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Abstract: This article summarizes our current studies aiming at a better understanding of the energy 
consumption of a microprocessor during the execution of an application through a combination of theoretical 
results and experimental validations, The analysis of the transient thermal behavior and energy gains (ranging 
from 20 to 40% in some cases) via the adaptation of the clock frequency are of obvious practical interest. A 
general Passive Cooling Rule (PCR) for an isothermal object subjected to radiation, convection and internal 
heat generation is proposed. This  power-temperature model is observed on an Exynos 5410 processor. Several 
approximations to this cooling rule are formulated for practical use, particularly online. They are accompanied 
by general rules for assessing when passive cooling becomes non-negligible compared to active cooling in 
embedded systems. On another hand, a theoretical framework for the existence of an Energy/Frequency 
Convexity Rule (EFCR) of program consumption is established. It is validated both by the state of the art and by 
experimental measurements where the impacts of variation of multiple parameters are studied. Power 
requirement models are then explained for the Exynos 5410 integrating the clock frequency, temperature and 
number of active cores. The novelty of these models is that they take into account certain characteristics of the 
running programs and that they can be directly reused in any simulation for other processors of similar 
architecture. 
 
Keywords: Application energy profiling, energy-critical, energy consumption, frequency-energy convexity rule, 
passive cooling rule, Exynos processor, Cortex processor, DVFS, TMU, embedded systems  
 
 
1. Introduction and motivations1 
 

1.1. Motivations and energy-critical applications 
 

A hardware and software system or an application are called “energy-critical” if the slightest change in available 
energy can have a significant impact on its results and use. From this point of view, any program running on a 
battery-powered system can prove to be energy-critical; this is the case for many embedded systems, wireless 
sensor networks or mobile phone applications. Whatever its origin, any portable device exhibits this same 
Achilles’s heel: the battery. This class of programs or applications is vast and justifies by itself to study and 
better understand the energy and thermal behaviors of programs associated with the hardware platform on which 
they will be executed. We could add at the other end of the spectrum, high-performance computing systems 
(HPC) which, if they are not energy-critical per se, are also constrained by both temperature and available power 
supply. These systems often have to work within a constrained budget including energy consumption. 
Numerous and important works focus on the chemistry of batteries to improve their capacity and longevity; other 
works focus on energy harvesting; other ones, on electronic design computer architecture: all these works aim at 
increasing application autonomy. Microprocessor manufacturers have well understood the economic and 
ecological stakes and propose architectures allowing to play with clock frequencies and load balancing in order 
to better manage energy consumption. For example, the heterogeneous "big little" architecture proposed by 
ARM (Cortex A53) and then by Samsung (Exynos 5210) combines a low-power processor with a high-power 

                                                             
1 This paper is an extended version of De Vogeleer, K., Memmi, G., and Jouvelot, P. Modélisation de la 
consommation énergétique des programmes : aspects thermiques et loi de convexité énergie-fréquence. Génie 
logiciel, 6, 2016. 



processor to better adjust the computation power to a given application needs, optimizing the energy 
consumption more efficiently than by simply choosing a clock frequency. 
However, regardless of the progress of this work, the need for optimizing the efficiency of the energy consumed 
by a battery-powered system will persist. One reason among others is the constant miniaturization of electronic 
communicating objects combined with a reduction in the volume and weight of batteries, with, icing on the cake, 
a need for a restlessly increasing level of autonomy. This has been confirmed by academic studies [20] as well as 
marketing surveys, since the creation of portable devices. The energy efficiency of battery-based systems 
remains critical, as demand for power continuously outperforms developments designed to increase battery 
capacity ([34], [45]). 
Better management of clock frequency as well as better control over thermal effects of microprocessors will 
have significant impacts on energy behavior. It is this fundamental idea that we pursue and we seek, in the first 
place, to understand and model these relations with accuracy, considering both physical parameters and software 
characteristics. To this end, it is first necessary to be able to experiment, to measure with accuracy, to collect 
data, to deduce a model and to validate it. Then, it will be possible to exploit statically or dynamically this model 
by using a set of controllers allowing to play with clock frequencies or to balance the load of the various 
processors of an embedded system. Knowledge of the hardware architecture of a system and its behavior with 
regard to physical quantities is, of course, of paramount importance, in particular, its thermal behavior. However, 
we believe that knowledge about the software that will run on the given hardware platform must be added for an 
optimized resource allocation process and, furthermore, to be able to build an energy program profile for, then, 
predict and control the system energy consumption. Today, operating systems can act more and more efficiently 
on the clock frequency or the voltage of microprocessors in order to slow them down or accelerate them and thus 
save on the total consumed energy or, on the contrary, to obtain the best possible performance ([42], [38]). 
Another important factor is the influence of temperature on power. Numerous publications attempt to measure or 
model these factors under various situations (mobile, high-performance computing, datacenter management). 
Published earnings range from 10% to 40%. 
 

1.2. Energy profiling 
 
Clock frequency, processor temperature and program run time are among the important factors influencing 
energy consumption and are key parameters of the energy profile of a program execution on a given hardware 
platform. Providing energy consumption models will pave the way for optimizing energy for combined software 
and hardware systems such as embedded systems. Current and future technologies will allow to select a subset of 
its logic and to keep it active at a given time to remain compatible with the acceptable levels of maximum power 
dissipation; the deactivated fraction of the logic is called black silicon. In addition, power and physical 
transmission time limits have kept the maximum clock frequencies of current and future technologies [17] 
constant during the execution of a program. Consequently, to improve performance, microprocessor 
architectures employ solutions with increasing degrees of parallelism. For example, multi-core simultaneous 
multithreading (SMT) has provided substantial energy savings with recent hardware [16]. 
In addition to optimizing energy efficiency at the hardware level, software can also be designed to minimize 
energy consumption. For embedded systems, at least six traits of software energy optimization can be 
considered: energy-oriented operating systems, efficient resource management, the impact of configuring user 
interaction with mobile devices and applications, wireless interfaces and radio transmission, sensor management, 
and cloud computing services [45]. All these facets must be optimized globally to achieve the greatest energy 
gain, which is an ambitious and complex task. 
At the software level, energy and power optimization techniques can be divided into static or dynamic methods. 
Static methods include, among others, efficient software design and optimization of the compiler backend. For 
these approaches to efficiently optimize energy and power, an energy profile of the hardware on which the 
software will be run is required. Of course, the software generated will only be optimal for a given hardware 
platform. Some environment variables may not be fully known ahead of time, such as the ambient temperature or 
the level of humidity. Furthermore, the design of an energy-efficient architecture is very sensitive to the 
necessarily variable load of the processor [16]. This makes us understand the limitations of static optimization 
techniques, which can only be overcome by dynamic techniques. 
Dynamic optimization will therefore use a set of contextual information available only at run time. The outside 
temperature is a typical example. The hardware and software system can dynamically adapt to improve energy 
efficiency and power. Online methods include dynamic compilation optimization, byte-code optimization, and 
optimization techniques at the operating-system level. As with static optimization, knowledge of the energy 
profiles of hardware and software helps to improve the decisions made by dynamic energy and power 
optimization techniques and are necessary to be able to anticipate such decision making. 
 



1.3. Contributions 
 
This paper summarizes the main results set out in K. De Vogeleer's PhD thesis [14] whose objective is to focus 
on the energy profiles of programs and, more precisely, on the way in which two fundamental parameters, 
namely temperature and clock frequency of microprocessors, affect energy consumption of applications or 
programs as well as the optimum operating conditions of a computer system. After this introduction, Section 2 
discusses two relationships addressing the influence of temperature. A power-temperature analytical model is 
illustrated by numerous examples from the literature. This model is useful for canceling the temperature bias in 
power measurements and increasing their accuracy. A cooling rule for a supposedly isothermal object subjected 
to radiation, convection, and internal heat generation as well as two approximations better suited for practical use 
are given in Section 2.2. The Energy/Frequency Convexity Rule (EFCR) of a given program energy 
consumption on a single-core microprocessor is developed in Section 3; it was first published in [11] and has 
been validated experimentally with different microprocessors ([11], [46]). The article concludes with a look at 
future work. 
 
2. Two relationships describing the influence of temperature 
 
When studying energy consumption on the basis of power measurements, it is imperative to experiment 
accurately in order to obtain reliable power samples and reproducible measurement traces by controlling a set of 
physical and environmental variables likely subject to noise measures. Temperature (T) has a significant impact 
on the energy consumption of microprocessors as well as on their performance. The example in Figure 1 shows 
an increase in energy consumption of 5% for a temperature increase of 10 °C at a clock frequency of 1.3 GHz. It 
also shows that, the higher the temperature, the higher the demand for power. It is this last relation between 
power and temperature that we will study. Then, we will consider a passive cooling rule which is the only one 
that has to be taken into consideration in the case of small sensors or in mobile phones without active cooling 
circuits. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Temperature (a) and power (b) of an Exynos 4210 under a constant workload, operational at 
different microprocessor clock rates. It is observed that the energy consumption increases rapidly due to the 

increasing temperature of the microprocessor, all other parameters being kept constant. 
 

2.1. Temperature-power relationship 
 
The electric currents in a microprocessor, or in any integrated circuit (IC) for that matter, respect the 
fundamental laws of electricity (Ohm, Kirchhoff, ...). Thus, they produce heat dissipation that is proportional to 
I2R, where R is the resistance and I the overall electrical current of the system studied. The first law of 
thermodynamics indicates that, in regular operation, the energy input of a system is equal to the energy 
consumption of the system. Thus, in the absence of other energy interactions and neglecting information related 
to energy itself, the only form of energy emanating from a microprocessor is the heat generated by the currents 
going through resistive elements [8]. Therefore, the heat dissipation of the microprocessor is very close to its 
energy consumption.  

(a) Temperature (b) Power 



Moreover, a microprocessor exhibits a transient thermal behavior where the cooling and heating times depend on 
its heat capacity; the higher the heat capacity of the systems, the slower their transient thermal behavior is. These 
systems are traditionally modeled by RC circuits, based on the current/heat equivalence, i.e., a low-pass filter, 
where the temperature of the system is proportional to the voltage across the capacitors [10]. In fact, thermal 
(transient) behavior is more complex, because the resistance R and the current I vary with the evolution of the 
microprocessor temperature. In general, experience shows that the power grows super-linearly with the 
temperature of the system under study. One can, however, remind the reader about the linear bound in kT (where 
k is the Boltzmann constant) of heat dissipation during a machine cycle. This lower bound based on information 
theory and developed by Brillouin and then by Landauer and Bennet [4] remains theoretical and very far from 
the measures performed on the best hardware technologies. 
In addition to other physical properties, leakage currents certainly are the greatest contributors to this relation 
between the microprocessor power and its temperature, which may contribute to explain the exponential 
relationship between power and temperature. To put things into perspective, we have experimented with the 
ARM A15 processor, which is used extensively in embedded systems; in the most extreme cases, the energy 
consumption at 85 oC were 20% higher than at 25 oC. More fundamentally, the work we carried out ([13, 14]) 
concluded that an exponential model of power as a function of temperature provided a high level of accuracy 
over a temperature ranging from 25 °C to 85 °C, but also that a quadratic model was quite sufficient over a 
smaller temperature interval. This model is of the type: 
 

 
 

where the parameters a0, a1 and a2 depend directly on the type of microprocessor used. This power-temperature 
relationship can be used to suppress the bias of the temperature over a power measurement trace.  
The distance of a temperature probe from a heat source can introduce also errors on power measurements, such 
as a time shift or a reduced temperature amplitude. A somewhat ad hoc transformation function can be used to 
compensate for such behavior. Such models are of interest for the following reasons. 

• Measurements are essential for understanding and optimizing energy-critical systems ([16], [45]). A 
lack of detailed power measurements will undermine efforts to reduce energy consumption on modern 
software, embedded systems, or the Internet of Things (IoT) [16]. 

• Several research studies have attempted to describe the power-temperature relationship by focusing on a 
subset of the leakage currents described by BSIM (Berkeley Short-channel IGFET Model) ([19], [30], 
[31], [41], [44]). 

• Such models assume that the leakage currents are only temperature-dependent. However, the currents 
are also a function of time, because the voltages applied across transistor terminals change over time, 
which introduces additional modeling complexity. The leakage currents also depend on a multitude of 
factors specific to each integrated circuit technology, which are not all yet accurately known. Therefore, 
it may be interesting to propose a general modeling of the power-temperature relationship, as an 
alternative approach to models derived from BSIM. 

• It is essential to control error rates due to power measurements according to the different temperature 
variations of the system under study. For example, some of our power measurements exhibit up to 10% 
deviation due to transient temperature effects [14]. Thus it is important that the effects of temperature 
can be understood and controlled so as to obtain a fair and accurate basis of analysis in order to 
efficiently compare different power measurements. 

• From the point of view of measurement, it is also important to understand the impact of internal heat 
generation on temperature and the effect of remote sensors. Precise and repeatable power measurement 
protocols are difficult to establish due to the transient thermal behavior of electrical components. More 
precisely, for a given test program, measurement of the power supply of the microprocessor can lead to 
different values for different temperatures of the microprocessor. For the sake of precision and fair 
comparison between different power measurements, it is therefore critical to know how to control, 
compensate or even cancel the effects of transient thermal behavior. 

Moreover, it is important to constantly study the various power-temperature models of the literature in order to 
optimize the DVFS (Dynamic Voltage and Frequency Scaling) modules and of course the TMU (Thermal 
Management Unit). Figure 2 contains a set of results presented in various publications which all show an 
increase in the required power as a function of temperature. Weissel and Bellosa [48] developed a TMU for a 
computing center based on a set of measurements over a temperature ranging from 35 °C to 60 °C. 
 



 
(a) [26] (b) [25] 

 
 ( c) [40] (d) [23] ( e) [48] 

 
 (f) [33] (g) [35] 

 
 (h) [43] (i) [6] 
 

Figure 2: Figures showing the required power as an increasing function of temperature. 



 
2.2. Passive cooling of microprocessors 

 
The reliability of electronic products is strongly influenced by spatial and temporal temperature gradients, as 
well as by their absolute values [28]. Thermal gradients, which occur in both space and time, induced by the 
variability of the microprocessor load and the operations, are generating thermal cycles that have negative effects 
on the Mean Time Between Failures (MTBF) of systems [27]. The International Technology Roadmap for 
Semiconductors (ITRS) even claims that processing costs and performance specifications may be limited by 
service life, with reliability becoming the primary concern in the design phase of a microprocessor [24]. The 
Mean Time To Failure (MTTF) or end of operation of an electronic equipment decreases exponentially with 
temperature; possible causes of failure are electro-migration, chemical reactions, dielectric rupture, or hardware 
creep [8]. An increase in temperature from 10 oC to 15 oC can reduce the life of a microprocessor by half [47]. 
Therefore, the temperature of a system is often limited to control heat dissipation at maximum power, optimizing 
MTTF, minimizing energy consumption, avoiding self-destruction (especially when playing with overclocking), 
as well as for user safety reasons. Smartphones are often thermally capped around 50 oC, so users do not burn 
themselves, but also in order to efficiently use the electrical capacity of the battery. It should be pointed out that 
the surface temperature in contact with electronic systems should be limited to 41 oC or 45 oC, depending on the 
material, to ensure a comfortable user handling [5]. 
Advanced electronic equipment uses Thermal Management Units (TMU) or Dynamic Thermal Management 
(DTM) techniques that are capable of slowing down or adapting systems in order to meet their sometimes 
stringent constraints. There exists a vast array of thermal control methods for microprocessors and Systems-on-
Chip (SoC) ([3], [27]); they act on the compromises between thermal profile, frequency parameters, energy 
consumption, and thermal management device implementation complexity [51]. Some complex microprocessors 
may employ hardware-based TMUs, as some Intel microprocessors ([15], [32]) do, while software TMUs are 
frequently implemented in embedded systems. To effectively use TMUs, it is important to understand the 
transient thermal behavior of the system under study. This transient thermal behavior is driven by the way the 
microprocessor dissipates its heat in the surrounding environment. Active cooling systems release their heat into 
the environment by forced convection, e.g., air or other types of fluid, which surpasses other heat transfer modes. 
The transient behavior of these systems is well described by an exponential cooling rule. 
However, passive cooling devices, such as smartphones, wireless mobile radio sensors or many other types of 
objects used in IoT, rely on the natural dissipation of heat, including radiation. The complex effects of radiative 
cooling on transient thermal behavior have been explored through an experimental and analytical framework as 
accurate as possible in [14]. To control this complexity, some simplifying hypotheses are necessary; in 
particular, a microprocessor will be represented by an isothermal part of silica oxide that will be placed in an 
infinite open space subjected to (natural) convection and radiation. It is clear that this assumption is not always 
verified. 
Under the hypothesis of the sole presence of convection, radiation, and internal heat generation, the so-called 
Passive Cooling Rule (PCR) in the presence of radiation can be expressed by means of a temporal variable t as a 
function of the temperature T (it would be natural to have the inverse, i.e., the temperature as a function of time, 
but this function is even more complex), as follows: 
 

 

 
(PCR) 

 
A use case applied to a microprocessor-like object shows that the radiation-related component cannot be 
neglected for objects with a cooling surface area greater than 1 dm2, which could be the cooling surface typical 
of a smartphone. For smaller cooling surfaces, the exact passive cooling rule approximates an exponential 
cooling rule. Under such conditions, an exponential cooling rule must be favored, since it is much less complex 
than the exact PCR. Approximations to the exact cooling rule have also been provided in [14]; they are intended 
for use in practical applications and, even, online applications (in particular in embedded systems). It has been 
shown that the following approximation 
 

 
 (PCR2) 

 
works best in most circumstances. For small deviations at room temperature, O'Sullivan's second-order 



approximation method 

 (PCR3) 

 
can also be used satisfactorily. The three PCR rules for the passive cooling of objects are increasingly easy to 
efficiently compute (which is important for real-time or near-real-time applications), but, on the other hand, less 
and less precise (see [14] for comparisons of PCR2 or PCR3 error rates relative to PCR). These models can be 
useful in thermal management (TMUs) and dynamic (DTM) components to evaluate and predict the thermal 
behavior of a given microprocessor. 
 
3. EFCR, the Energy/Frequency Convexity Rule 
 
In addition to temperature, other parameters influence the energy profile of a system. The program's run time and 
the various characteristics of power demand of the software and hardware system are the main factors that define 
energy consumption. Considering them in a global manner is one of the original points of our work. 
A program execution time is influenced by the type and cost of the various operations performed by the software 
in question, including the instructions accessing the external memory and calling the routines of the operating 
system. Each functional unit within a microprocessor and system component has its own power profile and run 
time. As a result, different code sequences exhibit different energy and run-time demands. For instance, Carroll 
and Heiser  [7] showed that, for an embedded system, by running equake, vpr and gzip from the SPEC 
CPU2000 suite, the microprocessor energy consumption exceeds the consumption due to RAM alone, whereas 
other software such as crafty and mcf, from the same suite, exhibit a greater energy consumption from the 
RAM than from the microprocessor. Minimizing the number of memory access operations is a common energy 
optimization technique. For example, Intel has introduced, with the E5 Xeon chip (DDIO), the Ethernet network 
card (NIC), which can load data directly into the microprocessor cache, thus minimizing access to RAM. By 
avoiding input/output (I/O) operations, the performance, but also the energy consumption of the system, is 
improved.  
An interesting feature of the energy consumption of a code sequence is that, under certain assumptions, the 
product of its execution time by the energy consumption of the microprocessor possesses convex properties; this 
rule is called the Energy/Frequency Convexity Rule of program consumption (EFCR). The existence of such a 
convexity property is based on both experimental and theoretical works and also relies on a vast survey of the 
state of the art. This rule thus shows that there is a clock frequency fopt for the execution of each code sequence 
that minimizes the energy consumption of said code sequence. Under certain conditions, this optimum clock 
frequency, which reduces energy consumption, lies between the minimum fmin and maximum fmax clock 
frequencies of operation of the microprocessor. The choice of the clock frequency results thus in a compromise 
between performance in terms of execution time and the need in energy savings. 
 

3.1. Related work on the convexity of the energy/frequency relationship 
 
Efforts by researchers as well as engineers in order to optimize energy management on a system have mostly 
focused on the hardware level. Energy management at the level of software applications is much more recent and 
is linked to the access, via the operating system, to various key parameters such as the temperature or the energy 
consumed by the integrated circuit or the card on the printed circuit board. At this level, it was initially a 
question of putting to sleep, or even switching off, the components that have nothing to perform, which can be 
deduced from the fact that queues at the components’ inputs are empty [1]. You et al [49] have observed an 
average reduction in energy consumption of 23%. 
A large number of authors have observed, with some exceptions, that the energy consumed by a microprocessor 
is not a linear function of its clock frequency but exhibits a convex curve and, therefore, an optimum. This 
convexity is a feature that has been observed in the literature (see Figure 3) but to the best of our knowledge, is 
not yet in usage in operating systems. On the analytical front, however, related work is rather rare and fairly 
approximate. Indeed, authors rarely go so far as modeling by considering the fundamental laws of physics. The 
published curves are thus mostly obtained by experimentation or even simulation. For example, Senn et al [37] 
and then Austin and Wright [2] present a heuristic model. Other authors ([22], [21]) discuss the consequences 
and possible exploitation of this convex behavior, but remain at a theoretical level. Yet other authors provide 
measurements of energy consumption under DVFS, but without exhibiting convexity (see [41], [39]. [2], or [42, 
43]), which showed that, for specific applications and over a given frequency window, the convex behavior of 
energy as a function of frequency was not observable. Yet, Senn et al [37] showed a convex curve of energy as a 
function of frequency, and established a simplified model for their Texas Instruments C55, C62, C64 and C67 
platforms. Figure 3 shows various graphs taken from the publications cited above. 



There are other theoretical and experimental works on the convex relation between frequency and dissipated 
energy. For example, Yuki and Rajopadhye [50] study the energy consumption of high-performance computers, 
as well as Austin and Wright [2], who examine the energy consumption on Cray CX30; the authors note that the 
value of the minimum is specific to the application. Cho and Chang [9] measure an optimum for a 
microprocessor-memory set; they arrive at a relatively complex model, but show the feasibility of using optimal 
frequencies. A more complete state of the art can be found in [12]. 

 
(a) [18] (b) [29]  

 
 (c) [22] (d) [42] 

 
 (e) [2] (f) [37] 



 
 (g) [Tudor…13] (h) [38] 

Figure 3: Some graphs on the energy/frequency curve found in different independent publications.  
We observe the convexity of the energy/frequency curve for most of them. 

 
3.2. Analytical model of EFCR 

 
Analytically, we obtain the system energy Esys as a function of the clock frequency f and voltage V of the 
processor. This function depends on a certain number of parameters related not only to the architecture of the 
processor and the rest of the system as can be found in the literature, but also to software-dependent issues: (1) 
the program directly linked to the application (via the number of clock cycles of its execution, ccb) and (2) other 
programs or services that can run on the same processor as the application and that behave as thieve clock cycles 
(fk), typical on a multitasking operating system. EFCR is expressed by the following equation: 

 
(EFCR) 

where γ is a parameter associated with the leakage currents, ξ characterizes the CPU power, Pback is the power 
needed outside the CPU (screen, sensors, ...), ccb is the number of clock cycles of the application, fk corresponds 
to a frequency related to the cycles stolen by the various overheads, in particular of the operating system, and β 
is related to the periods of waiting time when the central processing unit is not active. This formula (the physical 
parameters being all in positive) justifies the convexity of the energy curves as a function of the frequency. It 
also makes it possible to establish that the optimal frequency is independent of the size of the application (linked 
to ccb), which we have already observed experimentally in Figure 4.  
A sensitivity analysis of the parameters was carried out ([12, 14]). The Pback background power is the parameter 
that has the greatest influence on the optimum clock frequency, which minimizes the power usage of the system. 
In general, fopt can be used, i.e., fmin <fopt <fmax, if the power requirements of the microprocessor are smaller than 
Pback. For some types of applications, however, fopt is independent of Pback, for example for the processing of 
repetitive tasks within computer systems. The number of clock cycle thieves fk also affects fopt significantly, in 
the sense that fopt increases when fewer clock cycles are available for the actual calculation. 
 

3.3. Experimental validations of EFCR  
 

Data acquisition campaigns were obtained from the Bristol Energy Efficiency Benchmark Suite (BEEBS) and 
the Golden-Rader bit-reverse algorithm. These programs were run on several different platforms, two of them 
made up of multimedia SoCs. The power profiles used were recorded on the same SoCs, one of which is 
composed of a Cortex A9 and the other of a dual microprocessor Cortex A7 and A15. The results suggest that 
the energy consumed per input element is strongly correlated with the clock frequency of the microprocessor 
and, even more interestingly, that the corresponding curve presents a clear minimum on a frequency window 
specific to the computer system and the program under study (Figure 4). An analytical model of this behavior is 
also motivated, which fits well with the data presented. A sensitivity analysis of the parameters has also been 
carried out in order to evaluate the influence of the parameters on the optimal frequency ([12, 14]). It is also 
shown that the optimum frequency increases when the needs in power of the system, excluding microprocessors, 
increase. The presence of clock cycles dedicated to the operating system also increases the optimum frequency. 



It is observed that the optimum frequency as derived from the theoretical framework presented here is, however, 
independent of the number of instructions to be executed, depending yet on the size N of the input data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Experimental and theoretical energy consumption data of a program running on ARM Cortex A9 
microprocessors. The energy consumption for various characteristic points with different input sizes is shown for 
the Rader algorithm as well as the BEEBS benchmark. The solid lines represent the measured data, while the 
dashed lines represent the energy/frequency computed curve (EFCR). 
 
This experiment has been recently further validated by a more accurate measurement campaign using a TI 
AM572x platform plugged to Labview equipment [46] (see Figure 5). 
 

 
Figure 5: Energy consumption of three different programs running on a TI AM572x platform 

 showing different profiles with different fopt. 
 
4. Future work and conclusion 
 
The accuracy of the measurement protocol of the power-temperature relationship in embedded systems could be 
improved, mainly by using several more accurate temperature probes. This is an arduous task because the 
temperature probes on the circuits have low resolution and can lead to high error rates. External temperature 
measuring devices, such as infrared sensors, can provide improved accuracy but must be used in a controlled 
environment and preferably with the circuit under study. The ambient temperature and the temperature of the 
circuit must also be controlled so as to avoid the effects of temperature hysteresis, which may interfere with the 



power-temperature correlation. In particular, it seems important to us to verify when the assumption of 
isothermality constitutes a legitimate approximation for our thermal relationships. 
From a theoretical point of view, it might be interesting to evaluate the exact impact factor of processes that 
depend on the temperature, in addition to the leakage current, and that affect the power profile of the 
microprocessors. Using this knowledge, a more advanced model of the power-temperature relationship for 
microprocessors could be designed, based on physical principles, in addition to the heuristic power-temperature 
model presented previously. In addition, the transformation model to account for distant temperature sensor 
syndrome could be deduced from a more robust theoretical analysis, replacing an approximate polynomial, 
although, as has been shown, such an effort would probably lead to a very complex mathematical formulation 
that could constitute an important stumbling block for online uses. 
From the point of view of experimental power measurements, more precise data would also be beneficial to 
refine and validate our models, as we already started to do in [46]. A higher sampling rate would allow for more 
detailed observation of specific parts of the instruction sequences. This would lead to an estimation of the useful 
power of the microprocessor with a finer grain, which could be beneficial for obtaining information about the 
different functional units of the microprocessor, better than the estimation at the level of application that was 
assumed in [14]. Our work has used traces of power measurements at 4 kHz. High-end data acquisition tools 
have sampling rates of 100 kHz to 1 GHz, which shows that progress is possible in this direction in spite of 
higher and more expensive post-measurement data processing requirements. More precise energy profiles can 
then also lead to more aggressive DVFS optimization, which would yield far greater energy gains than those 
provided by the interactive frequency governors present in typical Linux distributions.  
Finally, the rule of energy/frequency convexity of program consumption has been studied by adopting a 
theoretical point of view, without taking into account human factors. For HPC systems that must produce results 
as quickly as possible, human factors are of little value: programs must run as fast as possible. On the other hand, 
devices designed with rich human-machine interactions (HMI), such as smartphones or tablets, must absolutely 
take into account the human emotional aspects in the use of the energy/frequency convexity rule. As has been 
presented in this work, EFCR is a compromise between energy consumption, on the one hand, and execution 
time, on the other. If an HMI is involved, the user experience will potentially be affected by too great a change in 
execution time. As the execution time increases, the computer system becomes less reactive and the user 
experience will deteriorate, non-linearly. However, for applications requiring many human interactions, it has 
been shown that clock frequency can be reduced without affecting user experience [36]. Understanding the 
emotional impact of EFCR should therefore be a key factor when designing a system optimized for quality of 
human experience. User experience can then be seen as an additional constraint to define the optimum clock 
frequency. This constraint would induce a lower limit on the clock frequency, which would indicate the moment 
at which the user would no longer tolerate any slowdown of the system. 
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