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Abstract— This paper presents the initial findings on a new 
forecast approach for ancillary services delivered by aggregated 
renewable power plants. The increasing penetration of 
distributed variable generators challenges grid reliability. Wind 
and photovoltaic power plants are technically able to provide 
ancillary services, but their stochastic behavior currently 
impedes their integration into reserve mechanisms. A 
methodology is developed to forecast the flexibility that a wind-
photovoltaic aggregate can provide. A bivariate Kernel Density 
Estimator forecasts the probability to provide reserve. The 
methodology is tested on a case study where volumes of 
automatic Frequency Restoration Reserve (aFRR) are 
forecasted on a day-ahead horizon. It is found that the wind-
photovoltaic aggregate can dedicate a limited share of its 
forecast production to aFRR. The frequency of insufficient 
reserve capacity is assessed, by comparing the capacities offered 
with the measured production. 

Index Terms-- Aggregation, Ancillary Services, Forecasting, 
Photovoltaics, Wind power. 

I. INTRODUCTION 
Variable renewable power plants substitute conventional 

synchronous generators at a fast growing rate. The increased 
intermittency among available generation impacts 
significantly the stability of power systems. Due to the 
spatiotemporal uncertainties associated with their production, 
variable renewable generators are currently restrained by 
operators in their provision of Ancillary Services (AS), for 
which maximum reliability is a firm pre-requisite. However 
studies have identified that wind and photovoltaics (PV) 
power plants show technical capabilities to provide AS [1],[2]. 
The Irish TSO has issued a specific regulation for frequency 
control from wind power plants [3]. This paper investigates 
the capacity of renewables to offer frequency control services. 

Frequency control services follow a multi-level sequence. 
At a first control level (activation time 0-5 s), the inertia of 
generators contains instantaneous frequency perturbations. 

Wind and solar plants can emulate synthetic inertia [1]. The 
next level is Frequency Control Reserve (FCR), where 
generators connected to a synchronous area regulate their 
power output in function of the frequency deviations they 
capture. Frequency Restoration Reserve (FRR) follows FCR. 
It is activated both automatically (aFRR, full activation time 
5-15 min) and manually (mFRR, full activation time 13-15 
min). TSOs activate aFRR by first evaluating centrally the 
Area Control Error, then calling for modification of the active-
power setpoint of generators. In France, the TSO updates the 
aFRR sizing at a 30-min timestep [4]. The amount of aFRR is 
expected to vary in the coming years: the International Grid 
Control Cooperation, triggered by European TSOs, increases 
its exchanges in order to lower the overall need for aFRR [5]. 
In contrast, the stochastic behavior of renewables is expected 
to lead to higher aFRR levels. Improvement in wind and solar 
power forecasting could mitigate their impact on the sizing of 
this reserve [6]. The last level of response to frequency 
deviations is Replacement Reserve (RR) which is in place in 
several European countries. RR is manually activated in case 
the restoration reserve is not sufficient to ensure stability, 
within a time frame of 15 to 30 min. 

Procurement schemes and markets for AS are diverse 
among European countries. Some services may be mandatory 
in some countries (e.g. FCR, [7]), tendered following 
economic merit-order (RR in France, [4]), or traded on a 
market with different upward and downward prices (RR in 
Portugal, [8]). For an energy trader, participation in reserve 
markets is economically interesting if the reserve price is 
superior to the average price for energy. While current prices 
in Europe tend to incentivize more energy than reserve [6], the 
AS markets are profoundly evolving and promising for 
renewables as their marginal cost is close to zero. Bidding 
strategies for participation of wind farms in an AS market 
have been studied recently. The reserve strategies proposed in 
[9] keep a share of the active power forecast to the FCR 
market. The optimal bid of wind power is analytically derived 
as a quantile of the production forecast for the day ahead, 
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considering high penalties in the balancing market if failing to 
provide the FCR service. Moderate increase in revenue is 
found (<12%) compared to participation in energy market 
only. 

The European project REstable, which motivates this 
paper, aims at demonstrating renewable-based ancillary 
services through better interaction of European control zones 
[10]. The central idea of the project is that the aggregation of 
distributed power plants with distinct features (geography, 
time, resource, market regulations) can offer reliable AS via 
an adaptive European Virtual Power Plant (VPP). 

Reliable offers of AS suppose adequate power forecasting 
methods. For variable generation, assuming that the 
distribution of forecast errors depends only on historic 
performance does not capture the uncertainty inherent to the 
forecast model [11]. The nonlinearity of wind and solar 
generation induces that conditional distribution of forecast 
errors is easier to model with nonparametric approaches [12]. 
According to a review of probabilistic methods for reserve 
requirements [11], density forecasts can be applied to both 
wind and solar power, and give more reliability on reserve 
allocation problems than approaches based on historical 
forecast only. Kernel Density Estimation (KDE) is a density 
forecast method which figures among the top-ranked methods 
for wind and PV forecasting [13]. Ensemble forecasts 
represent an alternative to density forecasts. They can 
incorporate temporal and spatial interdependence of prediction 
errors, and perform well on short-term horizons [14]. A 
density approach has been chosen here to model the problem 
of aFRR capacity forecasting, formulated in Section II. The 
forecast method is described in Section III. 

II. PROBLEM FORMULATION 
The objective of this work is to forecast a reliable day-

ahead offer of aFRR, provided by a VPP aggregating 
photovoltaic and wind power plants located in France. This 
geographical limitation is due to the availability of data for 
tests. It is deemed acceptable to study a VPP concerned by the 
French control area, because most of the aFRR need in France 
is covered currently by plants located within this area [15]. 

Producers who supply aFRR must comply with strict 
regulations defined by TSOs. For instance, German TSOs ask 
that deployed reserve capacities are never lower than the 
contracted volume over the whole product length [16]. In 
France penalties apply if the measured deployed capacity is 
more than 10% lower than the contracted capacity, over an 
evaluation period > 100 h [4]. 

This problem poses two main challenges:  

1. Propose a reliable production forecast over the 
product length, so that the risk of failing to provide reserve 
due to overestimation of production is minimal. 

2. From this forecast, derive volumes of reserve that are 
significant (superior or equal to 1% of aggregated capacity) 
during intervals of sufficient production. 

The temporal resolution of the forecast must be at least 
equal to the temporal resolution of the AS product, in order to 

qualify the aggregate as a potential AS provider. In the case of 
aFRR it is 15 minutes in Germany and 30 minutes in France. 
The production forecast has generally a coarser temporal 
resolution than the grid signals that the service must react to 
(e.g. Automatic Generation Control (AGC) signal). It also 
does not capture the very-short term variations in the power 
output of the aggregate. The forecasting error is therefore 
dependent on the temporal resolution.  

It is assumed in the present study that plants can 
effectively communicate to a distant VPP control center and 
regulate their power output following setpoints sent by the 
center without significant discrepancies. Experiments 
conducted within the project Kombikraftwerk 2 have shown 
that renewable plants can be controlled within a 3-second time 
lapse. Power regulation of aggregated plants showed also 
some limits: regulation was unsuccessful on wind turbines 
operating close to cut-in wind speed, and deviated from the 
emulated AGC signal [17], similarly to another experiment 
[16]. In the next section, a methodology is presented to solve 
the afore-mentioned problem. Three approaches are proposed 
with increasing level of complexity: a basic approach using 
individual probabilistic production forecasts as inputs, a 
deterministic aggregated forecast issued by a bivariate KDE, 
and a probabilistic forecast computed by the same KDE 
model. 

III. METHODOLOGY 

A. Basic Approach for Aggregated Flexibility Forecast 
1) Probabilistic production forecasts at plant level 

Probabilistic production forecasts are issued for each plant 
of the aggregate. The forecasts are based on a KDE k-Nearest 
Neighbors (k-NN) model for PV plants, and bivariate 
conditional KDE on wind speed and wind direction for Wind 
plants. A description of the k-NN algorithm is reported in 
Subsection B.3. Both forecasting models have been validated 
using deterministic and probabilistic criteria [18], [19]. The 
forecasts are issued at a runtime t for a horizon interval ∆h. 

2) Individual flexibility forecasts at plant level  
For each plant of the aggregate, a share of the active power 

forecast is dedicated to reserve. This target share is 
considered here as a quantile of the probabilistic forecast, at 
nominal value α. The choice of the nominal value α can be 
realized through an optimization on expected gains and losses 
associated with energy and reserve, similarly to optimal 
bidding strategies used by renewable producers [20]. The risk 
of failing to provide reserve decreases with α. The total 
reserve volume is then chosen as the minimum value of the 
quantile on the horizon interval ∆h of the day to predict. The 
minimum is chosen in (1) to minimize the risk of failure. The 
offer of symmetrical reserve tir ,ˆ  by the plant i at runtime t, is 
equal to half of the total reserve volume: 

( )α= −
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1
,, min

2
1ˆ thtihhti Fr          (1) 

where 1
,
−

+ thtiF is the inverse Cumulative Distribution Function 

(CDF) of the power forecast of plant i at horizon h. 

 



3) Aggregation of Individual Flexibility Forecasts 
The aggregated day-ahead offer tr̂ issued at runtime t 

equals in (2) to the sum of the individual forecasts from the 
plants of the aggregate. 
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B. Aggregated KDE Probabilistic Forecast 
In this section, a bivariate KDE model is proposed to 

forecast the power production of an aggregate of PV plants 
and Wind plants. Weather conditions are reduced to a joint 
distribution of solar radiation and wind speed, therefore this 
model applies to aggregates in which plants of same 
technology experience similar weather conditions. Future 
work could include more diversity in weather forecasts via 
reduction techniques such as Principal Component Analysis 
(PCA), or ensembles using weather forecast at multiple sites. 

1) Retrieve weather forecasts and select reference data 
In this work, a central reference site is derived for all plants 

of similar technology. The coordinates of the site minimize 
Euclidean distance among plants. Numerical Weather 
Prediction forecasts (NWP) are retrieved for the reference 
sites. For photovoltaic plants, a unique NWP, Solar Surface 
Radiation Downwards, is selected. For Wind plants, 
meridional and zonal wind components are selected as they 
appear in the literature to be the principal influential variables 
[19], [21], [22]. 

2) Select bi-variate conditional explanatory variables 
The bivariate explanatory variable , based on NWP 

forecasts, is constructed in (3) following a simple regime-
switching approach. The contribution of solar radiation to the 
bi-variate condition at the current timestamp is estimated by 

0,Iw , the proportion of PV power installed in the aggregate. 
This static contribution is associated to the contribution Iŵ  

of the solar radiation forecast Î , which is compared to its 
expected value over the available learning data set )ˆ(IE :  
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where Ŵ  is the wind speed, Û  and V̂  the meridional and 
zonal wind components respectively. 

3) Training data selection by k-Nearest Neighbours 
The estimator is trained on a sample of similar bivariate 

points of NWP forecast, following a k-NN approach. The k-
NN algorithm has been applied to probabilistic wind power 
forecasting [21], [22], and has the advantage of maintaining 
constant the size of the training data as new forecasts are 
added [12]. Nearest neighbors minimize in (4) the Manhattan 
Distance between the available historical learning set X and 
the forecast condition x. Distances are weighted by the 
contributions of PV and Wind in the case where solar 
contribution is significant. The weights for meridional and 

zonal wind components Uw  and Vw , are obtained via an 
optimization on the sum of square errors from the 
deterministic output of the KDE, presented in the next 
section. The optimization is realized with a Particle Swarm 
Optimization algorithm [23], following a cross-validation on 
weekdays as presented by [21]. 
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The training set is populated in (5) with nearest neighbors 
until the set size Tk  has reached a ratio kNNr of the size of the 
learning set L. An upper bound of 125 is applied to contain 
computational burden. Such a value appears sufficient in the 
context of k-NN wind power forecasting [21]. 

( ){ } 125,,,. ≤∈= TkkkNNT kLkYXCardrk           (5) 

4) Conditional Kernel Density Estimator 
The obtained training sample of conditional explanatory 

variable is compared to the forecast condition x within a bi-
variate KDE, with the Kernel proposed in [19]. A bandwidth 
matrix H is computed following the Smooth Cross Validation 
(SCV) method to model directions of correlation between 
covariates [24]. In conditions when wind is dominant, a 
diagonal SCV matrix is selected. The explanatory weight Xŵ  
in (6) associates the weather forecast condition x with its 
position relative to the learning set of size N, and filters older 
points by an exponential forgetting factor fgt of constant 
parameter λ. 
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The conditional density forecast of aggregated production 

tht XYf +

ˆ  is obtained in (7) via a KDE with a bandwidth Yh  

equal to the k-nearest neighbour, using the same ratio kNNr . 
An Epanechnikov Kernel and a reflection method model the 
bounded behavior of the production. 
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5) Selection of minimal quantile of aggregated forecast 
The forecast flexibility offer tr̂  is chosen in (8) as the 
minimum of the aggregate production for the α-quantile, on 
the horizon interval ∆h of the day to predict. 

( )α= −
+∆∈∀

1min
2
1ˆ ththht Fr           (8) 

C. Aggregated Deterministic Forecast  
The third approach uses the KDE model presented in 

Section B to derive an aggregated deterministic forecast. 
Predictive densities produced by the model are optimized 
with respect to the expectancy E, so the mean of the 
predictive density for each horizon constitutes the 

 



deterministic forecast. The forecast flexibility for the day-
ahead horizon is chosen in (9) as the minimum of the 
deterministic aggregated forecast on the day to predict. 

( )
tht XYhht fEr

+∆∈∀
= ˆmin

2
1ˆ           (9) 

IV. CASE STUDY 

A. Workflow 
The methodology is evaluated on the following case 

study. A VPP is constituted by 2 wind farms located in 
North-East France and 10 photovoltaic plants located in a 
region of West France. The wind farms account for 95% of 
the aggregated power capacity. The VPP offers symmetrical 
aFRR on a day-ahead horizon. Offers must be communicated 
to the TSO prior to 13:00 UTC, similarly to the existing rules 
in France [4]. Offered volumes of reserve are computed given 
the three approaches described in the methodology, for each 
day of the test period (December-January). The nominal 
value α of the production quantile forecast is set to 10%, for 
the individual plants and the aggregate. Note that only the 
amount of power proposed in the offer is calculated in this 
paper, not the price. 

B. Input Data 
Measured production from all plants is available at a 5-

min resolution. Forecasts of solar radiation, meridional and 
zonal wind speeds at 100-m hub height are retrieved at 
runtime 12:00 UTC from ECMWF HRES, for horizons +12 h 
to +36 h.  

C. Performance Indicators 
The KDE aggregated forecast is evaluated using the 

following criteria: Root Mean Square Error (RMSE) for its 
deterministic version, reliability and Continuous Ranking 
Probability Score (CRPS) for the probabilistic version. 
Reliability informs on the probabilistic bias of the forecast 
while the CRPS produces an overall probabilistic forecast 
score [20]. We normalize here errors by the sum of the 
installed capacities in the VPP. 

The risk of failing to provide offered reserve levels is 
evaluated with a simple criterion. If the measured production 
is lower than the offered reserve levels at a given timestamp, 
then this event is counted as an under-fulfillment. The Rate of 
Under-Fulfillments (RUF) is the frequency of under-
fulfillments on the evaluation interval. The RUF is chosen as 
a criterion to assess the reliability of the ancillary service 
forecast. It is inspired by current practice of TSOs, eg. in 
France where aFRR deployment is judged insufficient if the 
reserve deployed is below the day-ahead offered capacity – 
10%, during more than 10% of the evaluation interval [4]. 
The accuracy of this criterion is limited by the temporal 
resolution of the measured production. The amount of 
flexibility offered is another performance indicator. It is 
expressed by the Cumulated Distribution Function (CDF) of 
the volumes on the evaluation interval. 

V. RESULTS 

A. KDE Aggregated Production Forecast 
The training period of the KDE forecast is July– 

November and the test period is December – February. The 
forecast model issues predictions at a 30-min resolution over a 
12-h to 36-h horizon. The deterministic output of the KDE 
aggregated forecast shows a RMSE comprised between 10% 
and 20% over the forecast horizon, with significant 
improvement compared to persistence (Fig. 1). These levels 
are coherent with state-of-the art forecasting for wind and PV 
at these horizons [18], [21]. The CRPS is comprised between 
7% and 11% over the forecast horizon, with similar 
improvement compared to climatology. 

The reliability of the probabilistic KDE forecast is 
evaluated by a calibration diagram (Fig. 2). The model shows 
fair reliability, in particular for the 10%-quantile, which is of 
particular interest for the present application. The calibration 
analysis shows room for improvement of the model, and could 
be extended to larger intervals. 

 
Fig. 1: RMSE of deterministic KDE forecast and Persistence model. 

CRPS of probabilistic KDE forecast and Climatology model. 

 
Fig. 2: Calibration diagram (over all horizons) 

B. aFRR Offer Forecast 
The offers of aFRR flexibility obtained with the three 

approaches are presented on an interval of high wind 
production in Fig. 3. The basic approach based on individual 
flexibility forecasts, in red on Fig. 3, offers volumes mostly 
inferior to 1% p.u., except when the forecasted production is 
constantly high during the whole day. The approach based on 
aggregated deterministic forecasts, in brown, leads to higher 

 



flexibility levels, greater than zero for most of the days tested. 
Finally, the approach based on the aggregated probabilistic 
forecast, in orange, differs slightly from the individual 
forecast approach because it models the correlation between 
plants: its average flexibility is higher, whereas the dispersion 
of levels around the average is lower than for the individual 
forecast approach. Note that in the present day-ahead 
framework, the individual flexibility offered by PV plants is 
zero (no production at night). 

The CDFs of aFRR offers for the three approaches show 
that the potential offer levels span from 0 to 0.30 p.u. on the 
evaluation interval (Fig. 4). The median offers of the 
probabilistic approaches are 0.015 p.u. and 0.010 p.u., for the 
aggregated approach and the individual approach 
respectively. The cumulated Rate of Under-Fulfillment 
(RUF) compared to 5-min monitored production reaches 26% 
for the deterministic approach (Fig. 5). The cumulated RUF 
for the aggregated forecast approach is 7%, close to the 5% 
for the individual forecast approach. As a first conclusion, the 
probabilistic approaches appear to be better candidates than 
the deterministic approach for a reliable aFRR capacity 
forecast. 

VI. DISCUSSION AND CONCLUSION 
A bivariate KDE has been developed to predict an 

aggregated production of wind and PV plants, with 
encouraging results and insights for future improvements, 
especially on calibration. Optimization of the model for 
conditions with significant solar radiation could improve 
reliability. Other models such as Quantile Regression Forests, 
gradient boosting and copulas will be tested to forecast the 
aggregated production. Improvement of the aggregated 
production forecast, as well as shorter product length, would 

lower the risk of failing to provide reserve. The aggregated 
flexibility forecast approach helps formulate offers for 
product lengths superior or equal to 24h: the individual 
forecast approach will lead to zero levels for PV plants (zero 
production at night). With high-resolution measurements of 
production data and weather conditions on site, the response 
of a VPP to frequency deviations or AGC signals can be 
modeled, and the probability of failure to deploy reserve can 
be assessed. 

The rates of under-fulfillment observed in the case study 
could be assessed on a larger framework: higher plant 
diversity in the aggregate (higher PV penetration, several 
climates per technology), combined offers of aFRR with 
FCR. This would help calibrate the qualification tests a 
renewable aggregate must pass to provide AS. Future work 
may include conditional analysis on the technical capacity of 
an aggregate to deliver AS. Finally the Rate of Under-
Fulfillment can be optimized given prices for energy and 
reserve. 

A methodology to forecast the provision of aFRR by 
aggregates of wind and photovoltaic plants has been 
presented. Reserve levels are obtained through a simple 
minimal quantile selection on the production forecast. It is 
found that renewable power plants can offer volumes of 
automatic Frequency Restoration Reserve on a day-ahead 
mechanism, if their aggregate production is forecasted 
accurately. A trade-off is noticed between the volume of 
flexibility offered and the expected RUF. Potential aFRR 
capacities are identified on a case study, yielding volumes 
from 0 to 0.30 p.u. with medians of 0.01 to 0.13 p.u (Fig. 4). 

 

 
Fig. 3: aFRR capacity forecasts compared to production measurement and forecast (predictive intervals in blue scale, from 10% to 90%) 

 

 



 Fig. 4: CDFs of aFRR offers for the three approaches 

 
Fig. 5: Rate of Under-Fulfilment of aFRR for the three approaches 
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