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Abstract

A finite element analysis of large 3D microstructures of randomly distributed

particles is proposed to investigate the influence of particle debonding and frag-

mentation on void coalescence. This analysis is possible thanks to recent devel-

opments in parallel automatic remeshing techniques tailored for simulations of

microstructures undergoing large deformations. These techniques are extended

herein to model void nucleation by particle debonding and fragmentation. Mi-

cromechanical simulations of a model material with 20% particle volume fraction

show that void nucleation leads to an early plastic strain localization micromech-

anism that favors void coalescence and reduces ductility significantly.

Keywords: ductile fracture; void nucleation; void growth; void coalescence;

metal matrix composites

1. Introduction

Among recent efforts in materials science, the development of more pre-

dictive and general constitutive models based on micromechanical criteria has

gained an increasing interest. Thanks to progresses in experimental means, the

in situ observation of ductile fracture’s void nucleation, growth and coalescence
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phenomena in full 3D is now possible [1, 2, 3, 4, 5]. Incorporating these observed

micromechanisms into constitutive models requires a thorough analytical and/or

numerical analysis and comparisons with experiments [6, 7]. However, both an-

alytical and computational models do not yet address conditions that are fully

comparable to what is observed in experiments.

Very restrictive assumptions of a single spherical void embedded in a perfectly

plastic von Mises matrix under specific loading conditions were used by Gurson

in his well-known fundamental work [8]. Many analytical developments have

generalized Gurson’s yield criterion to an ellipsoidal void shape and more gen-

eral loading conditions [9, 10, 11, 12], and to complex matrix behavior [13, 14].

Similarly, some FE analysis studies have considered microstructures consisting

of a single void, or a periodic array of voids [15, 16, 17, 18]. However, metal al-

loys feature particles and considering them as voids means neglecting their effect

on the load carrying capacity, and the influence of void nucleation mechanisms.

The influence of the particles and their debonding from the matrix has been

considered in Refs. [19, 20, 21], with a restriction to periodic arrays of particles.

The competition between particle debonding and fragmentation for these peri-

odic arrangements is neglected in most studies, with the exception of Ref. [21].

Idealized microstructures such as periodic arrays of voids or particles are not

representative of real ductile materials, which feature random arrangements of

voids and particles. Random arrangements of particles with a debonding model

have been addressed in Ref. [22], while a fragmentation model has been used

in Ref. [23]. Random arrangements of voids have also been considered in the

literature [24, 25].

In spite of this substantial literature, a number of assumptions still have to be

investigated. The number of particles modeled in most 3D FE analysis studies

is generally not large enough to statistically represent the random distribution

of particles found in real materials [26, 27]. The competition between the two

void nucleation mechanisms of particle debonding and fragmentation, and their

interaction with void coalescence at large plastic strains have not been inves-

tigated yet for large and random 3D arrangements [7]. There is definitely an
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interest for a parallel numerical framework enabling for simulations of large 3D

microstructures with a representative number of randomly distributed parti-

cles [27], as well as for numerical methods that can be used to model particle

debonding and fragmentation, and void coalescence [21]. An attempt to de-

velop such framework has been proposed in a previous work by the authors,

and successfully applied to the 2D full field modeling of a representative num-

ber of randomly distributed voids [28, 29] and particles [30]. Particle debonding

and fragmentation criteria were introduced [30], as well as a void coalescence

criterion [29]. These developments nevertheless suffered from several limitations

that did not enable for large scale 3D simulations.

In this paper, these limitations are addressed thanks to recent numerical

developments. Then, a FE micromechanical analysis is proposed that accounts

for both particle debonding and fragmentation, and the growth and coalescence

of the nucleated voids, at large plastic strains and for large 3D microstructures.

The main objective of this analysis is to show the relevance of a simultaneous

modeling of both void nucleation and coalescence, and to reveal interactions

between these two phenomena, with a major influence on ductility.

The existing numerical framework is described in Section 2, while new methods

and micromechanical models introduced for the purpose of the present analysis

are presented in Section 3. This improved FE analysis tool is then applied to

show the influence of void nucleation on localization and void coalescence in

Section 4.

2. Numerical framework

2.1. Constitutive modeling

The domain is a 2D or 3D Representative Volume Element (RVE) generally

composed of a matrix, particles, and voids. In the present framework all phases

are meshed, with the use of a conform FE meshing strategy at boundaries

between different phases. A particularity of the present framework is that voids

are also meshed, meaning that there are mesh elements inside cracks. These
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elements are only used for remeshing purposes, and measurement of void volume

fraction, but have no stiffness or constitutive behavior. Their effect is hence no

different than actual voids (that would not be meshed).

Hooke’s law is used to model elasticity in both matrix and particles. In addition,

a von Mises yield criterion is used for the matrix, with power hardening law [31]

σ0(ε) = σy +K (ε)
n

(1)

where ε is the equivalent (von Mises) plastic strain, σy the yield stress, K

the plastic consistency and n the hardening exponent. Particles are considered

elastic brittle and hence assumed to debond or fragment before yielding can

occur [32, 23, 20, 22]. Fracture criteria are detailed in Section 3.

To reach large strains, an updated Lagrangian formulation is used where a static

load is applied progressively using small increments. Each increment consists

in solving continuum mechanics equations and then applying the computed

displacements to move mesh nodes. Because of incompressible plastic behavior

in the matrix, and the use of triangular (2D) and tetrahedral (3D) elements, a

mixed velocity-pressure formulation solved using a P1+/P1 element is adopted

to avoid locking [33]. The nonlinearity of this formulation, due to the plastic

behavior of the matrix, is solved implicitly using a Newton-Raphson scheme

[34].

2.2. Mesh motion and adaption

The key aspects of the present framework are linked to remeshing and the

mesh motion step that is applied at the end of each load increment. These

algorithms enable for simulations featuring large void growth ratios and com-

plex topological events such as void coalescence. The mesh motion algorithm

first tries to move mesh nodes to their final positions by applying the computed

displacement directly. If element flipping is detected (by computing element

volumes), nodes are moved back to intermediary positions by dividing the dis-

placement by two. This subdivision is applied recursively until the displacement

is small enough so that no flipping is detected [35]. Remeshing is then operated
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with the expectation that the new mesh will render a motion towards final po-

sitions possible. If not, the same procedure is applied again until final positions

are reached.

Both this mesh motion and the mesh adaption algorithm used at each motion

iteration were introduced in previous works [36, 29, 35], and are hence only

summarized herein. The main properties of the mesh adaption algorithm are

that:

• It will try to maximize the volume of each element to reduce the risk of

element flipping, while also accounting for a mesh size criterion [37], and

preserving phase boundaries [29]. A volume conservation constraint is also

added to preserve at best the volume of each phase, though this constraint

can be relaxed to eliminate degenerated elements of very low volume [35].

• The mesh size criterion is isotropic but varies locally based on the local

maximum principal curvature at phase boundaries. The aim is to cap-

ture fine features (e.g., small particles, crack tips) as well as coarse ones

[29]. The maximum principal curvature of a boundary can be shown to be

linked to the second derivatives of the distance functions to that bound-

ary [38]. These derivatives are computed using an efficient and parallel

distance computation algorithm [36], then followed by a parallel second

order superconvergent patch recovery technique [29].

Lastly, fracture indicators presented in Section 3 require the computation

of element-wise tags to distinguish between different particles and particle frag-

ments. This is not a trivial operation since the FE mesh is distributed among

multiple computing units, and both mesh and particles distributions evolve due

to remeshing and particle fragmentation. This tracking of particle tags is per-

formed using an automatic and parallel connected components identification

algorithm developed in a previous work [39].
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3. Improvements for full field 3D simulations of void nucleation

3.1. Void nucleation modeling

3.1.1. Crack meshing method

Thanks to the numerical framework detailed in Section 2, RVE simulations

can be performed. In a previous work [30], a region deletion technique was

developed where quite large cracks with rounded crack tips were introduced to

model crack initiation and propagation. In this section, a novel crack modeling

method is proposed to capture fine cracks with sharp crack tips. It has the

added advantage that mass loss issues linked to the region deletion technique

are drastically reduced.

The proposed method relies on Level-Set (LS) functions and automatic interface

meshing. The LS function associated to a closed surface Γs = ∂Ωs is defined

as the distance field to ∂Ωs, multiplied by −1 for points that are out of Ωs

[40]. The use of LS functions for crack modeling is inspired from the X-FEM

framework [41]. The crack surface, which is generally an open surface, is lin-

early extended to the whole computational domain and an LS function φc is

associated to this extended closed surface Γc. This LS function φc is positive

on one side of Γc, and negative on the other side. Another surface Γf delimits

the region of the domain Ωf occupied by the actual crack (generally an open

surface), so that its associated LS function φf is positive inside Ωf , and negative

outside. The automatic interface meshing algorithm consists in adding to the

FE mesh all intersections between Γc and mesh edges that have a positive φf

value on at least one of their ends, as well as all intersections between Γc and

Γf . This algorithm is an extension of the interface fitting algorithm introduced

in a previous work [29].

To avoid numerical issues in the FE code due to superimposed nodes, cracks

are initially modeled with a small opening εc, which is at least one order
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of magnitude lower than mesh size1. Thus, the crack surface Γc is in the

implementation defined by two crack faces Γ+
c and Γ−c that are not initially

perfectly superimposed. By convention, the LS function associated to Γ+
c is

φ+
c = φc, and the LS function associated to Γ−c is φ−c = −(φc + εcχf ), where

χf (x) = 1 if φf (x) > 0, 0 otherwise. This definition ensures that the two crack

faces join on Γf in order to form the crack tip.

The main advantage of the proposed approach over the X-FEM is that cracks

are explicitly meshed; hence unstructured mesh adaption can be used to track

the deformation of crack faces and to model large void growth ratios and void

coalescence. This computational fracture mechanics approach is illustrated in

the following in the case of particle debonding and fragmentation.

(a) (b)
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Γf

Γc

Γc

Γf

lD

ϵf

void/crack

matrix

particle
+

-

Γc
+

Γc
-

Figure 1: Definitions of the crack faces LS functions φ+c and φ−c , the filter LS function φf , and

numerical parameters for void nucleation modeling by: (a) particle debonding, (b) particle

fragmentation. Both εc and εf are exaggerated on this figure for sake of illustration.

3.1.2. Particle debonding

A simple critical interface stress criterion is used to model particle debond-

ing. While the interface stress was defined as a linear combination of normal

1Mesh adaption would merge nodes that are superimposed [35]. A proper computational

contact mechanics implementation will be investigated in the future to solve this issue.
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and tangential stresses in a previous work, the effect of tangential stresses is

not considered herein due to an absence of experimental data. Particle debond-

ing is hence predicted when the local normal stress σn at any mesh face of the

particles/matrix interface reaches a critical value σDc . To avoid any mesh size

dependency, crack initiation is not restricted solely to that mesh face but to

a neighborhood in a radius `D. The crack LS function φc = φ+
c to the crack

surface is hence defined at mesh nodes as negative inside the concerned particle,

and positive inside the matrix. The filter LS function φf is defined as positive

inside the sphere of radius `D centered on the concerned mesh face, and negative

outside this sphere. This definition of the crack geometry is illustrated in Fig.

1(a). Elements with positive φ+
c , φ−c = −(φc + εcχf ), and φf are added to the

void phase, and thus removed from the matrix phase. It is reminded that due to

the very low value of εc (exagerated in Fig. 1(a)), this loss of mass is negligible,

as opposed to previous work [30].

3.1.3. Particle fragmentation

The particle fragmentation criterion requires a more thorough analysis. First,

particle fragmentation is assumed as instantaneous, as crack propagation inside

particles of ≈ 10 µm size is a phenomenon that would require an analysis at a

spatial scale finer than the microscale, and an extremely fine time scale. Second,

an instantaneous fragmentation criterion requires a fracture indicator represen-

tative of the whole particle. In a previous work [30], a local critical first principal

stress σ1 criterion was used. The crack surface was defined as orthogonal to the

first principal direction. Because σ1 often reached large values close to the in-

terface, this criterion led to non physical fragmentation cracks normal to the

interface [30]. To avoid this issue, a non local criterion is proposed [42]. The

first principal stress is averaged on the whole particle, and the first principal

direction is taken at the σ1-weighted center Gp of the particle Ωp

Gp =
1∫

Ωp
σ+

1 (x)dx

∫
Ωp

σ+
1 (x)xdx. (2)
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The positive part σ+
1 (x) is defined as σ+

1 (x) = σ1(x)χ(σ1(x)). In the present

framework with linear FEs, σ1 is computed by diagonalization of the Cauchy

stress tensor σ, which is defined element-wise. The coordinates x in Eq. (2)

are hence the coordinates of the barycenter of each element. The characteristic

function χ(σ1(x)) filters out elements with zero or negative first principal stress,

which represent parts of the particle that are under compression and not carry

any tensile load. Similarly, the particle fragmentation indicator σ1 is defined as

σ1 =
1∫

Ωp
χ(σ1(x))dx

∫
Ωp

σ+
1 (x)dx. (3)

Fragmentation is predicted if σ1 reaches a critical value σFc and Gp belongs to an

element of Ωp with positive σ1. The first principal direction at that element is

chosen as the normal vector to the crack surface, which is defined as a plane. The

crack LS function φc = φ+
c is defined as positive on one side of this plane, and

negative on the other side. The filter LS function φf is defined as positive inside

the particle, and negative outside. To ensure that all mesh elements and nodes

of the two particle fragments are effectively separated, this filter LS function is

extended with an artificial thickness εf . This definition of the crack geometry is

illustrated in Fig. 1(b). Elements with positive φ+
c , φ−c = −(φc + εcχf ), and φf

are added to the void phase, and thus removed from the particle. Because of the

artificial fragmentation crack extension length εf , some elements are removed

from the matrix phase. A similar criterion with artificial crack extension can be

found in Ref. [42].

3.1.4. Summary of fracture parameters

As a conclusion, two stress-based fracture criteria have been formulated.

Debonding is predicted based on the normal stress at the interface, and leads

to a crack at a part of the matrix/particles interface. This model adds two

parameters σDc and `D. Fragmentation is predicted based on the average first

principal stress per particle, and leads to a crack across a whole particle. This

model adds a parameter σFc . The numerical method used to insert these cracks

through LS functions and mesh adaption requires two numerical parameters εc
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and εf .

All parameters are summarized in Tab. 1. Thanks to these models, the two

modes of void nucleation can be predicted and modeled during RVE simula-

tions. This evaluation of the criteria and the subsequent modifications on the

microstructure and the mesh are performed at the beginning of each load incre-

ment, resulting in a weak coupling between the nucleation models and consti-

tutive equations. Time step sensitivity is investigated in the Appendix.

criterion material parameter(s) numerical parameter(s)

debonding σDc (MPa) `D (µm), εc (µm)

fragmentation σFc (MPa) εf (µm), εc (µm)

Table 1: Material and numerical parameters for the void nucleation criteria.

3.2. Boundary conditions

As widely used in RVE simulations [6], periodic boundary conditions are

imposed2. A cubic RVE is used where:

• A constant normal tensile velocity vα is applied on the upper face.

• Symmetry boundary conditions are applied on the lower, left, and back

faces.

• A constant normal compressive velocity vβ is applied on the remaining

faces.

This RVE is illustrated in Fig. 2, along with a similar setting for 2D plane strain

simulations. The word RVE is used to denote the meshed domain, although in

strict sense the unit cell that is actually being periodically repeated is the whole

domain in Fig. 2. This is evidenced in Fig. 3.

2Strain localization patterns may be influenced by the choice of periodic boundary condi-

tions at late stages of loading, close to final failure. Thus, the present analysis will focus on

early localization and void coalescence events. More appropriate choices of boundary condi-

tions are being investigated [43, 44].
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(a) (b)

vα

vβ

vα

vβ vβ

vβ
vβ

vβ

vα

vα

Figure 2: RVE under axisymmetric tension in: (a) 2D, (b) 3D. Thanks to symmetry boundary

conditions, the part in light color is not meshed.

Figure 3: Example of 2D periodic microstructure with symmetries, the part in light color is

not meshed.

While the velocity vα is fixed, the value of vβ is controlled in order to

maintain a constant macroscopic stress state within the RVE. The macroscopic

Cauchy stress tensor Σ is defined as the average of the Cauchy stress tensor

σ over the RVE [6]. To identify the stress state, three invariants of Σ and its
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deviatoric part Σ′ are defined

Σm =
Σii
3
,

Σ =

√
3

2
Σ′ijΣ

′
ij ,

J3 = det(Σ′),

(4)

where Σm is the macroscopic mean stress, Σ the macroscopic von Mises equiv-

alent stress, and J3 the third invariant of the macroscopic deviatoric stress

tensor. The first two invariants Σm and Σ are used to define the macroscopic

stress triaxiality ratio η

η =
Σm

Σ
. (5)

A detailed presentation of these invariants and their values for some widely used

specimen geometries can be found in Ref. [45]. In particular, the axisymmetric

tension condition used herein is identified by J3 = 0. A triaxiality ratio η � 1

3
means increasing tensile stresses in the directions perpendicular to the load-

ing direction, while a triaxiality ratio η � −1

3
means increasing compressive

stresses in the directions perpendicular to the loading direction. The remaining

range −1

3
≤ η ≤ 1

3
corresponds to shear-dominant conditions.

All these settings are interesting as they can be met locally in various material

forming processes and also during extreme events, and no model existing in the

literature succeeds in predicting damage change for any J3 and any η [46, 45].

RVE calculations with more and more accurate microscopic models are hoped

to give some clues on how to build such a model.

As stated above, J3 = 0 due to loading axisymmetry. A linear search algorithm

has been implemented to find the value of vβ that would yield a desired macro-

scopic stress triaxiality ratio η.

While the problem is well-defined initially, crack initiation and propagation

events may split the domain so that boundary conditions are not completely

defined for some regions. This is avoided herein by automatically removing

these isolated regions, as illustrated in Fig. 4. This treatment may have an
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influence for nonproportional loading paths (e.g., cracks opened under tension

may close under shear or compression) but is acceptable for the present study

where only monotonic tensile loading is considered.

(a) (b)

Figure 4: Elimination of matrix regions and particle fragments that could lead to rigid body

modes during mechanical solution: (a) initial 2D microstructure with rigid body modes, (b)

resulting microstructure after the numerical treatment.

4. Application

The main objective of the following simulations is to show that void nucle-

ation induces an early localization mechanism before the onset of void coales-

cence, reducing drastically ductility. Sensitivity of the results with respect to

numerical parameters, which include the mesh refinement parameters, the load

step, εc and εf , is investigated in the Appendix. Using the reference numerical

parameters chosen in the Appendix, reliable results are obtained in terms of av-

eraged quantities, but discussions regarding local phenomena such as the crack

propagation path can be only qualitative. A systematic experimental-numerical

validation framework will be considered in future work to enable quantitative

comparisons [43, 44].

4.1. Material

An interesting experimental study on void nucleation can be found in Ref.

[47], where ductile fracture of a particle reinforced aluminum alloy was investi-
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gated. This material was composed of an aluminum matrix reinforced with 20%

of Zirconia-Silica (ZS) particles, and particle fragmentation was observed to be

the dominating void nucleation mechanism.

In Ref. [47], material parameters were identified for the matrix by carrying

tensile tests on purely matrix material specimens, and for the particles by using

nanoindentation. Some uncertainties may arise due to the limitations of these

identification techniques. First, the forming process is different for the purely

matrix material and the reinforced one, so the behavior of the matrix may also

be different. Second, nanoindentation can only be applied to the particles at

the surface of the specimen, hence some differences may apply due to polishing

for instance.

Nevertheless, such advanced identification is not commonly found in the litera-

ture. In particular, the fracture properties of the particles were also determined

and are given in Tab. 2. These properties were determined by comparing X-ray

tomography data acquired in situ with RVE calculations. The latter considered

a single particle with periodic boundary conditions. The macroscopic equivalent

plastic strain was identified by measuring the section reduction of the specimen,

while the macroscopic stress triaxiality was determined using Bridgman’s for-

mula.

Material behavior

Phase E (MPa) ν σy (MPa) K (MPa) n

Matrix 72000 0.33 270 580 0.54

Particles 123000 0.23 ∞

Fracture criteria
Phase σDc (MPa) `D (µm) σFc (MPa)

Particles 1060 10 700

Table 2: Material parameters for the Al2124 matrix and the ZS particles, including fracture

criteria parameters [47], to which is added the numerical parameter `D. Young’s modulus is

denoted E and Poisson’s ratio ν, while plastic properties refer to Eq. (1).

In the present study, particles are considered as spherical, with radii dis-

tributed according to a normal law of mean value 20 µm and standard deviation
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5 µm [48]. To generate virtual microstructures, a set of particle radii is first

generated based on the given normal law. The size of the RVE is a user-defined

parameter. Particles are consecutively placed randomly in this RVE, with a

safety minimum distance of 8 µm between each other, and between each of them

and the boundary of the RVE. When it is not possible to place particles anymore

without having the volume fraction exceed the prescribed one, the generation

is stopped and the resulting RVE is returned. For 2D calculations, a surface

fraction is imposed.

Unless otherwise mentioned, boundary conditions as defined in Section 3.2 are

imposed and the macroscopic stress triaxiality ratio η is maintained to 0.33.

4.2. Importance of void nucleation modeling

4.2.1. Two-dimensional analysis

It has been discussed in the introduction that most studies on ductile frac-

ture often disregard the void nucleation mechanism by considering an initial

microstructure where particles are replaced by voids or are initially already

debonded and/or fragmented. A 2D RVE of size 240 µm (9 particles) is meshed,

and comparisons are proposed between:

• a nucleation simulation, taking into account both void nucleation mecha-

nisms of particle debonding and fragmentation;

• a fragmentation simulation, taking into account only the particle fragmen-

tation mechanism;

• a pre-fragmentation simulation, taking into account initially fragmented

particles instead of modeling void nucleation during the simulation;

• a void simulation, taking into account voids instead of particles3.

The four RVEs are shown in Fig. 5 before and after 15 % of RVE elongation.

3Due to the absence of a contact model, this configuration is here equivalent to initially

debonded particles.
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nucleation voidpre-fragmentation

initial 
microstructure

15% of 
RVE 

elongation

fragmentation

Figure 5: Microstructures before and after 15 % of RVE elongation for the assessment of the

importance of void nucleation modeling in 2D plane strain. Particles are shown in red, and

voids in white.

On the one hand, the load is nearly equivalently shared by all voids in

the void and pre-fragmentation simulations. As a consequence, void growth is

nearly homogeneous in the whole RVE for these two simulations, apart from

some void coalescence and linkage events. Thus, the stress and plasticity local-

ization mechanisms that could take place in some regions of the RVE before the

onset of void coalescence are totally neglected.

On the other hand, plasticity is localized in the top region of the RVE in the

fragmentation and nucleation simulations. The microstructure fails due to the

three aligned particles at the top of the RVE. The stress first decreases signif-

icantly due to the failure of the two big particles (≈ 8 % of RVE elongation),

and then later a minor decrease is noticed due to the third particle (≈ 10 % of

RVE elongation). In fact, nucleation due to debonding or fragmentation of a

particle leads to a stress localization phenomenon that is likely to trigger further

nucleation events in neighboring particles [20].

Results with a modeling of nucleation mechanisms (only fragmentation or both)
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during the simulation are hence qualitatively very different from results with

an initial population of voids or pre-fragmented particles. A more quantitative

idea is given by the porosity change and macroscopic von Mises equivalent stress

change curves in Fig. 6.
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Figure 6: Importance of void nucleation modeling in 2D plane strain.

From the point of view of damage (Fig. 6(a)), the influence of void nucle-

ation modeling is concentrated in the first part of loading, for an RVE elongation

less than 10 %. Void growth has already started in the pre-fragmentation sim-

ulation, while no nucleation is predicted in the nucleation and fragmentation

simulations. After significant void growth, this difference decreases and the nu-

cleation and fragmentation curves progressively join with the pre-fragmentation

one. The void simulation shows a very different damage change as void growth

is far lower with respect to the two other simulations.

These differences are explained when looking at the stress curves in Fig. 6(b).

Due to the presence of undamaged particles, the nucleation and fragmentation

RVEs have an ultimate strength twice higher than in simulations that do not

consider void nucleation criteria.

The difference between the nucleation and fragmentation simulations is mainly

concentrated in the first nucleation event, which is debonding in the former

while it is fragmentation in the latter. Debonding has a less significant effect

on the load carrying capacity (at ≈ 8 % of RVE elongation in Fig. 6(b)). This
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difference does not seem to have a significant effect after 20 % of RVE elonga-

tion, in the void growth and coalescence stages.

An important aspect is that while the void and pre-fragmentation simulations

show very different void growth curves, with different slopes, the stress/strain

curves correspond quite well. This reveals that the difference between penny-

shaped voids and spherical voids is not significant under tensile loading. It may

nevertheless have a major influence under different loading conditions, such as

shear. The presence of particle fragments in the pre-fragmentation configura-

tion may also have a significant influence under such loading conditions.

Additionally, the artificial thickness εf may also reduce significantly the influ-

ence of particle fragments in these simulations. This may also certainly explain

why the macroscopic von Mises equivalent stress in the pre-fragmentation result

is lower than that in the void result in Fig. 6(b).

As a conclusion, this 2D FE analysis shows that while the particle debonding

mechanism may be neglected for the studied material and loading conditions,

the fragmentation mechanism has to be accounted for. In particular, ultimate

strength is significantly underestimated if particles are assumed to be already

fragmented in the initial RVE, or if they are replaced by voids.

4.2.2. Three-dimensional analysis

The importance of void nucleation modeling is investigated further in 3D

with an RVE of size 165 µm (33 particles), and varying macroscopic stress tri-

axiality ratio η. For these 3D simulations, due to a large computational cost,

only the two extreme cases are considered, namely the nucleation and void con-

figurations of Paragraph 4.2.1. For instance, the 3D nucleation simulation at

η = 0.33 takes 46 hours to run on a 2.5 GHz Intel Xeon Linux cluster. Due to

mesh adaption and fracture events, the number of elements varies throughout

the simulation (from 0.5 to 1.5 million), and so does the number of parallel

CPUs (from 30 to 128). Results are presented in Fig. 7 for the nucleation RVEs

and Fig. 8 for the void RVEs.
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Figure 7: Particles (red) and voids (light gray) at different RVE elongations for the 3D

nucleation computations at different macroscopic stress triaxiality ratio η.
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Figure 8: Voids at different RVE elongations for the 3D void computations at different macro-

scopic stress triaxiality ratio η.

Independently of whether particles and void nucleation mechanisms are

taken into account, larger voids and more numerous void coalescence and linkage

events are visible in the results corresponding to η = 0.66. In particular, most

voids in the results with η = 0 have regular and nearly spherical shapes, which

shows that coalescence is not the dominating mechanism yet, even at 50 % of

RVE elongation.
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Although this increase of porosity is well captured by the void simulations, there

are significant differences between the void and nucleation simulations. These

differences seem to be increased at lower triaxiality ratios. With η = 0.66, void

coalescence and linkage have led to the localization of damage in a region of

the RVE, while void growth out of this region is moderate (Fig. 8). This is

not true for the simulation with η = 0, where all voids seem to have flattened

homogeneously in Fig. 8, while some undamaged particles are still visible in

Fig. 7 at 50 % of RVE elongation. As a conclusion, these results confirm that

early stress and plasticity localization phenomena due to void nucleation are

neglected in the void simulations. Additionally, the effect of this assumption is

increased at low triaxiality ratios.

These effects are investigated further in terms of global porosity and load car-

rying capacity in Fig. 9.
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(b) Macroscopic von Mises equivalent

stress change for the three simulations.

Figure 9: Importance of void nucleation modeling in 3D.

A remarkable result is that for η = 0, no void growth is observed in the

void simulation (Fig. 9(a)). Voids only flatten for η = 0 in Fig. 8, but the

overall void volume does not vary. Anisotropic versions of the Gurson model

have been proposed in the literature to account for this shape change effect [9].

The absence of void growth explains that the macroscopic von Mises equivalent

stress for η = 0 does not decrease during the simulation in Fig. 9(b). However,

void flattening in a direction could have an influence if the loading direction
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varies.

Moreover, the void growth curves for η = 0 reveal the major influence of the

void nucleation mechanisms. Void growth is observed in the nucleation simula-

tion (Fig. 9(a)), with a small loss of load carrying capacity (Fig. 9(b)). The

ultimate strength is also higher due to the presence of particles.

At higher triaxiality ratios (Fig. 9(a)), the differences between the nucle-

ation and void simulations regarding porosity curves are reduced, as the slope

of these curves are similar at large plastic strain. The macroscopic von Mises

equivalent stress curves also show similar changes for large plastic strain (Fig.

9(b)).

This is however not true in the first part of loading, before 10 % of RVE elon-

gation. In these first 10 %, there is still a difference regarding the ultimate

strength, although this error seems to decrease when the triaxiality ratio in-

creases. This is explained by the fact that void coalescence is the dominant

damage mechanism at high triaxiality ratio, and not void nucleation. Small

drops in the macroscopic von Mises equivalent stress curve in Fig. 9(b) are

only visible for an RVE elongation below 15 % when η = 0.66. After 15 % of

RVE elongation, the smoothness of the curve indicates that void nucleation is

negligible.

It is important to underline that in all Gurson-type micromechanical mod-

els, void nucleation is considered based on the porosity, which considers only

void volume (and sometimes also particle volume). Thus, cracks that nucleate

but do not open and grow significantly cannot be described with a Gurson-type

micromechanical model, while their influence on the load carrying capacity may

not be negligible. In fact, even if this influence was negligible for a given mono-

tonic loading, this would most certainly not be true if the loading direction was

then modified, as in most material forming processes.

The plastic localization zone appears more clearly in Fig. 10, where plastic

strain for the uniaxial tension configuration is shown.
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(a) (b)

Figure 10: Equivalent plastic strain for the 3D computation taking into account nucleation

mechanisms at macroscopic stress triaxiality ratio η = 0.33 and RVE elongation of: (a) 25 %,

(b) 50 %.

This figure reveals several fragmentation and debonding cracks at the top

of the microstructure which have merely grown, and are located in a zone with

moderate plasticity (in green/blue). While these voids do not participate in the

final fracture of the microstructure, they would most certainly have an influence

if loading was stopped for instance at Fig. 10(a), and restarted with a different

loading direction.

Finally, these 3D calculations taking into account the void nucleation mech-

anisms are interesting for studying macroscopic yield criteria for ductile mate-

rials. For instance, looking at the nucleation curve for η = 0.33 in Fig. 9(b),

void nucleation is marked by a progressive loss of load carrying capacity until

approximately 10 % of RVE elongation. The macroscopic von Mises stress then

stays at approximately 300 MPa, until severe plastic localization dominates in

the RVE, marking the onset of void coalescence and the last decrease of load

carrying capacity, up to failure.
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The range of RVE elongation between the first failure step (due to nucleation)

and the second one (due to coalescence) is larger for low triaxiality ratios, and

smaller for high triaxiality ratios. While in classical Gurson-type models, an

additive decomposition of void nucleation and coalescence terms is assumed,

these results indicate that for high triaxiality ratios this assumption is not valid

anymore, and both phenomena should be accounted for simultaneously in a

unified criterion. This has been done recently in the case of void growth and

coalescence [49], but still has to be studied for void nucleation.

5. Conclusions

The numerical methods and micromechanical models proposed in the present

work enable for simulations of ductile fracture after the onset of void nucleation,

up to void coalescence (Fig. 10). Applications to large and complex 3D RVEs

with particles of random size and position are possible, but restricted to a ductile

material with high particle volume fraction in this work. Multiple void linkage

events occur in these RVEs and are captured by the robust mesh adaption proce-

dure (Figs. 7 and 8). This purely plasticity-driven void coalescence and linkage

model will have to be coupled to matrix cracking criterion in order to model

ductile materials with lower particle and void volume fraction. The initiation of

multiple cracks during simulations due to particle debonding and fragmentation

is also modeled in this work. To the author’s best knowledge, this is the first

time that simulations taking into account all these micromechanisms at large

plastic strains are conducted. Future work will include further improvements

of the numerical methods to eliminate the remaining artificial parameters and

model the dissipated energy rate. Experimental-numerical validation is being

investigated to identify fracture parameters directly at the microscale and en-

able quantitative comparisons with 3D data.

When compared to less advanced approaches where particles and/or nu-

cleation mechanisms are neglected, significant differences are observed, hence
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showing the importance of modeling particles and the subsequent void nucle-

ation mechanisms. It is obvious that these simulation tools are too costly to be

applied directly to model plasticity and mechanical behavior at industrial scale.

For these applications, classical Gurson-type models are now well accepted to

be the most promising approaches. However, these models usually consider

the three aspects of void nucleation, growth, and coalescence mechanisms as-

suming additive decomposition, based on micromechanical or phenomenological

considerations. In order to improve predictions, these assumptions should be

reconsidered.

It is very difficult to engineer materials with given microstructures, for instance

with a given initial arrangement of particles or voids. In numerical methods,

however, this is greatly simplified. Computational approaches also allow to

compute accurately relevant mechanical variables and study relations between

them. In the future, the present numerical framework should be used to as-

sess the capabilities of classical Gurson-type models, especially regarding non

proportional loading paths. Such comparisons between full field and mean field

models should give insights into the limitations of mean field models, and how

they could be improved.

6. Appendix

In this appendix, numerical parameters such as meshing parameters and the

load step are chosen based on a sensitivity analysis. The phrasing load step is

used instead of time step as all calculations are performed in static loading con-

ditions, and material constitutive laws are rate-independent (Subsection 2.1).

The same material and boundary conditions as defined in Subsection 4.1 are

used. A global picture of the methodology developed in Section 3 and also in

previous works to model ductile fracture at the microscale is presented in Algo-

rithms 1 and 2. The prescribed macroscopic stress triaxiality ratio is denoted

ηuser and, unless otherwise mentioned, fixed to 0.33.
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Algorithm 1 Micromechanical simulation methodology with references to pre-

vious work and the new developments introduced in the present paper.

procedure MainAlgorithm

Compute distance functions . Ref. [36]

Compute particle tags . Ref. [39]

vβ ← 0 . Paragraph 3.2

for Each load increment do

FractureCriteria . Algorithm 2

repeat

Mechanical solution using vα, vβ . Ref. [28]

Compute η . Paragraph 3.2

Update vβ (linear search) . Paragraph 3.2

until |η − ηuser| < 0.01 . Paragraph 3.2

Update node coordinates (mesh motion) . Ref. [35]

Write output files

end for

end procedure

The 3D computational domain has a size of 55 µm, and contains a single

particle of radius 20 µm. The chosen reference numerical parameters are:

• an isotropic mesh size between hmax = 6 µm and hmin = 2 µm, depending

on the local maximum principal curvature at phase boundaries (Subsection

2.2),

• a crack thickness εc = 0.2 µm and an artificial fragmentation crack exten-

sion length εf = 10 µm (Subsection 3.1),

• a load step of 0.1 % RVE elongation, which is decreased by a factor of two

every 20 iterations of the Newton-Raphson algorithm if convergence was

not reached (Subsection 2.1).

A sensitivity analysis is conducted by varying numerical parameters and inves-

tigating the influence of this variation on relevant mechanical variables.
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Algorithm 2 Algorithmic implementation of fracture criteria.

procedure FractureCriteria

for
Each mesh face of the

particles/matrix interface
do . Paragraph 3.1.2

Compute σn . Paragraph 3.1.2

if σn > σDc then . Paragraph 3.1.2

Set φ−c , φ
+
c , φf . Paragraph 3.1.2

Mesh crack using φ−c , φ
+
c , φf . Paragraph 3.1.1

MeshAdaption

Modify phases using φ−c , φ
+
c , φf . Paragraph 3.1.2

return

end if

end for

for Each particle do . Paragraph 3.1.3

Compute σ1 . Paragraph 3.1.3

if σ1 > σFc then . Paragraph 3.1.3

Set φ−c , φ
+
c , φf . Paragraph 3.1.3

Mesh crack using φ−c , φ
+
c , φf . Paragraph 3.1.1

MeshAdaption

Modify phases using φ−c , φ
+
c , φf . Paragraph 3.1.3

return

end if

end for

end procedure

procedure MeshAdaption

Compute mesh size criterion from distance functions . Ref. [29]

Optimize mesh quality through local mesh modifications . Ref. [35]

Update distance functions on optimal mesh . Ref. [36]

Update particle tags on optimal mesh . Ref. [39]

Transfer history variables from old mesh to optimal mesh . Ref. [35]

Replace old mesh with optimal mesh

end procedure
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Because the present framework relies extensively on remeshing operations and

local fracture criteria (Algorithm 2), all parameters that depend on mesh size

are expected to have a significant influence. Results may also be sensitive to

the load step, because the fracture criteria are explicit (Algorithm 1).

For the analysis conducted in this paper, only averaged quantities such as the

porosity f and the macroscopic von Mises equivalent stress Σ are of interest.

However, for future comparisons with experiments, an accurate prediction of

local variables is also important. This is verified based on the maximum normal

stress at the matrix/particle interface σn and the particle-wise average maximum

stress σ1. The present sensitivity analysis includes both averaged and local

quantities. Sensitivity to mesh size is assessed using a coarse mesh setting with

hmax, hmin, and εc multiplied by a factor of 2, and a fine mesh setting with a

factor of 0.5. The three meshes are shown in Figure 11. Sensitivity to the load

step is assessed using load steps of 1 % and 0.01 %, in addition to the reference

one of 0.1 %.

coarse mesh reference mesh fine mesh
Figure 11: Inside view of the three meshes used for analysis of mesh size sensitivity.
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6.1. Particle fragmentation

0% 10% 20% 30%

(a) Microstructure at different RVE elongations, with particle in red and voids in

white.
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(b) Evolution of the particle debonding indicator σn (threshold at 1060 MPa), the

particle fragmentation indicator σ1 (threshold at 700 MPa), the macroscopic von Mises

equivalent stress Σ, and the porosity f .

Figure 12: Reference result in 3D featuring only particle fragmentation.

The results obtained using the reference numerical parameters are shown in

Fig. 12. Only particle fragmentation is predicted, which is in agreement with

experimental observations [47]. Both σn and σ1 increase up to values that are

close to the critical thresholds, but the fragmentation threshold is reached first,

at nearly 3 % of RVE elongation.
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Regarding the fragmentation crack, it is a horizontal fracture plane, which is

also in agreement with experimental observations [47]. Because of the small

RVE size, due to the fact that the particle volume fraction is initially fixed to

20 %, the plane is already in contact with the RVE boundary at its nucleation.

This is not physical and is linked to the numerical parameter εf , whose influence

is investigated in Subsection 6.2.

Additionally, fragmentation cracks could be accompanied with a debonding of

the matrix/particle interface close to the fragmentation crack tip [30]. Although

this is not the case for the present material [47], the presence of a quite large part

of the fragmentation crack inside the matrix would prevent this phenomenon.

Regarding the crack thickness parameter εc, its influence cannot be seen di-

rectly in Fig. 12(b). Since the fracture criteria are considered at the beginning

of each load increment, the porosity shown in this figure includes both the artifi-

cially inserted porosity due to εc and εf , and the porosity due to crack opening.

In order to distinguish the two, the artificial porosity is computed separately

during the simulation. It is equal to 0.30 % at the onset of particle fragmenta-

tion. It then decreases because no additional artificial porosity is inserted, while

the global void volume increases due to void growth.

This is a major improvement over previous work [30, 29], where a mesh size

at least ten times finer was required to reduce the artificial porosity to similar

values [30]. Moreover, this artificial porosity is negligible when compared to the

final porosity, which is close to 20 %.

The porosity curve in Fig. 12(b) shows no oscillation after the onset of

particle fragmentation, which proves that void volume is well conserved. It

is not the case for history variables. This can be observed by looking at the

macroscopic von Mises equivalent stress in Fig. 12(b). At the onset of particle

fragmentation, the load carrying capacity is severely affected, but it is partially

preserved because the fragmentation crack does not entirely cut the RVE into

two halves. Due to void growth and coalescence, the thickness of these regions is
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progressively reduced and the load carrying capacity tends to zero. During this

process, small jumps can be observed in the macroscopic von Mises equivalent

stress curve.

These are not caused by a fracture event, but by remeshing operations and in

particular to numerical diffusion during the transfer of history variables. Al-

though these jumps are not significant globally, they may have an influence

locally.
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Figure 13: Sensitivity of the particle fragmentation indicator σ1 during loading with respect

to the load step.

Based on this reference result, a sensitivity analysis is conducted regarding

numerical parameters. In Fig. 13, it is verified that reference parameters enable

an accurate prediction of the onset of particle fragmentation.

The fact that σ1 is null for the first loading step is simply due to the fact that the

fragmentation criterion is computed at the beginning of each load increment.

The threshold for particle fragmentation is never reached using the coarse load

step (i.e., particle debonding is predicted instead). This means that this load

step is too large to enable for the modeling of the competition between the two

void nucleation mechanisms. This result is hence discarded in the remaining of
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this analysis.

The differences between the curves using the reference and fine load steps are

small. The measured absolute uncertainty of 0.08 % of RVE elongation regard-

ing the prediction of particle fragmentation is acceptable using the reference

load step.

In Fig. 14, the influence of this uncertainty on porosity change is assessed.
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Figure 14: Sensitivity of the porosity during loading with respect to the load step.

No significant influence of the load step on void growth can be observed.

The slope of the curve obtained using the reference load step corresponds well

to the slope obtained using the fine load step. The main difference is due to the

delay regarding the prediction of the onset of particle fragmentation. The cor-

responding absolute error on the porosity at 30 % of RVE elongation is 0.1 %.

This is acceptable for the present material with high porosity, but should be

investigated further for industrial materials where the porosity is lower.

The influence of mesh size on the prediction of the onset of particle fragmenta-

tion is assessed in Fig. 15.
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Figure 15: Sensitivity of the particle fragmentation indicator σ1 during loading with respect

to mesh size.

Opposed to simulations with varying load steps, particle fragmentation is

predicted in all these simulations. However, the onset of particle fragmentation

is underestimated using coarse meshing parameters. The absolute uncertainty

on RVE elongation at the onset of particle fragmentation for the reference mesh

remains small, namely 1.0 %.

The influence of this uncertainty on void growth is shown in Fig. 16.

The results are similar to those obtained in the load step sensitivity analy-

sis. Particle fragmentation is delayed but this does not affect void growth, as

the slopes of the curves correspond well between the reference result and the

result with fine mesh. The absolute uncertainty on the porosity at 30 % of RVE

elongation is 0.04 %. The reference results are hence well-suited for the present

material. Moreover, the fact that this uncertainty is very small indicates that

the crack thickness parameter εc has, in the end, a very low influence on the

results.

As a conclusion, absolute errors regarding the prediction of the onset of par-
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Figure 16: Sensitivity of the porosity during loading with respect to mesh size.

ticle fragmentation close to the percent are obtained using reference numerical

parameters. These uncertainties mainly delay void growth, but do not affect

significantly the slope of the porosity change curves. The absolute uncertainty

on the final porosity is hence also close to the percent.

6.2. Particle fragmentation crack extension length εf

As mentioned in Subsection 6.1, the numerical implementation of the par-

ticle fragmentation criterion includes a length εf that leads to non physical

results. In this paragraph, simulations with the reference numerical parameters

but varying εf are conducted to study the influence of this parameter. Results

are reported in Fig. 17.
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(a) Microstructures at the onset of particle fragmentation, with particle in red and

voids in white.
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(b) Evolution of the macroscopic von Mises equivalent stress Σ and the porosity f .

Figure 17: Sensitivity of the results with respect to the fragmentation crack extension length

εf in 3D.

Due to a small distance between the particle and the RVE boundary, the

sensitivity to εf is very high, both regarding the load carrying capacity and the

porosity, due to an overestimation of void coalescence. Even for the simulation

with εf = 2.5 µm, it can be seen that the remesher is already initiating void

linkage with the RVE boundary, due to a low number of elements between

the fragmentation crack tip and the RVE boundary. The present sensitivity
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analysis indicates that the numerical parameter εf should be exactly zero in

order to obtain an accurate and physical modeling of particle fragmentation.

In the future a fragmentation model replacing crack tips inside the matrix by

crack tips along the particle/matrix interface will be considered.

6.3. Particle debonding

For particle debonding to be predicted instead of fragmentation, the particle

fragmentation criterion is deactivated. Debonding is then triggered, but for

larger strains, as shown in Fig. 18.

While particle fragmentation in Subsection 6.1 is predicted at an RVE elon-

gation of nearly 3 %, particle debonding does not occur until 5 %. An interesting

study is to compare the effect of particle debonding on the load carrying capac-

ity to the effect of particle fragmentation. For instance, the macroscopic von

Mises equivalent stress curve in Fig. 18(b) can be compared to that in Fig.

17(b) using a particle fragmentation crack extension length εf = 2.5 µm. The

two curves are very similar, regarding the beginning and the end.

However, particle fragmentation leads to a more severe and instantaneous drop

of the load carrying capacity (Σ ≈ 250 MPa at 3 % of RVE elongation) while this

is less significant and more progressive in the case of debonding (Σ ≈ 300 MPa at

5 % of RVE elongation). Void growth is also slowed down in the case of debond-

ing, as the porosity reaches 10 % at 50 % of RVE elongation (Fig. 18(b)), while

this occurs at only 30 % of RVE elongation (Fig. 17(b)) in the particle fragmen-

tation case with εf = 2.5 µm. Thus, while particle fragmentation leads to an

instantaneous void nucleation mechanism, particle debonding is more progres-

sive.

This effect is not necessarily due to the fact that debonding cracks may still be

propagating at the onset of void coalescence. Only one void nucleation mech-

anism appears clearly in Fig. 18(b). Debonding cracks are propagating during

the whole simulation (Fig. 18(a)), but only the first debonding event at 5 %

of RVE elongation affects clearly the load carrying capacity. Later debonding
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(a) Microstructure at different RVE elongations, with particle in red and voids in
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Figure 18: Reference result in 3D featuring only particle debonding, the fragmentation crite-

rion being deactivated.
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cracks propagate along the lateral boundaries of the particle. Although these

cracks do not affect the load carrying capacity in the present case, their effect

cannot be neglected as it would certainly be very important for non proportional

loading paths with varying loading directions.
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Figure 19: Sensitivity of the particle debonding indicator σn during loading with respect to

the load step.

Sensitivity analysis results regarding the load step with deactivated particle

fragmentation are shown in Fig. 19. The absolute error on the onset of particle

debonding using the reference load step is 1.8 %. It is important to check the

influence of this error on porosity change (Fig. 20).

The same remarks as for particle fragmentation apply. In particular, the de-

lay regarding the onset of void nucleation does not seem to affect void growth,

as the slopes of the porosity change curves correspond for all used load steps.

The absolute error on the porosity at 50 % of RVE elongation is 0.7 %. These

results validate the use of the reference load step for further FE analysis.

The dependence on mesh size is assessed in Fig. 21.
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Figure 20: Sensitivity of the porosity during loading with respect to the load step.
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Figure 21: Sensitivity of the particle debonding indicator σn during loading with respect to

mesh size.

The absolute uncertainty regarding the prediction of the onset of particle

debonding using the reference mesh is very low (0.01 %). However, porosity

change curves in Fig. 22 show a significant dependence on mesh size.
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Figure 22: Sensitivity of the porosity during loading with respect to mesh size.

A possible explanation is the sensitivity of the particle debonding site with

respect to numerical parameters. The calculation of the particle debonding

indicator is accurate, but it reaches values very close to the critical threshold at

multiple points of the interface. The debonding of one of these points instead of

the other is purely linked to numerical errors. This effect is illustrated in Fig.

23.

The result with a coarse mesh overestimates void coalescence due to a small

number of elements between the particle and lateral RVE boundaries. This

explains the quite large difference between the results obtained using a coarse

mesh and the other results in Fig. 22.
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Figure 23: Microstructures using various meshing parameters, with particles in red and voids

in white.

6.4. Conclusion

Except for the artificial crack extension length, the reference numerical pa-

rameters chosen in the introduction of this appendix, and used in the remainder

of this paper, give accurate predictions regarding fracture criteria and averaged

quantities. In particular, the absolute error on the onset of both particle frag-

mentation and debonding is estimated to be below 2 %, as well as the absolute

error on the porosity. The effect of the artificial crack thickness εc and the

amount of artificial porosity introduced because of this parameter is also shown

to be negligible, which is a major improvement over previous work.

The artificial crack extension length εf , however, should be removed. It has a

major influence on both local and averaged results. Additionally, the energy

dissipation rate at the onset of fragmentation or debonding should be modeled

using a progressive traction-separation law. It can nevertheless be assumed that

the conclusions raised in this paper regarding the importance of void nucleation

modeling with competing particle debonding and fragmentation mechanisms

would not be changed with a more physical fragmentation model.
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