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Abstract
Rotating Shadowband Irradiometers (RSI) and SPN1 Sunshine Pyranometers allow determining the diffuse
and direct components of solar radiation without sun trackers; they can be deployed in networks for
continuous field operation with modest maintenance. Their performances are evaluated here by analyzing
their errors with respect to well characterized references. The analysis is based on 1-minute data recorded over
a 15-month period at the Payerne BSRN station in Switzerland. The analysis was applied both to the whole
dataset and data subsets reflecting particular conditions to allow a better understanding of how instrument
performance depends on such conditions.

The overall performance for measuring global horizontal irradiance (GHI) is satisfactory with deviations
compatible with an expanded uncertainty of ±25 Wm−2 (±10 %). For diffuse horizontal irradiance (DfHI),
RSIs exhibited errors on the order of ±20 Wm−2 (±13 %) with some of them being affected by small sys-
tematic negative biases on the order of −5 Wm−2 (median). SPN1s underestimate DfHI by about −10 Wm−2

(median) with a relatively large range of the expanded error distribution between −45 Wm−2 and 20 Wm−2

(−35 % to 13 %). For direct normal irradiance (DNI), the extended error range for RSIs is on the order of
±40 Wm−2 (±5–6 %) with some instruments presenting no bias while others are affected by median biases
up to −15 Wm−2. SPN1s exhibit a relatively large median bias of 40 Wm−2, and an extended range of the
error distribution between −45 Wm−2 and 125 Wm−2 (−6 % to 19 %). Typical errors on the integrated yearly
energy per unit surface area are on the order of a few percent or less (< 5 %) for RSI with negligible errors on
DNI for some RSI instruments. SPN1 integrated errors are negligible for GHI, but on the order of −8 % for
DfHI, and between 9 % and 11 % for DNI.

For RSIs, GHI and DfHI errors showed similar amplitude and dependence on solar elevation, while DNI
errors were significantly smaller in relative terms than GHI or DfHI errors. This suggests that RSIs are
optimized for providing good estimates of DNI, at the expense of – and resulting in – a correlation between
GHI and DfHI errors. RSI uncertainty for DNI is about twice the uncertainty of a good quality pyrheliometer
under favorable conditions. SPN1 instruments exhibit the opposite behavior with GHI and DfHI errors of
opposite signs, resulting in large DNI errors. While the SPN1 performances for measuring GHI are similar to
those of RSI, corrections are required to obtain satisfactory performances for DNI.

Keywords: shortwave radiation, accuracy, uncertainty, pyranometer, rotating shadowband irradiometer, RSI,
SPN1

1 Introduction

Surface solar irradiance is a parameter of key impor-
tance for understanding and monitoring the global cli-
mate system and was identified as an Essential Climate
Variable within the Global Climate Observing System
(GCOS). Of course, it is also the key parameter for so-
lar energy, and its high variability is an issue for so-
lar energy production. This variability should be moni-
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tored, assessed and if possible forecasted. For this pur-
pose, estimates of solar irradiance are required, and the
only straightforward way to measure irradiance at the
surface is by ground-based observation (World Me-
teorological Organization, 2010). These estimates
are required for solar resource assessment and moni-
toring, for validation (Gueymard, 2014) or calibration
(Vernay et al., 2013) of estimates derived from satel-
lite data or Numerical Weather Predictions (NWP) mod-
els, and sometimes for very-short term forecasting (now-
casting – Chaabene and Ben Ammar, 2008; Yang
et al., 2013).
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Table 1: List of tested instruments.

Acronym used and name of instrument as
indicated by provider

Provider # instr. Principle

RSI IRR: Rotating Shadowband Radiometer Irradiance Inc. 2 Rotating shadowband + LI-COR

CSPA: Rotating Shadowband Irradiometer CSP Services GmbH 2 Rotating shadowband + 2 LI-CORs
(prototype)

CSPB: Rotating Shadowband Pyranometer CSP Services GmbH 2 Rotating shadowband + LI-COR

Δ-T SPN1: Sunshine Pyranometer Delta-T Devices Ltd. 3 Seven thermopile sensors + elaborate
fix shading radiation shield

Knowledge of the accuracy of ground-based mea-
surements is therefore crucial. Accuracy targets have
been published for reference networks such as the Base-
line Surface Radiation Network (BSRN – McArthur,
2005), which follows strict measurement guidelines en-
suring high-quality data of known accuracy. But such
stations are impractical for networks dedicated to solar
energy assessments because of their cost and high level
of maintenance required. Separate determination of the
solar direct and diffuse radiation components is nonethe-
less desired for assessing the solar energy input onto col-
lection devices because of their varied configurations,
orientation and tilt. While this is achieved using pyrhe-
liometers and pyranometers mounted on sun trackers at
reference stations, alternative instruments have been de-
veloped by which diffuse and direct components of solar
radiation may be inferred without sun trackers. These
instruments are compact, lightweight with low power
consumption and do not need mechanical adjustments
of the shading device. They operate in a robust and cost
effective way, and can be deployed in networks for con-
tinuous field operation with limited maintenance. Typi-
cally, RSI systems (including data logger) are designed
to be powered with a 10 W solar panel, while sun track-
ers alone need more than 20 W to be operated (e.g.,
SOLYS 2 from Kipp & Zonen). They measure the global
horizontal irradiance (GHI) and its diffuse component
(DfHI) either in rapid succession (RSI) or simultane-
ously (SPN1). The direct irradiance is inferred from the
difference between GHI and DfHI. These instruments
are of two basic designs, the Rotating Shadowband Ir-
radiometers (RSI, also sometimes called Rotating Shad-
owband Pyranometer – RSP) from different manufactur-
ers, and the SPN1 radiometer from Delta-T Devices Ltd.

The accuracy of irradiance measurements has been
assessed in different studies. They include uncertainty
assessments (Myers et al., 1989; Myers, 2005; Reda,
2011; Vuilleumier et al., 2014), and studies report-
ing results of inter-comparison campaigns (Michalsky
et al., 2003; 2011; Dutton and Long, 2012; Wilcox
and Myers, 2008; Habte et al., 2016). Only one study
conducted at the US National Renewable Energy Labo-
ratory (NREL – Wilcox and Myers, 2008; Habte et al.,
2016) evaluated the accuracy of both RSI and SPN1.
Thus, the performance of RSI or SPN1 instruments has
rarely been evaluated by comparison to reference instru-

ments for standard operational conditions. The Payerne
BSRN station was proposed as a test bed for conducting
such an evaluation over a 15 month period (16.06.2012
to 15.09.2013, 457 days in total). This BSRN station
is part of the Payerne meteorological observatory in
the western part of the Swiss Plateau between the Jura
Mountains and the Alps (46.812° N, 6.942° E, 491 m
above sea level).

The results of the performance evaluation comparing
RSI and SPN1 radiometers to high accuracy radiation
sensors (references) from the Payerne BSRN station are
presented here. The reference instruments are traceable
to the World Radiometric Reference, and their accuracy
has been assessed by Vuilleumier et al. (2014).

2 Instrument descriptions

2.1 Tested instruments

Three different RSI models, as well as the SPN1 ra-
diometer were evaluated. Two instruments of each RSI
model and three SPN1 instruments were tested (Ta-
ble 1). These instruments were installed on a test field
at the Payerne BSRN station and operated as recom-
mended by the providers. If using corrections is part of
the instrument standard operation, we used them; but in
no case were such corrections determined with knowl-
edge of the reference data.

A majority of RSI models have a rotating shadow-
band (Fig. 1) that makes a rapid rotation over the sen-
sor for determining DfHI; typically the sensor is only
shaded during a fraction of a second. This requires a sen-
sor with a very fast time response such as the LI-COR
photodiode sensor (LI-COR, Inc., Lincoln, Nebraska,
USA). The RSIs used in this study all included LI-COR
photodiode sensors. Neglecting corrections described in
the next paragraphs, their basic principle is using the
minimum irradiance measured during the rotation of the
shadowband as an estimate of DfHI, determining GHI
from the average reading taken when the shadowband
is far from shading the diffuser and inferring the direct
normal irradiance (DNI) from (GHI − DfHI)/ sin(ξs),
where ξs is the solar elevation angle. The main factors
affecting the RSI performance are the non-uniform spec-
tral response of the LI-COR sensor, the non-ideal (non-
Lambertian) directional response of the sensor’s light
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Figure 1: Rotating Shadowband Irradiometers (left: CSPA; center: CSPB) and SPN1 Shading Pattern Pyranometer (right).

Figure 2: Left: Typical spectral responsivity of a LI-COR pyranometer. Solid blue line: spectral responsivity published by LI-COR. Dashed
red line: spectral responsivity of one LI-COR pyranometer measured at NREL. Right: Typical spectral responsivity of a SPN1 sunshine
pyranometer.

diffusing aperture window, and the temperature depen-
dence of the sensor.

LI-COR sensors are mainly sensitive to wavelengths
between ∼ 400 nm and ∼ 1150 nm with a maximum sen-
sitivity between 950 nm and 1000 nm (Fig. 2). Outside
these limits, the sensitivity is very low. This spectral
range is a fraction of the range of the standard ther-
mopile sensor, typically from 300 nm to 4000 nm, and
this non-uniform spectral response results in a broad-
band responsivity that depends on the spectral distribu-
tion of the incident irradiance. The global, direct and
diffuse radiation spectra are different, and they depend
on sun elevation, ξs, the atmospheric composition and
cloud cover (Michalsky et al., 1987; Vignola, 1999;
Vignola et al., 2016).

The directional response of the LI-COR is also not
Lambertian, especially at large incidence angles cor-
responding to low solar elevation (Michalsky et al.,
1987; 1995; Vignola, 2006), which introduces a sen-
sitivity dependent on the solar elevation angle when di-
rect radiation is present. Since the effects caused by
the spectral dependence of the pyranometer can also

be modeled as a function of the solar elevation angle,
modeled corrections for the deviation from the Lamber-
tian response have often included some of the deviation
caused by the spectral dependence of the instrument. Fi-
nally, the response of photodiodes in general, and of the
LI-COR sensor in particular, is sensitive to the temper-
ature (Michalsky et al., 1987; 1991; Vignola, 1999;
2006). If not regulated, the temperature of the sensor de-
pends on many meteorological factors and particularly
the solar irradiation itself.

Corrections for the above-mentioned dependences
have been devised and improved over the years
(Michalsky et al., 1987; 1991; Vignola, 1999; 2006;
Augustyn et al., 2002; 2004; Geuder et al., 2008,
2010; Vignola et al., 2016). These corrections are often
implemented in the firmware of RSIs and significantly
improve their performance. Nonetheless, it is impossi-
ble, in practice, for such corrections to fully account for
the local and complex dependences and smaller but non-
negligible uncertainties and dependences remain after
corrections. Such uncertainty sources often have a sim-
ilar influence and may all induce effects that vary with
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solar elevation angle. They are thus relatively difficult to
distinguish.

The SPN1 Sunshine Pyranometer of Delta-T Devices
Ltd. uses a radiation shield with an elaborate pattern and
seven thermopiles (six on a hexagonal grid and one at the
center) to measure the global solar radiation and its dif-
fuse component (Fig. 1). This instrument does not have
moving parts and is heated to keep the glass dome free of
dew and help melting solid water or evaporating liquid
water. The instrument’s spectral response extends from
400 nm to 2700 nm and is relatively constant between
500 nm and 2700 nm (Fig. 2). It has a response time less
than 200ms. The specific design of the shading pattern
ensures that it masks half of the hemisphere for each
thermopile and that, in any situation, at least one sen-
sor is fully exposed to the direct solar beam (reading
the maximum output Umax) and another is completely
shaded (reading the minimum output Umin). Given the
fact that the shading-pattern blocks half of the upper
hemisphere and under the assumption of isotropic dif-
fuse sky radiance, all sensors receive half of the diffuse
irradiance (Badosa et al., 2014). DfHI is thus assumed
to be 2Umin, GHI = Umax + Umin, and DNI can be in-
ferred with DNI = (Umax − Umin)/ sin(ξs). More de-
tailed technical information, including extra corrections
applied to the readings, can be found in the User Manual
(Wood, 2012). For this study, GHI and DfHI measure-
ments were taken from the instrument outputs, and DNI
values were calculated from (GHI − DfHI)/ sin(ξs).

A comprehensive study of the uncertainty sources af-
fecting SPN1 pyranometers was conducted by Badosa
et al. (2014). That study concluded that while GHI mea-
surements by SPN1 and reference pyranometers com-
pare relatively well, DfHI measurements are systemat-
ically underestimated, and the resulting DNIs are con-
sequently overestimated. The main uncertainty sources
come first from the geometry of the instrument (sensor
placements with respect to the dome and the shading
pattern as described in the next paragraphs), and second
from the SPN1 spectral response.

More precisely, the geometry of the SPN1 is a source
of errors because the working definition of DNI in-
cludes the radiance up to 2.5° from the sun, based on the
half-opening angle recommended by the WMO CIMO
guide (World Meteorological Organization, 2010). Con-
versely, for consistency, DfHI is defined as the irradi-
ance from the upper hemisphere excluding the radiance
in the DNI. For the SPN1, the region around the sun
that is shaded for the sensor recording Umin is larger
than a cone with a 2.5° opening half-angle. Badosa et al.
(2014) computed SPN1 “first touch angles”, which im-
ply a notion similar to the opening angle. They found
that depending on the sensor and the sun position in
the sky, this “effective” opening half-angle is always
more than 5°, with a maximum value of 25° for low
solar elevation. This often results in a bright region
around the sun being excluded from DfHI, which con-
tradicts the assumption of isotropic diffuse radiance be-
hind DfHI = 2Umin. DfHI will be underestimated by the

SPN1 in such cases. This error depends on the position
of the sun in the sky and on the circumsolar radiance.

Another geometric uncertainty source affects the di-
rect beam component. Because six of the sensors are not
located at the geometrical axis of the glass dome, the di-
rect beam is bent by the glass dome due to a lensing ef-
fect. This effect is predictable; in addition unpredictable
sensor mismatches (e.g., differences in the calibration
of the different sensors or imprecision in the leveling
of the sensors) can also lead to uncertainties and abrupt
changes when switching from one sensor to the other
for Umax as the subset of sensors exposed to beam radia-
tion change with time. These uncertainties can reach up
to ±15 Wm−2 when DNI is high (Badosa et al., 2014).

Fig. 2 shows the SPN1 spectral response, which has
a higher sensitivity in the near infrared but falls off at
shorter wavelengths (blue part of the visible spectrum).
The sensitivity of the SPN1 is consequently different for
clear-sky DfHI and GHI measurements because of the
predominantly blue weighting of the diffuse spectrum
in such cases. In addition, the difference in clear-sky
sensitivity for GHI and DfHI will change with the solar
elevation angle, because of changes in direct and diffuse
irradiance spectra.

2.2 Reference instruments

The reference data for GHI, DfHI and DNI are the data
collected by the Payerne BSRN station. The direct and
diffuse components are monitored separately in addi-
tion to the global irradiance. All measurements are per-
formed using secondary standards or first-class instru-
ment. GHI and DfHI are measured by three, respectively
two instruments (redundancy), while DNI is measured
by a pyrheliometer constantly compared to a PMO6 ab-
solute cavity radiometer (see Table 2). The PMO6 ab-
solute open cavity radiometer is a secondary standard
providing traceability to the World Radiometric Ref-
erence (WRR); this allows permanently checking the
stability of the reference instruments as described by
Vuilleumier et al. (2014). Table 2 lists the reference
instruments used during the study period. The direct
and diffuse component measurements are carried out us-
ing computer-controlled sun-trackers and collimation or
shading devices. Vuilleumier et al. (2014) investigated
the accuracy of the reference measurements taken dur-
ing this performance evaluation. They found that GHI
and DfHI expanded uncertainties are less than 1.8 %,
while DNI uncertainty is on the order of 1.5 %. They
describe in detail the measurements taken as reference
values for this study.

The uncertainties determined by Vuilleumier et al.
(2014) for reference instruments are a fraction – approx-
imately by a factor five – of the uncertainties of the
tested instruments, and the differences between refer-
ence and tested instrument measurements should there-
fore be strongly dominated by tested instrument un-
certainties. However, reference instrument uncertainties
linked to systematic errors could have a non-negligible
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Table 2: List of reference instruments.

Instrument Serial # Calibration

Period Sensitivity

Direct Kipp & Zonen CHP1 110740 Nov-2011
Kipp & Zonen

7.88 µV/(Wm−2)± 0.09 µV/(Wm−2)

PMOD/WRC PMO6 891002 Sep/Oct-2011
PMOD/WRC

135.39 (m2 · Ω)−1 ± 0.06 (m2 ·Ω)−1

Diffuse Kipp & Zonen CMP22 80001 Sep-2011
PMOD/WRC

8.74 µV/(Wm−2)± 0.06 µV/(Wm−2)

Kipp & Zonen CM21 61653 Sep-2011
PMOD/WRC

11.83 µV/(Wm−2)± 0.16 µV/(Wm−2)

Global Kipp & Zonen CMP22 80002 2008
Kip & Zonen

9.40 µV/(Wm−2)± 0.10 µV/(Wm−2)

Kipp & Zonen CM21 51436 Nov-2010
MeteoSwiss

10.52 µV/(Wm−2)± 0.12 µV/(Wm−2)

Kipp & Zonen CM21 41306 Nov-2010
MeteoSwiss

10.73 µV/(Wm−2)± 0.12 µV/(Wm−2)

effect on our results. Specifically, a systematic error
in the reference measurements may induce biases in
the differences between reference and tested instru-
ment measurements and affect the median and means
of the difference distributions in a non-negligible way.
The possible sources of reference instrument uncertain-
ties are thoroughly investigated by Vuilleumier et al.
(2014), and the following may lead to systematic uncer-
tainties: calibration errors, thermal offset (for DfHI and
GHI) and directional errors (for GHI).

In the framework of this performance evaluation,
the fact that the reference pyrheliometer was continu-
ously compared and eventually adjusted to an absolute
cavity radiometer, while the pyranometers measuring
GHI and DfHI were linked to the pyrheliometer mea-
surements with a method similar to the continuous Sun
and shade method for pyranometer calibration allowed
substantially reducing the risk of a systematic calibra-
tion error. The expanded uncertainty on the reference
instrument sensitivity factors was estimated to be 1 %
for DNI and GHI, and 1.4 % for DfHI. Thermal off-
sets are known to affect thermopile-based pyranometers
(Dutton et al., 2001; Ji and Tsay, 2000). These are al-
most always negative and may induce a systematic error.
However, the correction method proposed by Dutton
et al., (2001) was applied to the reference data, which
strongly reduces the risk of systematic errors linked to
thermal offsets (Dutton et al., 2001; Michalsky et al.,
2003). The corresponding expanded uncertainty for the
reference instruments is estimated at 2 Wm−2 for DfHI
and 4 Wm−2 for GHI (Vuilleumier et al., 2014). Direc-
tional errors are linked to the non-Lambertian response
of pyranometers. They mainly affect GHI because the
diffuse radiance has a much more isotropic distribution
and DfHI is less affected by deviations from a Lamber-
tian response in pyranometers. Directional errors should
not result in systematic errors in general, but when the

analysis is restricted to specific solar elevations, system-
atic errors are possible. Vuilleumier et al. (2014) in-
vestigated such a problem by repeating their study of
reference GHI uncertainty for four different solar eleva-
tion bands, and they found results agreeing within 1 %.

3 Method

The performance of the tested instruments is evaluated
by studying the differences between their measurements
and the reference ones. It is the nature of measurements
to have a distribution around the unknown true value de-
scribed as the measurement uncertainty. Because the un-
certainty of the reference data is known to be small, the
difference between test instrument and reference data
will be defined as “error”. If the average of the distri-
bution is different from the true value, it is said to have a
bias. This bias may be dependent on experimental condi-
tions such as temperature, solar spectral distribution, or
solar elevation. It is possible to develop algorithms to ac-
count for systematic errors and this has been done with
the instruments being tested. The use of such algorithms
can be problematic as various systematic errors are often
difficult to separate from each other and from the ran-
dom measurement uncertainties. Therefore if the adjust-
ments were developed at one location under a given set
of circumstances, the adjustment algorithm needs to be
tested at other locations under different sets of circum-
stances to ensure that they appropriately reduce or elim-
inate the systematic error. The tests at Payerne are de-
signed to evaluate the performance of the RSI and SPN1
instruments with their adjustment algorithms under con-
ditions experienced at Payerne. The evaluation in this
study used 1 min data. For reference instruments, these
data are 1-min averages of 1 Hz sampling. For the tested
instruments, measurements are 1-min averages except
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for the DfHI from RSIs for which different sampling
strategies are used (for a description of instrument sam-
pling strategies see Appendix A1 in the Supplementary
Material).

Standard performance indicators such as bias, root
mean square error (RMSE) and mean absolute error
(MAE) derived from the differences between tested and
reference instruments are used (see Section 3.1). We also
consider quantiles (median, quartiles, etc.) of the errors
represented by boxplot diagrams for a better understand-
ing of the error distributions. In addition, we divided the
dataset in subsets using criteria (see Section 3.2) dif-
ferentiating conditions that could influence the perfor-
mances of the instrument as suggested by the studies
mentioned in Section 2. These criteria use the solar ele-
vation (low vs. high solar elevation) and the short-term
variability of the DNI (low vs. high variability), the latter
being influenced by the clouds. Studying the subsets in-
dependently facilitates the understanding of the depen-
dences of the instrument performance on these condi-
tions.

However, the analysis described above provides only
limited information on the time scales of the variability.
A further step is to analyze the “time frequency signa-
ture” of the tested instruments compared to the reference
ones, which may differ notably because of their different
response time. We investigated this using power spectral
density analysis (see Sections 3.3 and 4.5). This also en-
ables assessment of the influence of using longer time
scale aggregation on the agreement between tested and
reference instruments.

3.1 Estimators for the statistical analysis

In general, the statistical estimators are calculated us-
ing the difference (Δ) between tested and reference data:
Δ = Itest − Iref, where Itest is the irradiance (GHI, DNI or
DfHI) measured by the instruments under test at a given
time, while Iref is the corresponding irradiance measured
by the reference instrument. Although the true value of
GHI, DNI or DfHI is unknown, the uncertainty of the
reference instruments is known to be small (Vuilleu-
mier et al., 2014), and we will thereafter consider the
reference data as the true values and consider Δ as the
error. We define the average bias as 1

n

∑n
i=1 Δi, the Mean

Absolute Error (MAE) as 1
n

∑n
i=1 |Δi| and the Root Mean

Square Error (RMSE) as
√

1
n

∑n
i=1 Δ2

i . In addition, the
α-quantile (pα) is the data value for which α% of the
(ordered) errors are smaller than the value pα, the me-
dian, lower and upper quartiles being p50, p25 and p75
respectively. The Interquartile Range (IQR) is then de-
fined as p75 − p25. Following a standard boxplot analy-
sis convention, we define as outlier any observation de-
viating outside the domain defined by p25 − 1.5IQR to
p75+1.5IQR corresponding to approximately ±2.7σ and
99.3 % coverage for a normal distribution.

The quantities defined above were computed for the
whole dataset and for different subsets. The changes in

the error distributions with time were first analyzed by
disaggregating the dataset into weekly subsets, comput-
ing the statistical indicators for the subsets and verifying
how the indicators evolved during the inter-comparison.
In a further step, the statistical indicators of the differ-
ence distributions were studied using the boxplot analy-
sis, which was applied on the whole dataset and sub-
sets reflecting particular conditions (high or low solar
elevation, high or low DNI variability). This was per-
formed in order to verify whether the performance of
a given instrument changed when changing the condi-
tions; this was completed by a detailed analysis of the
error distribution dependences on solar elevation and
cloudiness. For GHI and DfHI, the time evolution, the
boxplot analyses and the study of the dependences on
solar elevation angle and cloudiness are conducted for
data measured when the sun elevation is sufficiently high
to avoid horizon effects (see Section 3.2 for criteria). In
addition for DNI, very low irradiance data (< 5 Wm−2)
are excluded, thus excluding cases when thick clouds
obscure the sun and times of very low sun elevation.

3.2 Data selection

The analysis was performed on data measured when
ξs was higher than 10° to avoid perturbations by the
horizon and shadowing by two trees at sunrise during
some periods of the year. The reference data flagged
as suspicious by short term quality control (QC, semi-
automated performed within two days) and longer term
quality analysis (QA, performed over months) were also
excluded from the analysis. The QC and QA procedures
are described by Vuilleumier et al. (2014). Reference
data validated by both QC and QA procedures repre-
sent 96–99 % of data collected for ξs > 10°, depend-
ing on the parameter (DNI, DfHI or GHI). In addition,
a simplified version of the reference data automated QC
procedure was also performed on the data from tested
instruments for early detection of instrument failures
so that erroneous data were not included in the per-
formance analysis. The simplified QC for tested instru-
ments singled out data for verification, which resulted in
the exclusion of some data from the tested instruments,
mainly snow events on 14.12.2012, from 19.01.2013 to
22.01.2013 and from 11.02.2013 to 14.02.2013, because
of snow accumulation on RSIs and data recorded af-
ter 01.06.2013 for CSPA RSIs. In the latter case, erro-
neous data were identified in the beginning of June 2013,
which was finally linked to humidity infiltrating the
sensor head (CSPA instruments were prototypes; the
follow-up model was redesigned to avoid such issues).

The data subsets reflecting particular conditions were
selected according to the sun elevation and the DNI vari-
ability. Data collected at solar elevation 10° ≤ ξs < 30°
were categorized as low solar elevation events, while
high solar elevation events included data collected for
30° ≤ ξs < 67° (the maximum solar elevation at Payerne
is approximately 67°). The DNI variability was assessed
with the change between successive measurements of
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Table 3: Subdivision of the reference dataset depending on the DNI
variability and solar elevation.

Low DNI variability High DNI variability

Low solar elevation
(10° ≤ ξs < 30°)

8 % 38 % (difficult cases)

High solar elevation
(30° ≤ ξs < 90°)

14 % (favorable cases) 40 %

DNI by the reference pyrheliometer (K&Z CHP1, see
Table 2). Low DNI variability events were selected as
instants when DNI was greater than 30 Wm−2 and for
which the difference between two successive 1 min mea-
surements was lower than 10 Wm−2. The latter condition
on the rate of change was requested to be true for at least
15 minutes for events to be characterized as low DNI
variability. These conditions on DNI can be expressed
as:

DNI(ti) > 30 Wm−2

max
j∈[i,i+15 min]

∣∣∣DNI(t j+1) − DNI(t j)
∣∣∣ < 10 Wm−2 ∀ t j

This typically selects data measured when clouds do not
obscure the sun during at least 15 minutes. It is not
the same as clear-sky conditions where no clouds are
present in the sky. The two sets of criteria divide the
dataset into four subsets including from 8 % to 40 % of
the total dataset as indicated in Table 3. The analysis and
discussion is based mainly on the two most contrasting
subsets: 1) high solar elevation / low DNI variability
(stable sunny conditions with the sun high over the
horizon), thereafter called “favorable” conditions, and
2) low solar elevation / high DNI variability (cloudy
conditions and sun relatively low over the horizon),
thereafter called “difficult” conditions.

3.3 Power spectral density analysis

As mentioned, the reference instruments and tested in-
struments have different time responses and this can
change the nature of the error distributions that may have
different “frequency signatures”. A first approach to as-
sess the performance of the different sensors in term of
temporal frequency response is to distinguish the perfor-
mances in situation of slowly or rapidly variable irradi-
ance (see Section 3.2 and Table 3). This can be com-
pleted by a finer analysis of the frequency signatures us-
ing the power spectral density (PSD).

The PSD of a second-order stationary signal x, noted
S [x]( f ), is defined as the Fourier transform of its au-
tocorrelation Γ[x]( f ). Similarly, the cross-PSD of two
second-order stationary signals x and y, noted S [x, y]( f ),
is defined as the Fourier transform of their cross-
correlation Γ[x, y]( f ). Here, the PSD and cross-PSD
have been estimated using Welch’s method for noise re-
duction (Welch, 1967).

In order to remove dominant non-stationary com-
ponents related to the daily and annual cycles of solar

radiation, the irradiance time series have been normal-
ized by the corresponding European Solar Radiation At-
las clear-sky model predictions (Rigollier et al., 2000).
This normalization transforms the irradiance time series
into corresponding clearness index time series reflect-
ing only the deviation of the measurements from a clear-
sky model. This corresponds mainly to the influence of
clouds and deviations of local aerosol from the aerosol
climatology included in the model.

To compute the different PSD and cross-PSD,
347 days – out of the 457 available – with at least 8 hours
for which the solar elevation angle is greater than 10°
have been selected. Days with more than 15 min of
invalid data within these 8 hours have also been re-
moved. The number of remaining days ranges between
178 and 285, depending on the considered test instru-
ment. The time series of clear-sky index for the remain-
ing days have been then completed by linear interpo-
lation, if necessary. The different PSD and cross-PSD
have been computed with the Welch’s method for each
of these days and then averaged. If Kt

c and Kr
c are the

clearness index time series from the test and the refer-
ence sensors respectively, the frequency-based indica-
tors that we analyzed are the ratio of the clearness index
variance ratio R( f ), the signal-to-noise ratio SNR( f ) and
the correlation coefficient CC( f ):

R( f ) =
S
[
Kt

c
]
( f )

S [Kr
c] ( f )

SNR( f ) =
S
[
Kr

c
]
( f )

S
[
Kt

c − Kr
c
]
( f )

CC( f ) =

∣∣∣S
[
Kr

c ,K
t
c
]

( f )
∣∣∣

√
S
[
Kt

c
]

( f )S [Kr
c] ( f )

R( f ) represents the ratio of variance of the test time
series to the reference one, for a given temporal fre-
quency f . It should ideally be equal to one. SNR( f ) is
the ratio of the variance of the reference time series to
the variance of the error for a given temporal frequency.
It should be as large as possible, and ideally infinite.
CC( f ) is a measure of the temporal coherence between
the tested and the reference time series with respect to
frequency and should ideally be equal to one.

4 Results and discussion

The uncertainty of the tested instruments is assessed
by comparing their measurements with those of refer-
ences whose uncertainty was previously evaluated by
Vuilleumier et al. (2014). To be clear, the uncertainty
of the references also contributes to the errors presented
for the tested instruments. But the uncertainties of the
references are at least a factor 5 smaller than the errors
reported here, for instance the 10 % GHI or DfHI ex-
panded uncertainty reported below for the tested instru-
ments.
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Figure 3: Mean, median, interquartile range and 5–95 percentile range of weekly error distribution between tested and reference instrument
for GHI.

The mean, median, IQR and 5–95 percentile range of
the error distributions are first presented as temporal se-
ries at a weekly resolution. This temporal resolution al-
lows capturing seasonal effects, while ensuring that each
subset includes enough data for statistical significance.
After verifying that the error distributions do not show
unexpected seasonal deviations, the statistical indicators
are studied for the whole dataset, and for the subsets de-
scribed in Section 3.2. The discussion is mainly based
on results given in irradiance units, but it is also useful
to present results in relative values. To avoid repetition,
the main results are given here but corresponding figures
for relative error distributions are given in Appendix A2
in the Supplementary Material.

4.1 Time series

Fig. 3 shows the GHI error distribution time series
grouped by instrument model type. The error distri-
butions stay most of the time within ±20 Wm−2, with
the 90 % range sometimes outside these limits in sum-
mer when GHI is stronger. For both summers (2012
and 2013), the RSIs exhibit negative bias on the order
of 10–20 Wm−2 for the median or the mean, while the
90 % range extends as low as −30 Wm−2. The relative
error distributions (Appendix A2.1) stay within ±10 %
(90 % range), except for some winter spikes due to

low GHI values, especially for weeks with high cloudi-
ness.

Corresponding to Fig. 3, Fig. 4 shows the error dis-
tribution time series for DfHI. The error distribution
spreads for RSIs are smaller than for GHI, although the
DfHI signal is usually smaller than GHI, and in rela-
tive value the DfHI spreads are larger (Appendix A2.1).
For instruments CSPA and CSPB, a small systematic
negative bias on the order of −5 Wm−2, to −10 Wm−2

is present. SPN1 instruments underestimate DfHI by an
average −5 Wm−2 to −20 Wm−2 with a relatively large
spread of the error distributions, the 90 % range some-
time reaching as low as −60 Wm−2.

Fig. 5 shows the same distributions for DNI. Because
the spread of the error distributions for all types of in-
struments are significantly larger than for GHI or DfHI,
Fig. 5 y-axis scale is different than for the preceding fig-
ures. For DNI, the IRR instruments present an underes-
timation by 10 Wm−2 to 30 Wm−2 in average, while the
CSPA and CSPB instruments do not show bias in gen-
eral. For these instruments, the distribution spread (90 %
range) is of the order of ±50 Wm−2. The SPN1 instru-
ments exhibit a DNI overestimation by 25–80 Wm−2 in
average, with the 90 % range reaching up to 150 Wm−2.
The DNI is not a parameter provided by the SPN1 in-
strument, and we simply derived it from GHI and DfHI
without corrections. Thus, since DfHI is underestimated
by SPN1, DNI is overestimated.
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Figure 4: Same statistical indicators as given in Fig. 3, but for DfHI.
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Figure 5: Same statistical indicators as given in Fig. 3, but for DNI.



10 L. Vuilleumier et al.: Performance Evaluation of Radiation Sensors for the Solar Energy Sector Meteorol. Z., PrePub Article, 2017

 test-ref  [Wm -2]
-40 -20 0 20

SPN1 3  

SPN1 2  

SPN1 1  

CSPB 2  

CSPB 1  

CSPA 2  

CSPA 1  

IRR 2  

IRR 1  

a) GHI

 test-ref  [Wm -2]
-40 -20 0 20

b) DfHI

 test-ref  [Wm -2]
-60 -30 0 30 60 90 120 150

c) DNI Median
IQR
Range
MAE
RMSE

Figure 6: Boxplot diagram of the overall error distributions between measurements made by the tested and reference instruments. The
boxplots show the median, IQR and the extended error range excluding outliers. In addition the RMSE and MAE are indicated. The
statistical indicators are shown for a) GHI, b) DfHI and c) DNI, and are based on 1-min averages.

4.2 General performances

Fig. 6 shows statistical indicators for the error distribu-
tions presented as boxplot diagrams for all 1-min events
fulfilling the selection described in Section 3.2. Each
boxplot shows the median (red line), the IQR range (blue
box), and the extended range of the distribution exclud-
ing outliers (whiskers, see Section 3.1). The latter range
includes in all cases more than 95 % of the distributions.
Beside each boxplots, the magenta and the cyan bars
show the RMSE and MAE (Section 3.1).

With respect to GHI, RSI instruments and SPN1 in-
struments exhibit similar performance with error dis-
tributions ranging between −35 Wm−2 and 25 Wm−2,
which would correspond to an average expanded un-
certainty of about ±25 Wm−2 (±10 %, Appendix A2.2).
The DfHI uncertainties for the two types of instruments
are different. For RSI, the errors are smaller than for
GHI (∼ ±20 Wm−2), but DfHI is usually also signifi-
cantly smaller than GHI resulting in DfHI relative errors
of about ±13 %. For some RSI, a small negative bias
(about 5 Wm−2) is found. SPN1 instruments underesti-
mate DfHI by about −10 Wm−2 for the median of er-
ror (bias), with an expanded error distribution between
−45 Wm−2 and 20 Wm−2 (uncertainty range).

For DNI, the performance of RSI and SPN1 instru-
ments also differ significantly. The extended range of the

error distribution for RSI is of the order of ±40 Wm−2

(±5–6 %) with some instruments presenting no bias
while others are affected by negative ones (the median
can be down to −15 Wm−2). SPN1 instruments exhibit
a relatively large median bias on the order of 40 Wm−2

and an extended range of the error distribution between
−45 Wm−2 and 125 Wm−2 (−6 % to 19 %).

4.3 Performance for specific conditions

Fig. 7 shows the same error statistics as Fig. 6, but
for favorable (sunny and high solar elevation, panels a,
b, c) and difficult cases (cloudy and low solar elevation,
panels d, e, f). When restricting the analysis to the
subset of favorable cases, the RSIs exhibit GHI negative
median biases (−22 to −13 Wm−2); while in difficult
cases the biases are much smaller or negligible. For
these instruments, the behavior of DfHI biases is very
similar. The DNI medians of errors are small: negligible
for some instruments and of the order of −20 Wm−2 for
others. It should be noted that in favorable cases the
instruments exhibiting the lowest DfHI biases are those
showing the highest DNI biases. This suggests a bias
compensation mechanism in the derivation of DNI. The
more similar the GHI and DfHI biases are, the better
such a bias compensation would be and the smaller the
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Figure 7: Boxplot diagrams of the error distributions between measurements made by the tested and reference instruments presented as
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same as for Fig. 6.
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final DNI biases. For difficult cases, both the GHI and
DfHI biases are small, and again very similar, leading to
small DNI biases. The error ranges are of the same order
for GHI and DfHI in both favorable and difficult cases
(widths between 25 and 40 Wm−2 for extended ranges),
resulting in significantly larger error ranges in relative
values for DfHI for favorable cases. The DNI error
extended ranges have widths between 45 and −55 Wm−2

for favorable cases and between 55 and 85 Wm−2 for
difficult cases, leading to significantly smaller relative
DNI errors for favorable cases (about 3–5 % vs. 8–15 %,
Appendix A2.3).

The “bias behavior” of the SPN1 instruments is
almost opposite to that of RSI and leads to an er-
ror amplification instead of compensation for DNI.
They exhibit a small positive median of GHI error
(< 5 Wm−2, < 1 %), but a significant negative median
of the DfHI error (about −15 Wm−2, −15 %) for favor-
able cases, while they have negligible median of GHI
error and small negative median of DfHI error (about
−5 Wm−2, −5 %) for difficult cases. For favorable cases,
this results in a bias addition for the computed DNI,
followed by an error amplification due to the presence
of sin(ξs) value in the denominator. For difficult cases,
the small DfHI biases lead to large DNI biases due
to a strong sin(ξs) amplification for low solar eleva-
tion cases. The resulting median of DNI error are about
20–25 Wm−2 (3 %) and 50 Wm−2 (16 %), for favorable
and difficult cases respectively, while the IQR and ex-
tended ranges are 30 Wm−2 and 120 Wm−2 for favorable
cases, and 45 Wm−2 and 180 Wm−2 for difficult cases.
Given the homogeneity of the SPN1 DNI error distribu-
tions, and their similar dependence on sin(ξs) (see Sec-
tion 4.4), it could be appropriate to explore a sin(ξs) de-
pendent correction directly for DNI. However, one still
needs to explore how general these corrections would be
since they may strongly depend on the location.

4.4 Influence of solar elevation and cloud
cover

The results discussed above clearly show that the in-
strument performances are not uniform when the con-
ditions change, the most likely causes being geometrical
and spectral dependences. Fig. 8 shows the variations
in error distribution median bias and IQR as a function
of sin(ξs), which is approximately inversely proportional
to the air mass, i.e. the amount of atmosphere traversed
by the direct solar beam. Values at the left and right side
of the plots correspond to low and high solar elevation
angles, respectively. The upper part of the figure (pan-
els a–i) are for GHI, while the lower one (panels j–r) are
for DfHI. GHI and DfHI panels are divided in a first row
(panels a–f and j–o) corresponding to results for RSI and
a second row (panels g–i and p–r) for SPN1. The separa-
tion in two data subsets characterized with low DNI vari-
ability (blue curves – sunny situations, see Section 3.2)
and high DNI variability (red, curves – cloudy situa-
tions) is kept while the data are distributed into 30 bins

of variable width so that each bin holds the same number
of data (the bin width varies from 1° to 3.5° for cloudy
situations and from 1.6° to 2.8° for sunny situations).
The median bias and IQR are subsequently computed
for each bin.

Interpretation of Fig. 8 is not obvious for RSI in-
struments. Panels a-f consistently show a strong depen-
dence of the GHI error with respect to sin(ξs) for sunny
conditions with small or no error at low sin(ξs) and in-
creasingly negative errors at higher sin(ξs). But in rela-
tive value (Appendix A2.4), the sin(ξs) dependence is
less obvious and differs according to the model type.
While it is present, but less strong for IRR instruments,
it is not present for CSPA and CSPB instruments. This
suggests that this error dependence may be simply due
to the GHI signal increase with sin(ξs) in sunny con-
ditions. The diffuse irradiance shows a similar pattern
(see panel j–o), with the difference that for sensors of
type IRR the error goes from positive values to negative
values when sin(ξs) increases. In this case, the relative
error also shows a pattern of increasingly negative er-
ror with increasing sin(ξs), and the error dependence on
sin(ξs) is not only an effect of the irradiance strength for
DfHI. The DfHI error dependence could thus be linked
to a spectral effect: Because the sensor responsivity is
not spectrally uniform and the related corrections may
be not perfectly adapted to the particular conditions at
the time and location of the measurement, a solar eleva-
tion error dependence can result from the changes in the
diffuse irradiance spectrum related to solar elevation in
sunny conditions.

This is further confirmed by Fig. 9 that presents the
sin(ξs) dependence of the DfHI error distribution medi-
ans in a manner similar to Fig. 8, but for different cloud
cover classes (CC) from 0 to 8 octas. The CC amount
is determined every 10 minutes by the Automatic Par-
tial Cloud Amount Detection Algorithm (Dürr and
Philipona, 2004), which is based on long-wave mea-
surements by the Swiss Meteorological Network. Fig. 9
shows that only overcast situations (CC = 7–8 octas)
present dependences markedly different from the oth-
ers, especially for CSPA and CSPB instruments. These
situations are characterized by the absence of direct sun
radiation and by a diffuse radiation with a spectrum rel-
atively similar to this of GHI, i.e., not predominantly
blue. For DfHI, the difference between these overcast
situations and the others should thus be linked to the dif-
fuse radiation spectrum.

There is a similarity between the dependence with
respect to sin(ξs) of the error distribution for GHI and
DfHI in favorable cases. But as discussed above, the
GHI error dependence is likely linked to the increase of
GHI with increasing sin(ξs), while for DfHI the most
plausible cause is the non-uniform spectral responsivity
of the RSI photodiode sensor. In this sense, this similar-
ity may be a coincidence. However, multiple corrections
are implemented in the firmware of RSI to account for
the non-uniform response of the LICOR sensor as well
as other error sources (Section 2.1). These corrections
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Figure 8: Error with respect to the sine of the solar elevation angle of the median and IQR of the error distributions between measurements
made by the tested and reference instruments for GHI (panels a–i) and DfHI (panels j–r) for sunny (blue – low DNI variability) and cloudy
conditions (red – high DNI variability).
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Figure 9: Error with respect to the sine of solar elevation angle and the cloud cover (in octas) of the median of the error distributions between
measurements made by the tested and reference instruments, for DfHI.

seem to be optimized for reducing the error in the esti-
mation of DNI. This could be the reason for the similar-
ity between the GHI and DfHI error dependences.

The DNI error distributions for RSI (see Fig. 10, pan-
els a–f) show a significant variability in their sin(ξs) de-
pendence. Similarly, the analysis of DNI error distribu-
tion sin(ξs) dependences for different CC (not shown)
does not allow detecting any consistent pattern for RSI.
The medians are affected by a very significant variabil-
ity that masks eventual differences between the curves
for different CC, and the dependences differ from one
instrument to the other. This absence of consistent er-
ror dependence pattern may be due to the fact that the
RSI computation of DNI is already well optimized. The
potential for further gains by a more complex sin(ξs) de-
pendent correction is probably small.

Fig. 8 shows that SPN1 GHI error distributions ex-
hibit limited dependences with respect to the solar el-
evation, while for DfHI, the error distributions exhibit
dependence with sin(ξs) in both cloudy and sunny con-
ditions. The DfHI error distributions are almost always
negative – i.e., underestimation – including the upper
limit of the IQR (zero is not within the IQR). Fig. 9 con-
firms that DfHI error medians for SPN1 are negative not
only for all sin(ξs), but also for all CC. For low sin(ξs),
the errors are small in irradiance, which is expected be-
cause the sun is low. In general, the errors are smaller

for CC higher than 7 octas. This is also expected, be-
cause one source of DfHI underestimation for SPN1 is
a geometrical effect related to a strongly non-isotropic
radiance distribution in the vicinity of the sun and the
fact that the fraction of the sky in the vicinity of the
sun which is shaded for the DfHI measurement varies
for different positions of the sun in the sky (Badosa
et al., 2014). In overcast situations, the radiance distri-
bution is relatively isotropic and such an effect is re-
duced. For low CC (0 or 1 octa), the underestimation
is at its maximum for sin(ξs) between 0.4 and 0.6, while
at higher sin(ξs), this underestimation is lower. In situa-
tions close to clear-sky, two effects can explain this be-
havior: first, for high elevation angles, the part of the sky
around the sun that is hidden for the DfHI measurement
by the SPN1 is more similar to this hidden by a regular
shading device for a reference system, which reduces the
error (Badosa et al., 2014); second, haze is frequent at
Payerne when the weather is good, and it usually gener-
ates a stronger aureole around the sun at low than at high
solar elevation. At high elevation, with a weaker aureole
around the sun and a less anisotropic distribution of ra-
diance around the sun, the error is reduced.

For GHI, the medians of the SPN1 error for various
CC (not shown) are in a range between −10 Wm−2 and
15 Wm−2 with the largest deviations at high sin(ξs).
At high sin(ξs) the medians of GHI error are positive
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Figure 10: Error with respect the sine of the solar elevation angle of the median and IQR of the error distributions between measurements
made by the tested and reference instruments for DNI for sunny (blue – low DNI variability) and cloudy conditions (red – high DNI
variability).

for most CC, except for CC = 8 octas (median error of
−10 Wm−2) and CC = 7 octas (negligible median error).
This detailed analysis confirms the findings of Badosa
et al. (2014) pointing out geometrical effects as a major
source of error in the determination of DfHI and GHI
by SPN1, and related corrections would be the most
effective in improving its performance.

The DNI sin(ξs) dependence for SPN1 among the
three instruments is very similar and bears little re-
semblance to the dependence of the RSI instruments
(Fig. 10), and the shape of the dependence is also simi-
lar for sunny and cloudy conditions: the errors are lower
at low and high sin(ξs), and they exhibit a maximum
for sin(ξs) between 0.3 and 0.4. This error maximum
at intermediate sin(ξs) was also observed for DfHI in
sunny conditions, and these are related, because of the
way DNI is inferred from the difference between GHI
and DfHI: Since the DfHI sin(ξs) dependence is stronger
than the GHI sin(ξs) dependence, the DfHI influence is
dominant in generating the DNI dependence.

As mentioned in Section 3.1, the events when DNI is
undistinguishable from zero (nighttime or thick clouds
in the sunbeam path) are not analyzed. Appendix A3 of
the Supplementary Material investigates how well day-
light events with no direct irradiance are detected by the
tested instruments (thick clouds resulting in zero DNI

events – ZDE) and its main results are given here. The
probability of detection (POD) of ZDE is usually rela-
tively high for RSI (between 79 % and 97 %, depending
on the instruments). For SPN1 instruments, this POD
is low (about 14 %). This is due to the overestimation
of DNI by the SPN1 resulting in a positive bias, which
makes it likely to measure a significantly positive DNI
even in case of ZDE. A limit for the detection of ZDE
was derived from the cumulative density function of the
tested instrument DNI measurements taken during ZDE,
using the 98th percentile. These limits for the detection
of ZDE are 11 Wm−2 and 22 Wm−2 for the two IRR in-
struments, 8–11 Wm−2 for the CSPA instruments, and
4–6 Wm−2 for the CSPB instruments. For the SPN1 in-
struments, they are ∼ 40 Wm−2. This means that even if
the tested instrument measures a non-zero DNI value (up
to the limits described above), there is a non-negligible
probability that the DNI is effectively zero.

4.5 Results of the PS-based analysis

The power spectral density (PS) analysis is used to ex-
plore timescales different than the 1-min data analyzed
above. This can also be done by reapplying the analysis
performed on 1-min data on data aggregated at longer
timescales, typically 10-min or 1-hour averages. How-
ever, in this case a choice is made on the aggregation
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Figure 11: DNI ratio R( f ) of PSD for each tested instrument with respect to reference.

timescale. PS analysis allows studying given indicators
(Section 3.3) as function of frequency – or equivalently
timescale – and allows identifying timescales of interest
where the PS analysis indicators exhibit changes or stop
to exhibit changes. For instance, as shown below, the PS
analysis indicators do not change anymore at timescale
longer than 1–2 hours, and for these long timescales
there is a consistent difference between RSI and SPN1
instruments.

But the PS analysis results are not directly compara-
ble to those reported in Sections 4.2 and 4.3. To allow
direct comparisons, results equivalent to those given in
Appendices A2.2 and A2.3 are given in Appendix A4.2
for 1-hour averages computed from the 1-min measure-
ments. The differences between results using 1-min data
or 1-hour averages are as expected, with reduction in the
error distribution spread but no significant change in the
biases. In addition, an estimation of the error on the in-
tegrated yearly energy per unit surface area is given in
Appendix A4.1. This quantity is of importance when as-
sessing how robust solar power plant yearly energy out-
put simulations are. Typically, errors on the order of a
few percent or less (in all cases less than 5 %) are found
for RSI with the best relative results obtained for DNI
with negligible errors for some instruments. SPN1 er-
rors are negligible for GHI, but on the order of −8 % for
DfHI, and between 9 % and 11 % for DNI. These results
confirm the pattern that the more similar the GHI and
DfHI errors are, the smaller the DNI error.

The PS analysis presents a rather consistent picture.
This analysis was limited to DNI, because it is the
most rapidly varying parameter studied here, and con-
sequently the most susceptible to presenting results ex-
hibiting specificities related to given timescales. Figs. 11
to 13 present for each tested instrument and by com-
parison to the reference, the ratio R( f ), the frequency-

based signal-to-noise ratio SNR( f ), and the frequency-
based correlation coefficient CC( f ) as defined in Sec-
tion 3.3. For the sake of readability, temporal frequen-
cies are translated into their corresponding cycle pe-
riods, expressed in min. These figures show that the
performance is similar across tested instruments when
analyzing frequencies corresponding to timescales of
about 1–2 hours or for longer ones. At such low frequen-
cies, the SPN1s present a small excess of variance, while
the RSIs have a variance equivalent to the reference in-
strument or slightly lower, depending on the instrument
(Fig. 11). The SNR is on the order of 100 for SPN1s,
while it is on the order of 650 to 950 for RSIs (Fig. 12).
Measurements by RSIs and the reference present a high
degree of coherence at timescales longer than 1 hour,
while it is slightly lower for SPN1s (Fig. 13).

Such differences between RSIs and SPN1s at low
frequency can be explained by the geometric uncertainty
sources affecting the SPN1. Part of these errors is due to
the fact that the sensor measuring the maximum signal
changes with time (see Section 2.1). These changes
occur at time scales of hours or fraction of hours, leading
to a low frequency error. This is most likely the cause of
the lower SNR for SPN1s, the excess of variance and the
lack of coherence at such frequencies.

At high frequency (of the order of min−1), all in-
struments show an excess of variance. Similarly, the
SNR diminishes to values of the order of 2 to 7, and
the correlation coefficient decreases to about 0.9. This
may be partly due to the differences in time response of
the tested sensor compared to the pyrheliometer. How-
ever, such an hypothesis requires further testing, espe-
cially because the time scales of the sensor responses –
about 5 sec for the pyrheliometer and much shorter for
the tested instruments – are shorter than the minimum
aggregation time used in this study.
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Figure 12: DNI frequency-based signal-to-noise ratio SNR( f ) for each instrument.
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Figure 13: DNI frequency-based correlation coefficient CC( f ) for each instrument.

5 Conclusion

This study provides an evaluation of the performances
of instruments such as RSI or SPN1 that are often used
in networks or at remote isolated sites for assessing sur-
face irradiance for the solar energy sector. From this de-
tailed analysis the accuracy of measurements from such
instruments may be assessed. The errors of the tested
instruments are evaluated with respect to well charac-
terized references and uses statistical indicators such as
median, MAE, RMSE, inter-quartile range, and an ex-
tended range of the error distributions. The analysis was
also applied on data subsets reflecting particular con-

ditions (high or low solar elevation, high or low DNI
variability) for better understanding the dependences of
the instrument performance on such conditions. This
gives some idea of how the uncertainty could change for
different locations and atmospheric conditions. Caution
must however be exercised in generalizing the results,
because at some locations the conditions may be too far
from those experienced at Payerne. For instance, the in-
tegrated water vapor column is almost always significant
over Payerne, so it may not be possible to generalize the
results of this study to locations with quite dry atmo-
sphere such as arid regions or high elevation sites. The
same comment stands for the solar elevation which is
limited to 67° at Payerne.
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It is difficult to directly compare our results to those
obtained by Badosa et al. (2014) or Habte et al. (2016)
because in those studies, the results of the tested instru-
ments were normalized by factors derived from the com-
parison with the reference data. On the contrary, we did
not allow any correction of the data from the tested in-
strument that would use knowledge of the reference in-
strument data. We still provide here some comparison
with the result of these studies, but taking into account
the applied correction factors. Badosa et al. report that
when GHI and DHI are recalibrated (using the reference
data), the mean absolute error is around 3 % or better
for GHI and 2–3 times larger for DfHI and DNI. The
recalibration method of Badosa et al. is based on di-
viding the data by the regression slope obtained by a
linear fit forced through the origin of the tested data as
function of the reference data. First, both the GHI and
DfHI data are divided by the slope of the GHI regression
and then a second normalization step is applied on the
DfHI data alone using the slope of the DfHI tested data
vs. reference DfHI data. The two-step process for DfHI
data is assumed to first take into account general calibra-
tion error for the SPN1 sensor, and then specific issues
linked to the DfHI measurement. According to Table 4
from Badosa et al. (2014), the first slope (derived from
GHI, but applied to all data) range from 0.96 (Palaiseau)
to 1.02 (Golden), while the second slope (DfHI) range
from 0.90 (Addu Atoll) to 0.96 (Golden). The DfHI cor-
rection slopes show that the SPN1 DfHI data are under-
estimated by a factor between −10 % to −4 %, which
correspond to the result of our study, while the mean ab-
solute error found by Badosa et al. after recalibration
are somewhat compatible with the spread found in our
study.

Habte et al. (2016) report Mean Bias Difference
(MBD) in percent for GHI and DNI including three RSI
instruments provided by Irradiance Inc. and one pro-
vided by Solar Millennium AG that are similar to those
tested in our study. One SPN1 radiometer is also in-
cluded in their study. Similarly to Badosa et al., they
recalibrated the tested instrument data by dividing these
by a normalization factor. For each tested instrument
and for both GHI and DNI, the normalization factor is
the ratio of the sum of all tested instrument data col-
lected between solar elevation angles 44° to 46° di-
vided by the sum of all corresponding reference data.
For RSI-measured GHI, mean MBD between −3 % and
+3 % are reported depending on the conditions (all-sky,
clear-sky, mostly cloudy) with spread of typically ±4 %
around these values. The RSI GHI normalization fac-
tors are between 0.98 and 1.00 (see Table 1 of Habte
et al., 2016). The mean MBD for SPN1 GHI is reported
to be between 1.5 % and 5 % (depending on conditions)
with a typical spread of ±5 % around these values, but
a normalization factor of 1.03 is used. Without this nor-
malization factor, the MBD would be even higher. For
RSI-measured DNI, mean MBD between −2 % and 0 %
are reported for all-sky conditions with spread of typ-
ically ±8 % around these values. For clear-sky condi-

tions, similar mean MBD are found, but with smaller
spread (±3 %), while for mostly cloudy conditions, more
negative mean MBD are reported by Habte et al. (−8 %)
with larger spread (±16 %). The RSI DNI normaliza-
tion factors are between 0.98 and 1.00 (see Table 2 of
Habte et al., 2016). For the SPN1-measured DNI, the
mean MBD is between +3 % (±6 %) for clear-sky condi-
tions and +21 % (±16 %) for mostly cloudy conditions.
Again, a normalization factor of 1.05 is used, and with-
out it the reported MBD would be even higher. Such
large biases for SPN1-measured DNI are even higher
than those that we found (see below).

In our study, the overall performance of the tested
instruments for measuring GHI is not as good as that
of the reference instruments described by Vuilleumier
et al. (2014). But it is nonetheless satisfactory as none of
the instruments exhibit error distributions significantly
exceeding about ±30 Wm−2, which would be the agree-
ment expected for instruments with an expanded uncer-
tainty of ±25 Wm−2 (±10 %). For DfHI, RSIs exhibited
errors on the order of ±20 Wm−2 (±13 %) with some
of them being affected by small systematic negative bi-
ases on the order of −5 Wm−2 (median). SPN1s instru-
ments underestimate DfHI by about −10 Wm−2 (median
of the error distribution) with a relatively large range
of the expanded error distribution between −45 Wm−2

and 20 Wm−2 (−35 % to 13 %). For DNI, the extended
range of the error distribution for RSI is on the order
of ±40 Wm−2 (±5–6 %) with some instruments present-
ing no bias while others are affected by median bi-
ases up to −15 Wm−2. SPN1 instruments exhibit a rel-
atively large median bias of 40 Wm−2, and an extended
range of the error distribution between −45 Wm−2 and
125 Wm−2 (−6 % to 19 %). As mentioned, only events
with DNI > 5 Wm−2 were analyzed. Typical error on the
integrated yearly energy per unit surface area are of the
order of a few percent or less (< 5 %) for RSI with neg-
ligible errors on DNI for some instruments. SPN1 inte-
grated errors are negligible for GHI, but about −8 % for
DfHI, and 9 % to 11 % for DNI.

The GHI and DfHI errors of RSIs were found to be
very similar, especially for favorable conditions. They
also showed similar dependences on solar elevation.
DNI errors significantly smaller in relative value than
GHI or DfHI errors were found, suggesting a cancela-
tion of error when inferring DNI from GHI and DfHI.
Such an error cancelation process requires the GHI and
DfHI errors of RSIs to be correlated, which is corrobo-
rated by their similar solar elevation dependence.

Despite these similarities, the cause of RSI GHI and
DfHI errors seem to be different. The GHI error solar
elevation dependence seems to be linked to the increase
of the GHI signal as solar elevation increases, while
other –or additional – causes are necessary to explain
the DfHI solar elevation dependence. Possible causes
include spectral effects related to the non-uniform spec-
tral response of the RSI sensor, non-ideal directional re-
sponse and eventually effects related to the shading by a
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rotating shadowband instead of the shading ball or disk
used in sun tracker-based systems. These causes could
have been investigated more thoroughly using for in-
stance spectral diffuse data, data on the circumsolar ra-
diance, etc. Unfortunately, even though the dataset used
in this analysis is quite comprehensive, such data were
lacking. Spectral data were only available for DNI. Vig-
nola et al. (2016) specifically analyzed the influence of
the non-uniform spectral response of the LICOR sensor
on the detection of shortwave radiation for DNI using
these data. Ideally, if spectral data had been available
for DfHI and DNI, such an analysis could have been ex-
tended to DfHI.

The RSIs appear to be optimized for providing good
estimates of DNI and the related accuracy is very rea-
sonable; the uncertainty is about twice the uncertainty
of a “good quality pyrheliometer” (World Meteoro-
logical Organization, 2010) in favorable conditions,
even though DNI is not measured directly but inferred.
Reducing this uncertainty further would be challenging.
It would require a detailed understanding of the DfHI
and GHI errors to reduce them in a first step, followed
by an optimization of the corrections applied when infer-
ring the DNI itself. For GHI, the performance of RSI in-
struments would place them at the limit between “mod-
erate” and “good quality pyranometers” (World Mete-
orological Organization, 2010).

The SPN1 instruments, in contrast to RSI instru-
ments, exhibit errors that tend to be of opposite signs
for GHI and DfHI, especially in favorable cases: slightly
positive GHI median errors and significantly negative
DfHI median errors. When inferring DNI, this results in
an addition of errors that is further amplified by the pres-
ence of sin(ξs) in the denominator. In difficult cases, the
DfHI errors are smaller, but because the solar elevation
is low the error amplification due to sin(ξs) is stronger.
The resulting errors when simply inferring DNI from
the difference between GHI and DfHI are large. While
SPN1 performance for measuring GHI is similar to that
of RSI, corrections are required to obtain satisfactory
performance for DNI.

Corrections based on the detailed understanding of
the sources of the error would be the best option, but
such corrections have, as yet, proven to be elusive.
Badosa et al. (2014) proposed some empirical correc-
tions. The simplest one, for mid-latitude sites, would be
to correct SPN1 DfHI and DNI with a multiplying fac-
tor of about 1.05 and 0.95, respectively. But given the
homogeneity of the dependence of the DNI error distri-
bution on solar elevation, it might be more appropriate
to explore a sin(ξs) dependent correction, possibly also
depending on the cloud cover. In any case, to the extent
that the largest source of error for these instruments is
the large and variable field of view, there is potential for
improving DfHI accuracy, and thus for DNI if derived
from the difference between GHI and DfHI.

This analysis was performed using 1-minute data.
Aggregating the data on longer time steps usually im-
proves measurement performance by reducing the error

through averaging. The power spectral density analysis
applied to DNI data show that such improvements are
most significant when aggregating on timescales up to
about 1–2 hours. Aggregating beyond these timescales
provides little further gain in performance.

This study has analyzed the performance of GHI,
DfHI and DNI measured by each type of instrument,
scrupulously maintained during the whole study, un-
der otherwise standard operating conditions. For instru-
ments that would be less well maintained (remote oper-
ation with little on-site maintenance), the main problem
is anticipated to be soiling. Michalsky et al. (1988) and
Geuder and Quaschning (2006) investigated the ef-
fect of soiling on RSI instruments, and found that such
instruments are less affected by soiling than other types
of radiometers. There is no study known to the authors
investigating the effect of soiling on SPN1 instruments.
This study has further explored how the instrument un-
certainty depends on the operating conditions. To assess
the transferability of results it would be useful to repeat
the measurements and analyses under different climatic
conditions, e.g., dryer or more humid environments (arid
regions or high elevation sites vs. tropics) to assess the
transferability of the results obtained here. It would be
especially useful in such studies to also deploy instru-
ments allowing spectral measurements of both DNI and
DfHI on a wide wavelength spectrum. Similarly, an in-
strument able to measure the energy available in the sun
aureole might better illustrate and explain geometrical
or directional error sources.
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Appendix 1. Instrument sampling strategy 
In a manner similar to the reference instruments, the SPN1 instruments were sampled at 1Hz 
frequency, and the 1-minute averages were deduced from these measurements. For RSI, both global 
and diffuse irradiance are measured with the same sensor during a minute. The type of RSI 
instruments that were tested in this study have a rotating shadowband that makes a rapid rotation over 
the sensor for determining the diffuse irradiance, as do a majority of current RSI models. Typically the 
sensor is only shaded during a fraction of a second. Dataloggers go into a burst mode, sampling at high 
frequency, up to 440 Hz in this case, as the shadowband moves across the sky and shades the sensor.  
Evaluating the data just before and after the pyranometer diffusor is shaded allows estimating which 
fraction of the diffuse irradiance is blocked by the shadowband at the time the diffuse irradiance is 
determined (complete shading). This requires a sensor with a very fast time response to make 
independent measurements during the burst mode, and photodiode sensors such as the LI-COR fulfill 
this requirement. 


Appendix 2. Relative errors 
Relative errors are usually defined as the value of the error divided by the value of the reference on an 
event by event basis. However, for some times or situations, typically winter and cloudy situations, 
many events have a reference value that is close to zero, especially for DNI, even if only events with 
DNI > 5 Wm-2 were selected. In such case, the relative error is potentially very large, even for errors 
that are reasonable. Because the statistics for extended error range are dominated by these very large 
relative errors, quantification of such relative errors does not convey useful information, beside the 
fact that a non-negligible number of events have a very low value. For the relative error distributions 
that are described below, the errors are given relative to the median of the dataset or subset under 
investigation. 


A 2.1 Time series 


 
Figure A1: Mean, median, interquartile range and 5-95 percentile range of weekly relative error distribution 
between tested and reference instrument for GHI. 
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Figure A2: Mean, median, interquartile range and 5-95 percentile range of weekly relative error distribution 
between tested and reference instrument for DfHI. 


 
Figure A3: Mean, median, interquartile range and 5-95 percentile range of weekly relative error distribution 
between tested and reference instrument for DNI. The y-scale is different than this of Figure A1 and A2. 
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A 2.2 General performance 


 


Figure A4: Boxplot diagram of the overall relative error distributions between measurements made by the 
tested and reference instruments. Statistics for a) GHI, b) DfHI and c) DNI, based on 1-min averages. 
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A 2.3 Instrument performance for specific conditions 


 


Figure A5: Boxplot diagram of the overall relative error distributions between measurements made by the 
tested and reference instruments. Statistics for a) GHI, b) DfHI and c) DNI, based on 1-min averages. 
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A 2.4 Influence of solar elevation and cloud cover 


 


Figure A6: Dependence with respect to the sine of the solar elevation angle of the median and IQR of the 
relative error distributions between measurements made by the tested and reference instruments for GHI 
(panels a-i) and DfHI (panels j-r) for sunny (blue – low DNI variability) and cloudy conditions (red – high DNI 
variability). 
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Appendix 3. Detection of zero DNI events 
A significant number of DNI measurements are taken when there is no DNI even during day (thick 
clouds obscuring the sun). These data have not been included in the statistical analysis, because a large 
number of events with signal under the instrument detection limit significantly change the nature of 
the error distributions. However, it is also interesting to test the ability instruments to detect that there 
is no DNI, and this helps evaluating their behavior for very low irradiance. 


The reference measurements are used to determine which data should be considered as zero DNI 
events. The CHP1 measurements have a low uncertainty including for low signal on a large range of 
ξs; it is used here as reference. Based on its uncertainty (Vuilleumier et al., 2014), we consider its 
detection limit to be about 1 Wm-2. Cases when DNICHP1 ≤ 1 Wm-2 are thus considered zero DNI 
events (ZDE). 


Figure A7 shows the distribution of ZDE as function of solar elevation and azimuth angles ξs and ϕs. 
This distribution exhibits a structure with peaks at ξs = 20°, and ϕs = 131° and 229°. It also shows a 
high number of ZDE on the solar paths close to the summer and winter solstices (upper and lower 
envelopes on Figure A7a). However, a similar structure is also present on Figure A8 that shows a 
similar distribution, but for all valid DNI events measured with the CHP1 during day (ξs > 4°). It 
demonstrates that most of the structure on Figure A7 is due to the distribution of the number of DNI 
events themselves. The main feature of Figure A7 that is not reproduced on Figure A8 is a small 
secondary peak at ξs < 10° and ϕs between 83° and 97° (see red box on Figure A7a). This is known to 
be due to a shadow casted at dawn by a tree relatively close to the measurement field. Since this tree is 
sufficiently close to the field so that it casts shadows on the different instruments at different times, a 
region characterized by ξs < 10° and 80° < ϕs < 100° is excluded from the analysis below. 


 


Figure A7: Number of ZDE as function of solar elevation angle ξs and solar azimuth angle ϕs; a) 2D color 
histogram as function of ξs and ϕs; b) 1D histogram as function of ξs; c) 1D histogram as function of ϕs. 
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Figure A8: Same as Figure A7, but for all daylight valid DNI events. 


A 3.1 Scores for the detection of zero DNI events 
The whole test period includes about 307’600 valid daylight measurement (ξs > 4°), excluding the 
region shaded by a tree mentioned above), among which about 138’500 events (45%) are ZDE. 


If one uses the same detection limit (1 Wm-2) for the tested instrument as for the reference instrument, 
four situations, enumerated in Table A1, are possible: 


  Reference Instrument 


  Below detection 
limit (zero) 


Above detection limit 
(non-zero) 


Tested Instrument 


Below detection 
limit (zero) 


Hits (a) False Alarms (b) 


Above detection 
limit (non-zero) Misses (c) Correct Rejection (d) 


Table A1: Contingency table 


The following three score indicators are considered: 


• The accuracy (ACC) denotes the number of events that are identified correctly. 


100 [%]a dACC
a b c d


+
= ⋅


+ + +
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• The probability of detection (POD) gives the percentage of ZDE that are correctly detected by 
the test instrument.  


100 [%]aPOD
a c


= ⋅
+


 


• The probability of false detection (POFD) gives the percentage of false alarms with respect to 
the number of non-ZDE.  


100 [%]bPOFD
b d


= ⋅
+


 


A 3.2 Results 
When comparing ZDE detected by the reference instrument and the tested instruments, a small 
fraction of reference ZDE exhibited large DNI as measured by the tested instrument. These events are 
in large part due to broken cloud situations where the spatial variability is such that DNI is about zero 
at the location of the reference instrument, but non-zero where the tested instrument is. These 
differences are real and not due to the uncertainty of the tested instruments. In order to eliminate such 
events, a further requirement that the reference GHI and DfHI differ by less than 5 Wm-2 was used, 
i.e., | GHIref – DfHIref | < 5 Wm-2. The tested instruments were located between the reference 
pyranometer measuring GHIref and the pyrheliometer measuring DNIref. Since GHI includes the 
direct irradiance, if both the reference pyrheliometer detects a ZDE and the condition above is 
satisfied, the direct irradiance should also be zero for the tested instruments. Adding the latter 
condition makes only a small difference with respect to the scores shown in Figure A9: when not 
including the above conditions, the accuracies are lower by less than 1%, except for the SPN1 
instruments where they are lower by ~1.4%, the POD are lower by less than 1%, and the POFD are 
higher by less than 0.2%. 


 


Figure A9: Scores for the detection of zero DNI events, including a) Accuracy, b) Probability of Detection, and 
c) Probability of False Detection. 
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Figure A9 shows the scores of the tested instruments in detecting ZDE with the indicators described in 
appendix A3.1. For detection accuracy and POD, the RSI exhibit the best results with CSPB 
instruments having scores above 95%, while CSPA and IRR instruments have somewhat lower scores. 
The SPN1 have considerably lower detection accuracy (~63%) and low POD (<15%). The reason is 
the overestimation of DNI by the SPN1, which results in a positive bias even for ZDE. Consequently, 
when inferring DNI from SPN1 measurements a significantly positive result is usually obtained, even 
in case of ZDE. The POFD is less than 5% for CSPA and CSPB instruments and a little higher for IRR 
instruments. For SPN1 the POFD is very low, because the positive bias makes it extremely unlikely to 
infer a ZDE from SPN1 measurement when there is some direct irradiance. 


These scores show that while the uncertainty in the determination of very low DNI by RSI is 
significantly greater than the equivalent pyrheliometer uncertainty, it is still sufficiently low for a 
reasonable detection of ZDE (POD between 80% and 98% and POFD between 2.5% and 8.5%). It 
should be noted that the IRR instruments show a somewhat greater uncertainty in such cases. Another 
way to express this is by determining an effective DNI detection limit for the tested instruments. A 
DNI measurement below this effective detection limit by one of the tested instrument cannot be 
distinguished from a ZDE. We used the cumulative density function of the tested instrument DNI 
measurements taken during ZDE to establish it by computing the DNI value corresponding to a high 
quantile (here 98%, see Figure A10). Most of the distributions exhibit some sort of “elbow”: above a 
certain high quantile, the CDF reaches high DNI values corresponding to the situation described at the 
beginning of this section. The 98th percentile is chosen because it is high, and below, or at, this elbow 
for most instruments. For SPN1 instruments the CDF is smoother showing that the uncertainty is still 
playing a dominant role even for such quantile. 


 


Figure A10: CDF of tested instrument DNI measurements for ZDE with 98-percentile DNI limit. 


These limits for the detection of ZDE are shown on Figure A10; they are 11 and 22 Wm-2 for the two 
IRR instruments, 8–11 Wm-2 for the CSPA instruments, and 4–6 Wm-2 for the CSPB instruments. For 
the SPN1 instruments, they are ~41 Wm-2. This means that even if the tested instrument measures a 
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non-zero DNI value (up to the limits described above), there is a non-negligible probability that the 
DNI is effectively zero. This is due to the uncertainty in the determination of DNI by the tested 
instruments. 


Appendix 4. Results at longer time aggregation 
In this study errors are defined as the difference between the measurements of the tested instruments 
and those of the references using measurements at 1-min interval. These measurements are usually 
1-min averages of measurements with a higher sampling rate, typically 1 second, except for the RSI-
measured DfHI (see section 3). Both the reference and the tested instrument 1-min measurements can 
be aggregated (averaged or integrated) on longer time periods. The behavior of errors as a function of 
the aggregation time is studied in section 4.5 using power spectral analysis (section 3.3). But even 
though PS-based analysis provides insightful information on the effect of error sources with different 
frequency signature (e.g., the change of sensor recording the maximum intensity in SPN1 
radiometers), its results are not directly comparable to those reported in sections 4.2 and 4.3. To allow 
direct comparisons, results equivalent to those given in appendices A 2.2 and A 2.3 are given below 
for 1-hour averages computed from the 1-min measurements. Because there is nothing unexpected in 
the difference between results using 1-min and 1-hour, only the relative errors are given. 


In addition, an estimation is also given for the error made on a whole calendar year when using the 
tested instruments to compute the integrated energy per unit surface area as compared to the same 
quantity computed with the reference instruments. This quantity is computed because it is important 
for assessing biases in solar power plant yearly simulations that may stem from biases in DNI or GHI 
inputs. 


A 4.1 Integrated yearly error 
In case of long-term aggregation, such as the integrated yearly error, the reduction of error obtained 
through aggregation can go beyond the usual reduction of the random instrumental error through 
averaging. Some non-random error sources show dependences on parameters that have a seasonal 
cycle, for example the sun elevation or the cloud cover (section 4.4). Thus, some non-random error 
with seasonal dependence can also be reduced through long-term aggregation because of an averaging 
over the value of the parameters of influence. For instance, in case a spectral or a directional 
dependence generates a non-random error with a systematic dependence on solar elevation, there 
should be a seasonal dependence because of the generally lower sun elevation in winter than summer. 
Averaging data of all seasons can reduce such non-random errors because the averaging occurs over a 
larger sample of solar elevations. 


The error on the integrated energy per unit surface area was computed using only data collected for 
solar elevation ξs > 10°, consistent with the rest of the analysis (section 3.2). Roesch et al. (2011) have 
shown that the treatment of missing data has an influence on the computation of long-term irradiance 
aggregated values, in their case monthly means. They compared several aggregation methods and 
recommended a method M7 as the most robust with respect to missing values. Method M7 groups the 
data in long-term blocks of data (in their case months) and creates average daily profiles on the blocks 
by averaging periods of 15 minutes over all the block, e.g., the data within the time period 7:00 to 7:15 
is averaged over all the days in the block. A 15-min period is valid if 20% or more of the data in the 
period are valid. An average daily profile includes 96 periods, and the block average is obtained by 
averaging the daily profile. The block average is considered valid if all the 15-min periods in the 
average daily profile are valid. 


A method similar to method M7 was used, except that the long-term blocks were restricted to 5 days 
instead of a month and that a 15-min period was considered valid if 20% or more of the data collected 
for solar elevation ξs > 10° in the period are valid. Using blocks of 5 days allowed dividing the data 
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study period (2012.06.16 to 2013.09.15) in 91 blocks – excluding the first and last day for obtaining 
an integer number of blocks, while 73 contiguous blocks constitute a full year. 


For computing the integrated yearly error, 73 valid contiguous blocks are required, but because of 
missing data, a few block averages are not valid. In case an invalid block is at the beginning or the end 
of the data study period, it is possible to replace it by the corresponding block of the other year, i.e., if 
the index of the invalid block is iinv to replace it by block iinv – 73 or iinv + 73 if the latter is valid and 
belongs to the ensemble of blocks 1 to 91. For invalid blocks that cannot be replaced in this way a 
substitute average is obtained by interpolating neighboring values. Instruments of model CSPA did not 
have a full year of valid data, and the integrated yearly error was not computed for these. For GHI, 
only one block needed to be interpolated for all other instruments, except IRR1, which also had 3 
blocks replaced. For DfHI, three blocks needed to be interpolated for all other instruments, except 
IRR1, which also had 3 blocks replaced. For DNI, four blocks needed to be interpolated for CSPB and 
SPN1 instruments, while IRR1 had six blocks interpolated and four blocks replaced and IRR2 had six 
blocks interpolated and two blocks replaced. 


Once an average irradiance error is obtained for a 5-day block, the integrated error on the energy per 
unit surface area for this block is obtained by multiplying the average error by the number of seconds 
for which ξs > 10° during the 5-day block. An identical procedure is performed for the irradiance from 
the reference measurement so that a relative value can be given for the integrated yearly error. Since 
91 five-day blocks are obtained and 76 contiguous blocks are necessary for computing a yearly 
integrated error, there are 15 possibilities for computing it. All 15 possibilities were computed to give 
a rough estimate of the spread of its distribution. However, it should be noted that these estimates are 
strongly correlated because the periods between 2012.09.15 and 2013.06.16 are always the same, thus 
the spreads obtained in this way should not be considered as robust estimators of the true error 
distribution spread. 


 
Figure A11: Relative yearly integrated error. 
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Figure A11 gives the relative integrated yearly error for the tested instruments. All 15 possibilities are 
given for each instrument and parameter. These errors are compatible with the results of Figure A4 
presenting the boxplot diagrams of the overall relative error distributions. GHI errors are between 
-2% and 1% with the largest errors for CSPB instruments as are the medians of the distributions in 
Figure A4. For DfHI, the errors are slightly positive but below 1% for IRR instruments, negative but 
below 5% for CSPB instruments and on the order of -8% for SPN1. Again the medians of the 
distribution in Figure A4 have a very similar behavior. For DNI, the IRR errors are on the order of 
-1.5% for one instrument and of -3% for the other. They are within ±1% for the CSPB instruments, 
and between 9% and 11% for the SPN1 instruments. This confirms the pattern that the more similar 
the GHI and DfHI errors are, the smaller the DNI error. However, the DNI yearly integrated errors for 
IRR and SPN1 are in general larger than the corresponding medians indicated on Figure A4. This is 
due to the treatment of almost-zero DNI values that were excluded from the general analysis while 
they must be included in the computation of the yearly integrated error. Because DNI are inferred 
from the GHI and DfHI measurements, biases tend to exist even if the reference DNI is almost zero. 
Thus these events tend to increase the relative error when they are included in the analysis. 


A 4.2 Error distributions 
As expected, aggregating measurements over periods of one hour instead of 1-min reduces the ranges 
of the error distribution, but does not significantly change the overall bias estimated here with the 
median of the error distribution. This is clearly seen by comparing Figure A12 with Figure A4 that 
shows a very similar behavior of the medians, while the ranges (interquartile or extended range) are all 
smaller on Figure A12 than on Figure A4. Correspondingly, the RMSE on Figure A12  are smaller 
than on Figure A4, while there is less difference for MAE. 


 


Figure A12: Boxplot diagram of the overall relative error distributions between the tested and reference 
instruments measurements. Statistics for a) GHI, b) DfHI and c) DNI, based on 1-hour averages. 
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Figure A13: Boxplot diagram of the overall relative error distributions between measurements made by the 
tested and reference instruments. Statistics for a) GHI, b) DfHI and c) DNI, based on 1-hour averages. 


Comparing Figure A13 with Figure A5 shows a little more definitive outcome. For favorable 
conditions (panels a, b, c), there is very little difference between the results using 1-min and 1-hour 
averages, and it is difficult to distinguish the figures. On the other hand, for difficult conditions (panels 
d, e, f), the reduction in the error range is clearly visible. This can be understood because favorable 
cases present little cloudiness, and the error dependences are more related to the solar elevation, which 
is a parameters that evolves slowly and in a predictable way. For this reason, increasing the 
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aggregation time has little effect. In contrast, difficult situations are mostly influenced by cloudiness, 
which is a parameter that can evolve significantly at a minute time scale, and that is fundamentally 
stochastic. Thus increasing the aggregation time from 1 minute to 1 hour has a stronger effect in this 
case. 
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