
HAL Id: hal-01625409
https://minesparis-psl.hal.science/hal-01625409v2

Submitted on 3 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimental Energy Profiling of Energy-Critical
Embedded Applications

Kameswar Rao Vaddina, Florian Brandner, Gérard Memmi, Pierre Jouvelot

To cite this version:
Kameswar Rao Vaddina, Florian Brandner, Gérard Memmi, Pierre Jouvelot. Experimental Energy
Profiling of Energy-Critical Embedded Applications. 25th international conference SoftCOM 2017,
Sep 2017, Radisson Blu Resort Split, Croatia. pp.1-6. �hal-01625409v2�

https://minesparis-psl.hal.science/hal-01625409v2
https://hal.archives-ouvertes.fr


Experimental Energy Profiling of Energy-Critical
Embedded Applications

Kameswar Rao Vaddina⇤, Florian Brandner⇤, Gerard Memmi⇤, Pierre Jouvelot†
⇤LTCI - TÉLÉCOM ParisTech - University of Paris-Saclay, Paris, France

†MINES ParisTech, PSL Research University, Paris, France
Email: {kameswar.vaddina, florian.brandner, gerard.memmi}@telecom-paristech.fr,

pierre.jouvelot@mines-paristech.fr

Abstract—Despite recent advances that have greatly improved

the performance of embedded systems, we still face many chal-

lenges with regard to energy consumption in energy-constrained

embedded and communication platforms. Optimizing applica-

tions for energy consumption remains a challenge and thus

is a compelling research direction, both on the practical and

theoretical sides. This paper presents a new experimental bench

for energy profiling of non-performance-critical embedded and

mobile applications and reports preliminary results obtained on

two embedded boards. The experiments are driven by an online

energy monitoring mechanism using National Instruments’ cDAQ

and LabVIEW running on a host machine. The host monitors

a target device, which runs a set of benchmarks. We describe

the experience gained from using and modding two different

target boards, namely an Nvidia Jetson TX1 and a TI AM572x

evaluation module. In particular, we confirm, and thus further

validate, the existence of the Energy/Frequency Convexity Rule

for CPU-bound benchmarks. This rule states that there exists

an optimal clock frequency that minimizes the CPU energy

consumption for non-performance-critical applications. We also

show that the gain of frequency scaling is highly dependent

on workload characteristics. Any future energy-management

approach should take these behavioral traits into consideration.

I. INTRODUCTION

Continuous CMOS technology scaling (Moore’s law) increases
the on-chip power density due to the higher transistor in-
tegration. As power density increases, many factors like
power dissipation, leakage, data activity, and electro-migration
contribute to higher on-chip temperatures. The increase in
temperature leads to an increase in leakage power, thereby
increasing the total energy dissipation and thus forming a part
of a vicious circle significantly limitting system performance.

The bulk of today’s computing does not happen on desktops,
laptops, servers, or data centers, but rather on embedded media
devices like mobile phones [1]. The embedded computing
applications running on those devices demand better energy
efficiency and flexibility in operation, while delivering better
performance per Watt. At the same time, they cannot compete
with application-specific integrated circuits (ASIC) in terms of
energy efficiency. Indeed, a well-designed ASIC can achieve
an efficiency of 5 pJ/op in a 90-nm CMOS process, whereas a
very efficient embedded processor would require about 250
pJ/op. That means the embedded processor may consume
about 50 times more energy than a custom designed ASIC [1].

Today’s system-on-a-chip (SoC) platforms have a lot of
software acting in unison, trying to deliver a seamless user

experience. The firmware, operating system, device drivers,
system-level software, and applications coordinate with each
other and with the hardware. All these pieces of software have
some impact on the system power. It is thus imperative to
observe and measure the impact of software on power require-
ments, so that developers can benefit from this information and
optimize their code for energy-critical systems.

The system-wide analysis of energy issues in embedded
systems calls for suitable experimental and theoretical tools.
Our paper makes the following contributions in that regard.

• We describe a new experimental platform for a highly
accurate on-line measurement mechanism that allows us
to perform energy monitoring and profiling of embedded
and non-performance-critical applications.

• We show how profiling can be done by physically mea-
suring the power on the power rails, i.e., the output of
the power management unit of the target board, with the
help of precise sensors and data acquisition devices.

• We detail how our measurement setup is different from
several other setups found in the literature (see for
instance [2], [3], and [4]) in that they have direct access
to the CPU power values. Other setups often only pro-
vide access to platform-level energy consumption, which
includes the energy consumed by the peripheral devices,
power management unit, GPU, memory, et cetera. A more
complete state of the art can be found in [6].

• We detail the practical experience we gained from trying
to adapt our two embedded target boards in order to in-
terface with our probe and data acquisition infrastructure.

• Our tests confirm the existence of the Energy/Frequency
Convexity Rule discovered in our previous work [2]. This
rule states that the curve relating energy consumption to
frequency exhibits a convex behavior, with an optimal
frequency that minimizes energy, for compute-bound
applications. We also show that the energy consumption
is highly dependent on the workload characteristics.

We revalidate the Energy/Frequency Convexity Rule using
much more precise methodology and tools than in our previous
work [2], [6], which is of interest on its own. The level of
accuracy achieved in this work will allow us in the future
to precisely correlate the segments of a software program to
its energy trace. This will help us to understand the program



Platform-dominated power 

CPU-dominated power

Balanced CPU/Platform

Fig. 1. Conceptual view of platform energy consumption by Rotem et al. [5].

behavior better, allowing us to make fine-grained energy
optimizations. We also believe that our paper will be of use
to researchers interested in delving into the realm of practical,
energy-related testing for embedded systems.

The remainder of this paper is structured as follows. In
Section II, we describe the conceptual view of total platform
energy consumption, i.e., the consumption of the CPU and the
rest of the platform. We then describe (Section III) the design
constraints of power management units and the challenges
faced when handling the voltage signal. Section IV covers
the experimental setup for the TI AM572x board. The results
obtained by running various benchmarks are discussed in
Section V. Finally, we conclude in Section VI and provide
remarks on future work.

II. PLATFORM ENERGY CONSUMPTION

Rotem et al. present a conceptual view of the energy con-
sumption of a whole platform [5], which includes the energy
consumed by the CPU and the rest of the board (platform).
The model results in a curve, relating CPU/platform energy
consumption to clock frequency, as illustrated by Figure 1.
When the CPU power dominates the total power requirements,
then the energy follows the red dotted curve and the minimum
energy is achieved when the CPU operates in the Lowest
Frequency Mode (LFM). In their model, they show that CPU
power increases steadily, but we show that, in fact, the CPU
power already exhibits a certain degree of convexity (see
below). But, when the rest of the platform dominates the total
power, then the energy follows the blue dashed line. In this
case, the most energy-efficient strategy would be Race-to-Halt
(RtH) [7], i.e., the processor operates at maximum frequency
in order to complete the computation as fast as possible.
However, when the power is balanced between the CPU and
the platform, then the energy curve follows the green solid
line. In this case, the energy consumption is minimized when
the processor operates at an optimal frequency somewhere
between the LFM and the RtH strategies. Rotem et al. [5]
propose a technique to identify this minimum CPU/platform
energy point at run time and call their approach Energy-Aware
Race to Halt (EARtH).

0 200 400 600 800 1000 1200 1400 1600 1800
Frequency (MHz)

0

20

40

60

80

100

120

140

E
n
er

g
y
 (

J)

Gold-Rader

Energy vs Frequency
Gold-Rader based bit-reverse algorithm

Fig. 2. Energy vs. Frequency: energy consumption for the Gold-Rader bit-
reverse algorithm with varying clock frequency on an Nvidia Jetson TX1.

In our pursuit to confirm and further validate the En-
ergy/Frequency Convexity Rule, we started our experiments
on the Nvidia Jetson TX1 platform, which consists of a carrier
board and a processing module with the actual TX1 SoC.
Only the schematics of the carrier board are public, while
the module’s schematics are not released. Even worse, there
is no physical access to the CPU’s power management unit on
the module, making it impossible to place our measurement
probes without permanently damaging the TX1 module. So,
we measured the total energy consumption of the entire carrier
board (CPU and platform). As can be seen in Figure 2,
the platform energy dominates the CPU energy consumption.
Similar to Rotem et al. (Figure 1), no convexity can be seen.
This is not surprising, since the Energy/Frequency Convexity
Rule has only been validated for CPU-bound computations.

III. MEASURING PMU OUTPUT

A Power Management Unit (PMU) is a discrete integrated
circuit (or a system block of a SoC) that is used to manage
the power delivery requirements of a computer system. A
typical PMU block diagram is shown in Figure 3. The PMU
usually regulates the supply voltage, selects the sequencing of
power sources, and even handles battery management (state
of health and charging, voltage, current, and temperature).
They generally offer two power-saving techniques, namely
Dynamic Voltage Scaling (DVS) and Dynamic Frequency
Scaling (DFS). The combination of both techniques is known
as Dynamic Voltage and Frequency Scaling (DVFS).

The voltage regulator is an integral and very important part
of the PMU. It operates in a feed-forward loop and allows
to either increase or decrease the voltage at its output ports
according to sensor feedback. The sensing is done with the
help of two internal and external sense pins, which allow the
regulator to monitor the output load and then act in order to
make sure that the voltage stays at the proper level.



PMU
CPU, DSP, 
Memory, 

USB, I2C...
0.5V – 1.5V

V5IN

Power_ON

SoC

Fig. 3. A typical power management unit.

A. Physical Access

We first looked at the PandaBoard single-board development
platform in order to study how to tap into the power rails going
to a CPU. There are two PMUs on PandaBoard. But, while
trying to attach the measurement probes by de-soldering an
inductor at the output of the PMU, the PMU got dislocated
and the subsequent soldering of the PMU onto the pads could
not make the PandaBoard boot (a lesson in the need to practice
on cheap components first). Following this practice run, we
acquired the very recent TI AM572x board, which has been
used for the rest of the experiments described in this paper.

The interplay between the PMU and the overall system
design can be confusing at times and makes accurate energy
measurements a difficult endeavor. Manufacturers are not
required to publish board schematics. This is problematic in
academic research, even more in our case, since we need direct
access to the power rails for our measurements. In addition, we
need to be able to control the PMU’s configuration, in order to
obtain meaningful results. These schematics are held private
by the board manufacturers in most cases. Access is typically
subject to negotiations and non-disclosure agreements.

Downstream of the PMU (e.g., CPU, GPU, DDR), the
design constraints on the board tend to be very tight. PMUs
impose strict constraints on the reactance as well as ca-
pacitance of power rails. This in turn imposes strict design
constraints that need to be respected by the designers. Most of
them react to this by burying the power rails in the board’s mid
layers in order to have strong control over the rail capacitance,
thereby denying developers access to the power rails. Even
if one did have access to the board schematics, located the
power rails, and somehow managed to physically access them,
the system would be unlikely to still meet the PMU’s design
constraints afterwards. Ultimately, after all these efforts, one
would risk merely to end up with a broken board.

B. Wiring Inductance

Adding any wiring by means of shunt resistance and a
voltmeter across it leads to additional inductance, which
induces noise into the voltage signal as the load changes. Such
additional inductance of the wiring and the voltmeter means
that the voltage regulator can no longer properly sense the
load. This often causes the embedded system to crash.

C. Signal Conditioning

The problem of attaching the monitoring probes to the
PMU circuit can be seen as a signal-conditioning problem.
Consider, for instance, the ARM Cortex-A9 processor of the
PandaBoard. Depending on load, this processor operates in

a range from 500 mV to 1.5 V. For instance, in order to
operate correctly, the power regulator needs to supply at least
500 mV when the processor is idle. If we add any load (e.g.,
measuring instruments), the resulting voltage drop impacts the
input voltage of the ARM processor. This will shutdown the
processor/SoC, as the input to the processor cores will not be
the expected 500 mV.1 After careful analysis of the datasheets
of the SoC, NI modules (input impedance 12 mOhms), and
regulator, we concluded that it is safe to use NI modules at
the regulator outputs (input to the ARM) as the voltage drop
across the modules is negligible.

There are alternative ways to assess the amount of power
required by the CPU. One such method involves measuring
current at the input of the regulator and calculating the input-
side power. According to the conservation of energy principle,
the input power should be equal to output power. That means
that the input power added to the power of the regulator
should be equal to the output power. The datasheet provides
the efficiency of the regulator for different output voltages (the
efficiency of the regulator decreases at lower output voltages).
Thereby, we could get the power required by the processor by
simply multiplying the input power by the efficiency of the
regulator. This assumes that the CPU is the only subsystem
module being supplied by the PMU. If there are other attached
subsystems (like memory, image and video processing units,
DSPs), the amount of energy consumed by them needs to be
accounted for in order to get the CPU power trace.

D. Temperature Issues
The shunt resistor is sensitive to temperature variations. If

the temperature increases due to the passage of high currents,
a phenomenon known as Joule self-heating occurs. This self-
heating of the shunt resistance increases its resistance, which
in turn leads to an increased voltage drop across it. This might
eventually cause the SoC to shut down and may also impact
the measurements. The chemistry of different shunt resistors
also act differently with the increase in temperature.

Moreover, with an increase in temperature, the leakage
power of the SoC increases exponentially, thereby contributing
to the total power requirements. This does not affect the
measurements per se, but helps to understand the power
numbers obtained from profiling.

IV. EXPERIMENTAL SETUP

Our main experimental setup consists of an AM572x EVM de-
velopment board from Texas Instruments (TI) that is equipped
with a high-performance SitaraTM SoC. The SoC is imple-
mented using a 28-nm process and is comprised of several sub-
systems. In this work, we are interested in the microprocessor
unit (MPU) subsystem, which, in turn, consists of two ARM
Cortex-A15 cores. The AM572x EVM board offers current
sense resistors for all its submodules, including the MPU.
These resistors provide access to the power supply rail and al-
low continuous power monitoring in real time during software

1Assuming a drop of 120 mV due to the measurement probe, the supply
would only be 380 mV, depending on the load.



Fig. 4. The host machine running LabVIEW, the NI cDAQ along with the
NI 9215 voltage input module, and the TI AM572x EVM baseboard.

execution. We modified the board by soldering male headers
across the current sense resistors to easily connect probes. The
resistor’s value is 0.01 Ohm and has been chosen to provide
the best possible dynamic range during data acquisition.

We use a compact data acquisition device from National
Instruments (NI cDAQ-9174) for all our data acquisition
needs. NI CompactDAQ is a portable platform that integrates
connectivity and signal conditioning into I/O modules that
can directly interface with many different sensors. We use an
NI 9215 voltage input module to measure the voltage drop
across the sense resistor. We then calculate the current using
Ohm’s law and multiply it with common-mode voltage to
get power values. Figure 4 shows our complete experimental
setup, which includes the Windows host machine running
LabVIEW software, the NI cDAQ with the NI 9215 voltage
input module plugged in, and the TI AM572x development
board. The NI cDAQ shown in Figure 4 also includes an
NI 9227 current input module and an NI 9211 temperature
module, which have not been used in our experiments yet.

A. Host-to-Board Synchronization

Our monitoring platform (see Figure 5) relies on the Lab-
VIEW software, which is able to monitor the target board in
real time, while logging all measurements (along with addi-
tional meta-information). This allows us to obtain a complete
trace of the energy consumption during a benchmark run.
However, the host and target board need to be synchronized in
order to reliably determine the start and end of a benchmark
run and consequently start/stop data logging.

Usually, the processes running on the Windows host and
the target embedded system could affect the precise timing

Host
(Windows 
running

LabVIEW)

NI
Monitoring 
hardware

UDP communication

Board under test

Fig. 5. Block diagram of our energy monitoring platform.

and reliability of the measurements. If the time characteristics
of the measurement and automation systems are critical for
the safety of the application, then one needs to use a real-time
operating system (RTOS). But, in our case, there are no other
tasks running on the host system that could impact the timing
and reliability of the measurements. A standard Windows host
thus suffices for our needs. In addition, we implemented a
User-Datagram-Protocol-based (UDP) interface, which allows
us to remotly start/stop the data logging process on the host.

The Windows host runs LabVIEW, which acquires and ana-
lyzes the measurement data coming from the cDAQ modules.
Native to LabVIEW is a visual programming language (G) that
uses a dataflow model instead of more traditional sequential
lines of code. We used a producer-consumer model to code the
host-side data acquisition logic. That means we continuously
acquire data from the NI cDAQ, but only start logging when
we receive a start message from the embedded system via
UDP. We stop logging when we receive a stop message.

B. Benchmarking and Data Acquisition

For all our measurements, unrelated software and services
(WiFi, window manager, services, . . . ) have been disabled
in order to minimize interference with data acquisition. The
benchmark runs are controlled by a bash command-line script
running on the target board. The script first changes the scaling
governor for a single CPU core from ondemand to userspace.
This allows us to manually control the CPU’s clock frequency
and supply voltage settings. The TI AM572x EVM board,
by default, only supports three frequency/voltage settings:
OPP NOM, OPP OD, and OPP HIGH. Each of these settings
corresponds to a different supply voltage (0.98 V, 1.09 V, and
1.23 V, respectively). The frequency at each of these voltage
levels corresponds to the maximum possible value (1000 MHz,
1176 MHz, and 1500 MHz). However, additional frequency
settings can be enabled by adding corresponding entries to
the Device Tree Source (DTS) file.

A device tree is a tree data structure of nodes and their
properties. Properties are usually key-value pairs, and nodes
may contain both properties and child nodes. The device
tree describes the physical devices in the system that cannot
be dynamically detected (I2C, SPI, flash, bus). The tree is
constructed from a binary blob (Device Tree Blob, or DTB)
that is parsed by the kernel at boot time. The blob in turn is
derived from board/SoC-specific DTS files.



We modified the DTS file by adding corresponding entries
(properties) to the operating point table child node, the proper-
ties of which include operating point frequency and operating
point voltage. This file is then cross-compiled into a DTB file
and then flashed onto the boot disk, allowing us to perform
measurements while varying the clock frequency in steps of
100 MHz between 100 MHz and 1500 MHz.

The bash script starts the data logging process on the host
machine by sending a start message before setting the desired
scaling frequency. The sampling rate used is 1600 samples/sec.
With the help of the taskset command, the script controls CPU
affinity and forces the benchmark to run on a specific core. The
script finally sends a stop message to the host machine after
the benchmark completes. This terminates the logging process
and prepares the LabVIEW software for another benchmark
run. Once all benchmark runs for all frequency settings have
been completed, the frequency scaling governor is set back to
ondemand.

For our experiments, we use two cryptographic benchmarks,
namely SHA and Blowfish, from the BEEBS suite [8] and the
bit-reverse algorithm. The bit-reverse algorithm is the part of
the ubiquitous Fast Fourier Transform (FFT) algorithm that
deterministically rearranges elements in an array. We used the
Gold-Rader implementation [9], which is often considered the
reference algorithm for FFT applications. The benchmarks are
run 3 times and it has been found that there are no significant
variations in terms of energy consumption.

V. DISCUSSION

We primarily investigated different platforms and workloads
in order to evaluate some of the commonly used energy-
management heuristics. For this, we measured various char-
acteristics (execution time, average power, . . . ) while varying
the clock frequency in steps of 100 MHz between 100 MHz
and 1500 MHz. Here, we present our main findings.

Figure 6 shows the performance of the benchmarks, i.e.,
execution time, depending on the CPU’s clock frequency on
the TI AM572x platform. The execution time decreases in
a clear non-linear fashion for our CPU-bound applications
as the frequency increases. This is hardly surprising and un-
derlines the importance of frequency scaling, including DFS,
for performance. While the energy consumption of the SoC,
when running a benchmark, also depends on the benchmark’s
execution time (recall that leakage power and other factors
that are independent of CPU load may play a role here), the
clock frequency may have a more significant impact.

Figure 7 shows that the average power increases steadily
with the increase in frequency for all three benchmarks (SHA,
Blowfish and Gold-Rader). This accounts for the power of
the entire MPU subsystem, i.e., both ARM cores, where one
core is running the benchmark and the other is idle – but not
powered off. Note that the subsystem also includes the core’s
private L1 cache, a shared L2 cache, and the necessary inter-
connect. These components cannot be controlled separately in
software, but may transition themselves into low-power modes
independently from the CPUs. Reducing the clock frequency

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
Frequency (MHz)

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

E
x
ec

u
ti

o
n
 t

im
e 

(s
)

Gold-rader
Blowfish
SHA

Execution time vs Frequency

Fig. 6. Execution time vs. Frequency: performance of the benchmarks with
varying clock frequency on the TI AM572x platform.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
Frequency (MHz)

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

A
v
er

ag
e 

p
o
w

er
 (

m
W

)

Gold-Rader
Blowfish
SHA

Average power vs Frequency

Fig. 7. Average power vs. Frequency: Power consumption of the benchmarks
with varying clock frequency on the TI AM572x platform.

minimizes the average power, but this may not be the best
strategy, as the non-linear increase in execution time may
offset potential gains.

Energy-management approaches often neglect that fre-
quency scaling is highly dependent on workload character-
istics. Figure 8 compares the accumulated total CPU energy
consumption for each of our three benchmarks with varying
frequency on the TI AM572x platform (accounting for the
same subsystems as for Figure 7). It is obvious that the energy
consumption curves are convex, each having the same optimal
frequency point (fopt) where the energy consumption is mini-
mized. This is consistent with previous experiments revealing
the existence of the Energy/Frequency Convexity Rule for
compute-intensive applications running on an Exynos-based
platform in a Samsung Galaxy S2 phone [2], [6].

The time it takes to execute a workload increases more than
linearly when decreasing the CPU’s frequency, while leakage
power continues to be drawn during the time the CPU is active.
This leakage contributes to the convexity on the lower end of



0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
Frequency (MHz)

0

20

40

60

80

100

120

140

160

180

200

220

E
n
er

g
y
 (

J)

Gold-Rader
Blowfish
SHA

Total energy consumption vs Frequency

Fig. 8. Total energy vs. Frequency: energy consumption of our three
benchmarks with varying clock frequency on the TI AM572x platform. The
dotted line represents the optimum frequency for each of the benchmarks.

the frequency range, i.e., when the operating frequency f is
lower than the optimal frequency fopt. For the region where
the operating frequency is greater than the optimal frequency
(f>fopt), the energy consumption is attributed to the increase
in frequency, which contributes to dynamic power. In our
experiments, the target voltage is set to 0.98 V, 1.09 V and 1.23
V for the OPP NOM, OPP OD and OPP HIGH frequency
operating points, respectively; the voltage is held constant
between those operating frequency points. Note, however, that
the actual voltage supplied by the PMU on the power rails may
still vary by a small amount from those imposed by the set
operating points. The actual value is determined dynamically
by the PMU and may depend on many factors, including
production variations, silicon defects, temperature, and the
actual CPU load.

The total energy consumption curves presented in Figure 8
are relatively flat in the OPP HIGH region. This suggests that
time performance can be increased while maintaining energy
efficiency. For instance, the time performance of the Gold-
rader, Blowfish and SHA benchmarks can be improved by
15.53%, 20.00%, and 20.18%, respectively, by increasing the
clock frequency from 1200 MHz to 1500 MHz. The energy
consumption stays almost unchanged and only decreases by
a few joules. Note also that the OPP OD operating point
presents a perfect balance between energy consumption and
performance.

It can also be seen from the curves for the total energy
consumption that the optimal frequency point (fopt) lies at
1000 MHz. This is the frequency point where energy consump-
tion is minimised for each of the benchmarks. This optimal
frequency point does not vary across different benchmarks. So,
when a new workload enters into the system and wakes up the
PMU from the sleep states, minimizing the energy consump-
tion would require having an energy-management strategy that
reaches the fopt operating point as fast as possible, depending
on the current operating frequency. More generally, by taking

into account the energy-performance goals of an incoming
application on a given architecture, the operating system can
use the same kind of energy-frequency data presented here
to decide which energy management strategy is best for that
particular application.

VI. CONCLUSION AND FUTURE WORK

Optimizing embedded and communicating systems that host
energy-critical applications remains a challenge. In this paper,
we have presented a new experimental bench for energy
profiling of non-performance-critical applications. Our setup
provides direct access to the CPU’s power rail, enabling
precise energy readings. We detailed our experience of acquir-
ing fine-grained energy measurements using two development
platforms and we reconfirmed the Energy/Frequency Convex-
ity Rule for CPU-bound benchmarks. Results also showed that
frequency scaling depends on the workload characteristics,
resulting in workload-specific optimal clock frequencies.

Our future work will be to mathematically model the En-
ergy/Frequency Convexity Rule in light of the conceptual view
of the platform energy consumption described in Section II.
We would like to extend it to an algorithmic approach for
platform-level energy management. This could be done by first
classifying applications according to their energy usage and
then building an energy-aware execution model.

ACKNOWLEDGEMENTS

We thank Texas Instruments for providing us the AM572x
EVM board, the main platform for our experiments, and Karim
Ben Kalaia for his help and advice.

REFERENCES

[1] Dally, W. J., Balfour, J., Black-Shaffer, D., Chen, J., Harting, R. C.,
Parikh, V., Park, J., and Sheffield, D. “Efficient embedded computing”.
Computer 41, no. 7 (2008).

[2] De Vogeleer, K., Memmi, G., Jouvelot, P., and Coelho, F. “The en-
ergy/frequency convexity rule: Modeling and experimental validation on
mobile devices.” International Conference on Parallel Processing and
Applied Mathematics (2013).

[3] Hager, G., Treibig, J., Habich, J., and Wellein, G. “Exploring performance
and power properties of modern multicore chips via simple machine
models.” Concurrency and Computation: Practice and Experience 28, no.
2 (2016).

[4] Le Sueur, E., and Heiser, G. “Dynamic voltage and frequency scaling:
The laws of diminishing returns.” Workshop on Power-Aware Computing
and Systems (2010).

[5] Rotem, E., Ginosar, R., Weiser, C., and Mendelson, A. “Energy-aware
race to halt: A down to EARtH approach for platform energy manage-
ment.” IEEE Computer Architecture Letters 13, no. 1 (2014).

[6] De Vogeleer, K., Memmi, G., and Jouvelot, P. “Parameter Sensitivity
Analysis of the Energy/Frequency Convexity Rule for Application Pro-
cessors.” Sustainable Computing: Informatics and Systems 15 (2017).

[7] Dhiman, G., Pusukuri, K. K., and Rosing, T. “Analysis of dynamic voltage
scaling for system-level energy management.” Workshop on Power-Aware
Computing and Systems (2008).

[8] Pallister, J., Hollis, S., and Bennett, J. “BEEBS: Open benchmarks
for energy measurements on embedded platforms.” arXiv preprint
arXiv:1308.5174 (2013).

[9] Gold, B., Stockham, T. G., Oppenheim, A. V., and Rader, C. M. “Digital
processing of signals.” McGraw-Hill (1969).


