on the QoI |Q(uh(𝜽);𝜽)−Q(urb(𝜽);𝜽)|.
The computation of this upper bound, as shown in Section 4, necessitates the construction of a stress
field that satisfies the FE equilibrium equations (Equation (8)). In order to obtain a fast evaluation
of this stress field, we propose in Section 3.2 to build, from the displacement reduced basis, a stress
reduced basis that satisfies the FE equilibrium equations.

3.1. Displacement approach

Let udir ∈ Uh be a displacement field such that udir|ΓD
= ud. Let us introduce a set of samples in the

parameter space SNs = {𝜽1, … ,𝜽Ns
}, where 𝜽i ∈ D, and for each 𝜽n compute a FE solution u0

h(𝜽n)
in U 0

h described by the corresponding vector of nodal values qn.

a(u0
h(𝜽n), u∗

h;𝜽n) = f (u∗
h;𝜽n) − a(udir, u∗

h;𝜽n) ∀u∗
h ∈ U 0

h . (17)

On this space, we perform a Gram–Schmidt orthonormalizing process for the inner product a(u, v;𝜽)
(𝜽 being a fixed value of the random vector that is selected a priori as shown in Section 5.2) to build
a reduced basis 𝝓i. The reduced basis space is then defined by

U 0
rb = span {𝝓1, … ,𝝓Ns} ⊂ U 0

h . (18)

The choice of the samples in the parameter space SNs and of the associated reduced basis U 0
rb depends

on the sampling strategy (see [30] for more details). In this paper, we propose a reduced basis strategy
that permits to control the quality of the reliability analysis. This reduced basis strategy will be
introduced in Section 5. The reduced basis approximation consists in solving Equation (6) in U 0

rb +
{udir}. A key point to justify the use of the reduced basis approximation is that Ns is assumed to be
much smaller than the number of degree of freedom of the FE model NFE (i.e., Ns ≪ NFE).

a(u0
rb(𝜽),u

∗
rb;𝜽) = f (u∗

rb;𝜽) − a(udir, u∗
rb;𝜽) ∀u∗

rb ∈ U 0
rb. (19)



Remark
The computation of udir is performed off-line. The simplest choice is, for a given 𝜽 ∈ D, to fi nd  
udir ∈ {v ∈ Uh; v|ΓD = ud} such that

a(udir, u∗
h;𝜽) = 0 ∀u∗

h ∈ U 0
h . (20)

The reduced basis solution writes

urb(𝜽) = udir +
Ns∑
i=1

𝛼i𝝓
i. (21)

The corresponding stress is defined using the constitutive equation

𝝈rb(𝜽) = C(𝜽)𝜺(udir) +
Ns∑
i=1

𝛼iC(𝜽)𝜺(𝝓i). (22)

By introducing Equation (21) in Equation (19), we build the algebraic system

[K(𝜽)] [𝜶] = [F(𝜽)] . (23)

The elements of [K(𝜽)] and of [F(𝜽)] are defined by

Kij(𝜽) = a(𝝓i,𝝓 j;𝜽) and Fi(𝜽) = f (𝝓i;𝜽). (24)

Thanks to the decomposition (Equation (4)) of C, b, and T, Kij and Fi can be written as a linear
combination of the functions Θc

q(𝜽), Θb
q(𝜽), and ΘT

q (𝜽)

Kij(𝜽) =
Qc∑

q=1

KijqΘq
c(𝜽) and Fi(𝜽) =

Qb∑
q=1

biqΘb
q(𝜽) +

QT∑
q=1

TiqΘT
q (𝜽), (25)

where

Kijq = ∫Ω
Cq𝜺(𝝓i) ∶ 𝜺(𝝓 j)dΩ, biq = ∫Ω

bq · 𝝓idΩ, and Tiq = ∫ΓN

Tq · 𝝓idΓ.

3.2. Stress approach

The first step consists in building a stress 𝝈neu(𝜽) that verifies the FE equilibrium ∀𝜽. Let us introduce
two sets of displacement fields (ub

q, uT
q′ ) ∈ U 0

h , for (q, q′) ∈ {1, … ,Qb} × {1, … ,QT}, such that

a(ub
q, u

∗
h;𝜽) = ∫Ω

bq · u∗
hdΩ and a(uT

q′ , u
∗
h;𝜽) = ∫ΓN

Tq′ · u∗
hdΓ ∀u∗

h ∈ U 0
h . (26)

The stress field 𝝈neu(𝜽) defined by

𝝈neu(𝜽) =
Qb∑

q=1

Θb
q(𝜽)C(𝜽)𝜺(ub

q) +
QT∑

q′=1

ΘT
q′ (𝜽)C(𝜽)𝜺(uT

q′ ) (27)

verifies the equilibrium equation in the FE sense (Equation (28))

∫Ω
𝝈neu(𝜽) ∶ 𝜺(u∗

h) dΩ = f (u∗
h;𝜽) ∀u∗

h ∈ U 0
h . (28)

Let us consider the set of stress fields computed from the snapshot solutions (Equation (17))

𝝈i
rb = C(𝜽i)𝜺(u0

h(𝜽i) + udir) for i ∈ {1, … ,Ns} (29)

and the set of stress fields defined by

Δ𝝈i
rb = 𝝈i

rb − 𝝈neu(𝜽i). (30)



From Equations (17) and (28), it follows that {Δ𝝈i
rb, for i ∈ {1, … , Ns}} is a set of stress fields 

equilibrated to zero in the FE sense. An orthonormal basis {𝜻1, … , 𝜻Ns } is built from Δ𝝈i
rb by a

Gram–Schmidt process with respect to an internal 
e

product ∫Ω𝝈1 ∶ C−1(𝜽)𝝈2 dΩ.
For each parameter 𝜽, an admissible stress field 𝝈 rb is sought in the reduced basis of equilibrated 

stress fields in the FE sense.

𝝈e
rb(𝜽) = 𝝈neu(𝜽) +

Ns∑
i=1

𝛽i𝜻
i. (31)

The coefficients 𝛽 i are computed in order to minimize a distance between the stress field computed
in the reduced basis 𝝈rb(𝜽) = C(𝜽)𝜺(urb(𝜽)) and 𝝈e

rb(𝜽)

J(𝛽1, … , 𝛽Ns
) = ∫Ω

(𝝈rb(𝜽) − 𝝈e
rb(𝜽)) ∶ C−1(𝜽)(𝝈rb(𝜽) − 𝝈e

rb(𝜽)) dΩ. (32)

The minimization of Equation (32) leads to the algebraic system

[S(𝜽)] [𝜷] = [G(𝜽)] . (33)

The elements of [S(𝜽)] and of [G(𝜽)] are defined by

Sij = ∫Ω
C−1(𝜽)𝜻 j ∶ 𝜻 i dΩ (34)

and

Gi = ∫Ω
𝜻 i ∶ (𝜺(urb) − C−1(𝜽)𝝈neu(𝜽)) dΩ. (35)

Thanks to the decompositions (Equations (4) and (5)), Sij and Gi can be written as a linear
combination of the functions Θs

q(𝜽), Θb
q(𝜽), and ΘT

q (𝜽)

Sij =
Qs∑

q=1

SijqΘs
q(𝜽)

Gi = ci0 +
Ns∑
j=1

cij𝛼j −
Qs∑
j=1

⎛⎜⎜⎝
Qb∑

q=1

bijqΘs
j (𝜽)Θ

b
q(𝜽) +

QT∑
q=1

TijqΘs
j (𝜽)Θ

T
q (𝜽)

⎞⎟⎟⎠ ,
where

Sijq = ∫Ω
Sq𝜻 i ∶ 𝜻 j dΩ, ci0 = ∫Ω

𝜻 i ∶ 𝜺(udir) dΩ, cij = ∫Ω
𝜻 i ∶ 𝜺(𝝓j) dΩ

and

bijq = ∫Ω
𝜻 i ∶ SjC(𝜽)𝜺(ub

q)dΩ, Tijq = ∫ΓN

𝜻 i ∶ SjC(𝜽)𝜺(uT
q )dΓ.

4. BOUNDS ON THE QUANTITY OF INTEREST

The computation of error bounds on linear QoI has been developed by many authors [22, 33–35]
for measuring the gap between an exact QoI and a QoI computed from an FE analysis. There is
less work concerning the error bounds between a QoI computed from an FE analysis and a QoI
computed by a reduced modeling approach [36–38]. For any realization of the random vector 𝜽, the
error introduced by the reduced approximation is given by

erb(𝜽) = uh(𝜽) − urb(𝜽); (36)



because of the linearity assumption, one has

Q(erb(𝜽);𝜽) = Q(uh(𝜽);𝜽) − Q(urb(𝜽);𝜽). (37)

Following [33], we consider the following auxiliary problem: Find uaux
h ∈ U 0

h such that

a(u∗
h, u

aux
h (𝜽);𝜽) = Q(u∗

h(𝜽);𝜽) ∀ u∗
h ∈ U 0

h . (38)

As erb(𝜽) ∈ U 0
h , we obtain a first representation of the error on the QoI

Q(erb(𝜽);𝜽) = a(erb(𝜽), uaux
h (𝜽);𝜽). (39)

Let us compute an approximation of uaux
h in the reduced basis U 0

rb

a(u∗
rb, u

aux
rb (𝜽);𝜽) = Q(u∗

rb(𝜽);𝜽) ∀ u∗
rb ∈ U 0

rb; (40)

by using Equations (10) and (19) and remarking that uaux
rb (𝜽) ∈ U 0

rb ⊂ U 0
h , we obtain

a(erb(𝜽), uaux
rb (𝜽);𝜽) = 0. (41)

A second representation of the error on the QoI is obtained by subtracting Equation (41) from
Equation (39):

Q(erb(𝜽);𝜽) = a(erb(𝜽), eaux
rb (𝜽);𝜽), where eaux

rb (𝜽) = uaux
h (𝜽) − uaux

rb (𝜽). (42)

Following [35], the error in the QoI can be written as

Q(erb(𝜽);𝜽) =
1
4
||serb + s−1eaux

rb ||2u,𝜽 − 1
4
||serb − s−1eaux

rb ||2u,𝜽, (43)

where s is a scaling factor and ||u||u,𝜽 = a(u, u;𝜽). Then, for any s, we have the following bounding
properties

−1
4
||serb − s−1eaux

rb ||2u,𝜽 ⩽ Q(erb(𝜽);𝜽) ⩽
1
4
||serb + s−1eaux

rb ||2u,𝜽. (44)

In order to determine the bounds for the error in the QoI, Equation (44) indicates that it is sufficient
to bound the global energy norms of serb − s−1eaux

rb and serb + s−1eaux
rb . In this paper, the methodology

proposed in [26] that is based on the concept of constitutive relation error estimator [39] is used to
build bounds of these errors.

It can be shown that (we refer the reader to [22, 26, 40] for more details)||serb + s−1eaux
rb ||2u,𝜽 ⩽ ||(s𝝈e

rb + s−1𝝈
aux,e
rb ) − (s𝝈rb + s−1𝝈aux

rb )||2
𝜎,𝜽

,

||serb − s−1eaux
rb ||2u,𝜽 ⩽ ||(s𝝈e

rb − s−1𝝈
aux,e
rb ) − (s𝝈rb − s−1𝝈aux

rb )||2
𝜎,𝜽

,
(45)

where 𝝈rb and 𝝈aux
rb are the stresses computed from the reduced basis solutions urb and uaux

rb through
the constitutive equation (Equation (22)), and ||𝜎||𝜎,𝜽 is defined by

||𝜎||2
𝜎,𝜽

=< 𝝈, 𝝈>𝜎,𝜽 with < 𝝈1, 𝝈2>𝜎,𝜽 = ∫Ω
𝝈1 ∶ C−1(𝜽)𝝈2 dΩ.

𝝈e
rb(𝜽) and 𝝈

aux,e
rb (𝜽) are stress fields equilibrated in the FE sense that are computed, for a given value

of 𝜽, as proposed in Section 3.2

∫Ω
𝝈e

rb(𝜽) ∶ 𝜺(u∗
h) dΩ = f (u∗

h;𝜽) and ∫Ω
𝝈

aux,e
rb (𝜽) ∶ 𝜺(u∗

h) dΩ = Q(u∗
h;𝜽).

The value that minimizes the bounds is

sopt =

√||𝝈aux,e
rb − 𝝈aux

rb ||𝜎,𝜽||𝝈e
rb − 𝝈rb||𝜎,𝜽 .



Finally, introducing sopt in Equation (45) provides us the following computable bounds

1
4
||serb + s−1eaux

rb ||2u,𝜽 ⩽ e+rb(𝜽),

1
4
||serb − s−1eaux

rb ||2u,𝜽 ⩽ e−rb(𝜽),
(46)

where

e+rb(𝜽) =
1
2

(||𝝈e
rb − 𝝈rb||𝜎,𝜽 ||𝝈aux,e

rb − 𝝈aux
rb ||𝜎,𝜽+ < 𝝈e

rb − 𝝈rb,𝝈
aux,e
rb − 𝝈aux

rb >𝜎,𝜽

)
e−rb(𝜽) =

1
2

(||𝝈e
rb − 𝝈rb||𝜎,𝜽 ||𝝈aux,e

rb − 𝝈aux
rb ||𝜎,𝜽− < 𝝈e

rb − 𝝈rb,𝝈
aux,e
rb − 𝝈aux

rb >𝜎,𝜽

)
.

(47)

From Equations (37) and (44), it follows that the QoI Q(uh(𝜽);𝜽) is bounded by

Q(urb(𝜽);𝜽) − e−rb(𝜽) ⩽ Q(uh(𝜽);𝜽) ⩽ Q(urb(𝜽);𝜽) + e+rb(𝜽). (48)

Remark
If S does not depend linearly on uh, bounding of the quantity interest is much more difficult and there
are few works addressing the subject. In the case where Q is an L2 norm of the stress or a mean von
Mises stress over a subdomain, it is possible to derive approximate upper bounds as shown in [41].

5. ERROR BOUNDS ON THE FAILURE PROBABILITY AND REDUCED
BASIS ALGORITHM

In the following section, let us assume for the sake of simplicity that the threshold R is a constant
and that the limit state function defined in Equation (12) is

G(𝜽) = R(𝜽) − Q(uh(𝜽);𝜽);

the failure domain Df is defined by

Df = {𝜽; R(𝜽) − Q(uh(𝜽);𝜽) ⩽ 0}.

The failure probability computed by a Monte Carlo method is given by Equation (15)

P̂f =
1

NMC

NMC∑
k=1

1Df
(𝜽k). (49)

5.1. Error bounds on the failure probability

The approximate limit state function computed from the reduced basis analysis is

Grb(𝜽) = R(𝜽) − Q(urb(𝜽);𝜽).

The reduced basis failure domain is defined by

Drb
f = {𝜽; R(𝜽) − Q(urb(𝜽);𝜽) ⩽ 0}.

The approximate failure probability computed by a Monte Carlo method is given by

P̂rb
f = 1

NMC

NMC∑
k=1

1Drb
f
(𝜃k), (50)

and from Equation (48), the following computable bounds of the limit state function G(𝜽) are
obtained

G−
rb(𝜽) ⩽ G(𝜽) ⩽ G+

rb(𝜽), (51)



where

G−
rb(𝜽) = Grb(𝜽) − e+rb(𝜽) and G+

rb(𝜽) = Grb(𝜽) + e−rb(𝜽). (52)

Let us introduce the failure domain associated with the lower bound and the upper bound of the
limit state function and the associated failure probabilities

D+
f = {𝜽; Grb(𝜽) − e+rb(𝜽) ⩽ 0} and D−

f = {𝜽; Grb(𝜽) + e−rb(𝜽) ⩽ 0},

P̂+
f = 1

NMC

NMC∑
k=1

1D+
f
(𝜽k) and P̂−

f = 1
NMC

NMC∑
k=1

1D−
f
(𝜽k). (53)

As D−
f ⊂ Df ⊂ D+

f , we obtain the following bounds for the failure probability

P̂−
f ⩽ P̂f ⩽ P̂+

f . (54)

Remark
It must be noticed that the obtained bounds concern the failure probability P̂f computed from a
Monte Carlo simulation. The quality of the Monte Carlo simulation will be classically assessed in the
examples presented in Section 6 via the central limit theorem and the computation of a confidence
interval.

Furthermore, to control the reduced basis algorithm, an error estimator 𝜀G(𝜽), which is an upper
bound on the error on the limit state function eG(𝜽) = |G(𝜽) − Grb(𝜽)|, is introduced

eG(𝜽) ⩽ 𝜀G(𝜽) = max(e−rb(𝜽), e
+
rb(𝜽)). (55)

Properties:

1. If for all 𝜽 k, 𝜀G(𝜽 k) = 0 then P̂−
f = P̂+

f = P̂f .

2. If P̂−
f = P̂+

f , then 𝜀G(𝜽 k) = 0 for all 𝜽 k and P̂f = P̂−
f = P̂+

f .

5.2. Reduced basis algorithm

The initial step of the algorithm consists in computing a displacement field udir satisfying the bound-
ary conditions (Equation (20)) and a stress field 𝝈neu(𝜽) satisfying the equilibrium in the FE sense
(Equations (26) and (27)). The computation of udir and 𝝈neu(𝜽) involves the choice of a particular
value of 𝜽 denoted 𝜽; a simple choice is to use the mean value of the random vector 𝜽 = E[𝜽]. This
value will also be used in the Gram–Schmidt orthonormalizing algorithm. The Monte Carlo simu-
lation process starts generating a sample of 𝜽 denoted 𝜽1, which is used to compute the initial vector
of the displacement reduced basis 𝝓1 = u0

h(𝜽1) from Equation (17) and the initial vector of the stress
reduced basis 𝜻1 = Δ𝝈1

rb from Equations (29)–(30).
From this initial reduced basis, the idea is to improve the reduced basis during the Monte Carlo

simulation process, increasing the number of elements in the reduced basis only when it is required.
An admissibility criterion is required to control the algorithm. A prescribed tolerance 𝜏 is set. The
reduced basis will be improved for a given Monte Carlo sample 𝜽i if the state of the structure (safe
or failure) cannot be certified and the error estimator on the limit state function 𝜀G(𝜽i) is greater than
𝜏. The algorithm is described in Algorithm 1.

Let us denote by U 0,N
rb = span {𝝓1, … ,𝝓N} and S 0,N

rb = span {𝜻1, … , 𝜻N} the reduced basis
spaces that have been generated along with the n Monte Carlo samples 𝜽i (i ∈ {1, … , n}). For the
next Monte Carlo sample 𝜽n+1, an approximate solution urb(𝜽n+1) of uh(𝜽n+1) is computed in the
reduced basis space U 0,N

rb . The approximate limit state function Grb(𝜽n+1) is computed as well as its
upper bound G+

rb(𝜽n+1) and lower bound G−
rb(𝜽n+1) (Equation (52)). In order to estimate the failure

probability, we need to count the number of samples that belongs to the failure domain. Let us denote
Nrb

f the number of samples 𝜽i where Grb(𝜽i) ⩽ 0, N+
f the number of samples where G−

rb(𝜽i) ⩽ 0, and
N−

f the number of samples where G+
rb(𝜽i) ⩽ 0. Three cases need to be distinguished:



• If G−
rb(𝜽n+1) > 0, then G(𝜽n+1) > 0 (Equation (52)), and the accuracy of the reduced basis

approximation is sufficient to ensure that the structure is in a safe state;
• if G+

rb(𝜽n+1) ⩽ 0, then G(𝜽n+1) ⩽ 0 (Equation (52)), and the accuracy of the reduced basis
approximation is sufficient to ensure that the structure is in a failure state;

• if G−
rb(𝜽n+1) ⩽ 0 and G+

rb(𝜽n+1) > 0, then the accuracy of the reduced basis approximation is
not sufficient to certify the state of the structure.

In the first and second cases, there is no need to improve the reduced basis and the Monte Carlo
simulations are continued by generating the next sample. In the third case, the reduced basis is
improved only if the error estimator on the limit state function is greater than a fixed tolerance
𝜀G(𝜽n+1) ⩾ 𝜏: Equation (17) is solved in the FE space, and new reduced basis spaces are constructed
U 0,N+1

rb = span {𝝓1, … ,𝝓N+1} and S 0,N+1
rb = span {𝜻1, … , 𝜻N+1}.



• If a new vector of the reduced basis is generated from 𝜽i, then uh(𝜽i) is computed and no error
due to the reduced basis approximation is introduced: G(𝜽i) = G+

rb(𝜽i) = G−
rb(𝜽i). Hence, if

Grb(𝜽i) ⩽ 0, N+
f , Nrb

f and N−
f are increased by one altogether.

• If urb(𝜽i) is computed from the current reduced basis, G−
rb(𝜽n+1) ⩽ 0, G+

rb(𝜽n+1) > 0, and
𝜀G(𝜽n+1) < 𝜏, then the failure state of the structure is not determined accurately by the reduced
basis approximation and only the upper bound N+

f is increased by one (the value of Nrb
f being

modified accordingly to the value of Grb(𝜽i)).

The reduced basis failure probability P̂rb
f and the bounds P̂−

f and P̂+
f of the failure probability P̂f

are then easily computed

P̂rb
f =

Nrb
f

NMC
, P̂+

f =
N+

f

NMC
, P̂−

f =
N−

f

NMC
.

6. NUMERICAL EXAMPLES

6.1. Example 1

The first example is a plate with two rectangular holes proposed in [21]. The structure is submitted,
in plane strain, to a normal traction P = 20 MPa applied along the vertical edge, and the plate is
considered to be composed of three different materials. The symmetry of the problem allows to study
only one-fourth of the plate as shown on Figure 1. The Poisson ratios are fixed 𝜈1 = 𝜈2 = 𝜈3 = 0.30.
The Young’s moduli Ei are random independent variables such that their cumulative distribution
function is uniform on [184.5, 225.5]GPa. The QoI considered here is the average displacement on
the line L𝜔.

Q(u(𝜽),𝜽) = 1
mes(L𝜔)∫L𝜔

u(𝜽) · n𝜔dl.

The limit state function is given by

G(𝜽) = u − Q(𝜽),

where u is set to 10−4. Figure 2 shows the mesh used for the FE analysis. A direct Monte Carlo simu-
lation is performed, with the complete FE model, using nMC = 1000 as a reference value. The failure

Figure 1. Example 1: thick plate studied.



Figure 2. Example 1 mesh: six-node triangular elements – 2122 DoF.

Table I. Example 1: computed failure probability and bounds.

𝜏 0.1 0.05 10−2 10−3 10−4 Reference

P̂rb
f (10−2) 6.7 9.1 8.5 8.5 8.5 8.5

P̂+
f (10−2) 24.1 10.9 8.8 8.6 8.5 —

P̂−
f (10−2) 1.6 7.5 8.4 8.5 8.5 —

Nmax
s 2 3 3 4 5 —

probability obtained is P̂f = 8.5×10−2 and the 95% confidence interval is [6.77×10−2, 10.2×10−2].
The coefficient of variation 𝛿 obtained from Equation (16) is 𝛿 = 10.8% and shows that the number
of Monte Carlo simulations is sufficient for this example.

Five Monte Carlo simulations (nMC = 1000) are then performed with the reduced basis algorithm
for different values of the tolerance 𝜏. For each simulation, we use the same set of random values
for the Young’s moduli. The results are shown in Table I where the fixed tolerance 𝜏, the failure
probability computed with the reduced basis approach P̂rb

f , its upper and lower bounds P̂+
f and P̂−

f ,
and the maximum number of computed snapshots Nmax

s have been reported. The number of elements
in the basis increases when the tolerance 𝜏 decreases. However, the same number of elements in the
basis does not lead to the same bounds as it is shown for 𝜏 = 0.05 and 𝜏 = 0.01 where the number
of elements in the basis is 3 and the obtained bounds are clearly different. It can be observed that
five snapshots are sufficient to obtain a gap between the bounds equal to zero and thus to ensure
that the failure probability computed by reduced basis approach is equal to the failure probability
that will be obtained by an FE approach. (The elements of the generated reduced basis are shown
in Figure 3). That means that the whole Monte Carlo algorithm requires only five complete FE
computations. If we take into account that the 95% confidence interval is [6.77× 10−2, 10.2× 10−2],
it is clear that obtaining an exact evaluation of P̂f is an overkill and that tolerance 𝜏 = 10−2 is
sufficient to obtain reasonable bounds for P̂f (i.e., P̂+

f −P̂−
f is small compared with the 95% confidence

interval).
The evolution of the number of snapshots as a function of the number of Monte Carlo throws for

different values of 𝜏 is shown in Figure 4.



Figure 3. Example 1: reduced basis.

Figure 4. Example 1: number of elements in the reduced basis as a function of the number of Monte Carlo
throws.

6.2. Example 2

The second example concerns a composite structure composed of two layers linked by an interface
(Figure 5). The structure is submitted, in plane strain, to a uniform normal traction P applied along
the lower and upper surfaces. We study the probability of propagation of a finite crack of length
a. The deterministic parameters are the value of the traction P = 10106, the resistance to crack
propagation Kc = 5106, the crack length a = 0.15, the length of the structure L = 0.6, the thickness
of the layers eL = 0.14, the thickness of the interface eI = 0.02, and the radius of the fibers r = 0.05



Figure 5. Example 2: composite structure studied.

Table II. Example 2: statistical properties of random variables.

Random variable Distribution Mean Minimum Maximum

EFi Uniform 1.01011 0.91011 1.11011

EM Uniform 1.01010 0.91010 1.11010

EI Uniform 1.0109 0.9109 1.1109

Figure 6. Example 2 mesh: six-node triangular elements – 1800 DoF.

and their positions. The random parameters, as defined in Table II, are the Young’s moduli of the
materials 𝜽 = (EF1,EF2,EF3,EF4,EM,EI) (where Fi denotes the fibers, M denotes the matrix, and I
denotes the interface). The Poisson ratios are set to 0.3. Figure 6 shows the six-node triangular mesh
used for the FE analysis.

Let us denote by KI(𝜽) the stress intensity factor at the crack tip. The limit state function is
given by

G(𝜽) = Kc − KI(𝜽).

The calculation of the KI consists in an integral around an arbitrary crown 𝜔 defined in the interface
around the tip of the crack

KI(𝜽) = Q(u(𝜽),𝜽) = ∫
𝜔

(
C(EI)𝜺(𝜙ũI) − 𝜙𝝈̃I(EI)

)
∶ 𝜺(u(𝜽)) d𝜔 − ∫

𝜔

𝝈̃I(EI)grad(𝜙) · u(𝜽) d𝜔,

(56)

where 𝝈̃I and ũI are singular analytical solutions computed at the crack tip and 𝜙 a function defined
on 𝜔 (for further details, see [20, 42]). Because of linearity property, it is easy to see that the extractor



Table III. Example 2: computed failure probability 
and bounds.

𝜏 10−1 10−2 10−3 10−4

P̂rb
f (10−2) 5.90 5.65 5.65 5.65

P̂+
f (10−2) 36.55 6.10 5.65 5.65

P̂−
f (10−2) 0.10 4.85 5.55 5.65

Nmax
s 3 7 9 11

Figure 7. Example 2: failure probability P̂rb
f , P̂+

f , and P̂−
f as a function of Monte Carlo throws for 𝜏 = 10−2.

that defines the output of interest can be decomposed as the sum of functions of 𝜽 multiplied by
deterministic functions of x.

Q(u(𝜽),𝜽) =
(

EI

Eref

)(
∫
𝜔

ΣΣ ∶ 𝜺(u(𝜽)) d𝜔 − ∫
𝜔

bΣ · u(𝜽) d𝜔

)
, (57)

where Eref > 0 is an arbitrary scalar and

ΣΣ =
(
C(Eref )𝜺(𝜙ũI) − 𝜙𝝈̃I(Eref )

)
and bΣ = 𝝈̃I(Eref )grad(𝜙).

A direct Monte Carlo simulation is performed, with the complete FE model, using nMC = 2000 as a
reference value. The failure probability obtained is P̂f = 5.65×10−2 and the 95% confidence interval
is [4.64× 10−2, 6.66× 10−2]. Then, four Monte Carlo simulations (nMC = 2000) are performed with
the reduced basis algorithm for different values of the tolerance 𝜏. For each simulation, we use the
same set of random values for the Young’s moduli. The results are shown in Table III where the fixed
tolerance 𝜏, the failure probability computed with the reduced basis approach P̂rb

f , its upper and lower

bounds P̂+
f and P̂−

f , and the maximum number of computed snapshots Nmax
s have been reported.

Figure 7 represents the evolution of the failure probability P̂rb
f , its upper bound P̂+

f , and its lower

bound P̂−
f as a function of the Monte Carlo throws for a tolerance 𝜏 = 10−2. This tolerance is sufficient

to obtain bounds smaller than the bounds obtained for the 95% confidence interval.
Table IV shows the evolution of the failure probability and of the number of the elements in the

reduced basis when the interval of the uniform probability distribution Emax − Emin increases. The
mean value proposed for each material in Table II is conserved, and we introduce a parameter 𝜆 such
that Emax = (1 + 𝜆)Emean and Emin = (1 − 𝜆)Emean. Failure probability predictability increases with
𝜆 as well as the number of elements in the reduced basis. As shown in Equation (16), for a given



Table IV. Example 2: computed failure probability and bounds.

𝜆 0.1 0.2 0.4 0.6 0.8

P̂rb
f (10−2) 5.65 21.9 36.5 43.0 47.7

P̂+
f (10−2) 6.10 22.6 37.6 43.8 48.4

P̂−
f (10−2) 4.85 21.2 35.3 42.0 46.6

Upper bound of the confidence interval (10−2) 6.66 23.7 38.6 45.1 45.5

Lower bound of the confidence interval (10−2) 4.64 20.0 34.3 40.8 50.6

Nmax
s 7 8 11 14 20

Table V. Example 2: computed failure probability and bounds.

KIC(106) 4.90 5.00 5.05 5.10

nMC 2000 2000 5000 80, 000

P̂rb
f (10−2) 24.8 5.65 1.56 0.103

P̂+
f (10−2) 29.7 6.10 2.14 0.224

P̂−
f (10−2) 21.8 4.85 1.16 0.028

Upper bound of the confidence interval (10−2) 26.6 6.66 1.90 0.125

Lower bound of the confidence interval (10−2) 22.8 4.64 1.22 0.080

Nmax
s 7 6 6 6

coefficient of variation 𝛿, the required number of Monte Carlo throws increases with the reduction
of the failure probability. Table V shows the evolution of the failure probability and the evolution of
the number of the elements in the reduced basis when the resistance to crack propagation increases,
as well as the number of Monte Carlo throws used to take into account the reduction of the failure
probability (for this simulation, we use the statistical data given in Table II and 𝜏 is set to 10−2). It
can be seen that there is no increase in the number of elements in the reduced basis and that six FE
computations are sufficient to accurately estimate the failure probability.

7. CONCLUSIONS

This paper describes a new strategy to generate a reduced basis in the context of a reliability analysis
based on the Monte Carlo algorithm. The reduced basis vectors are chosen in order to control the
quality of the estimation of the limit state function. An error estimator on the QoI based on the error
in the constitutive relation is used to compute an upper bound as well as a lower bound of the failure
probability obtained by the Monte Carlo algorithm. The presented examples in 2D elasticity show
that few FE computations are necessary to generate a reduced basis that leads to bounds of the same
order of magnitude as a 95% confidence interval.
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