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Kalman filtering with a class of geometric state equality constraints

P. Chauchat, A. Barrau, S. Bonnabel

Abstract— In this paper we consider a noise free class of
dynamics encompassing left- and right-invariant on a Lie group
with noisy partial state measurements. We assume in addition
that the covariance matrix of the state is initially rank-deficient.
This, combined with the absence of process noise, keeps the
system state within a (time-dependent) subset of the state
space at all times. We prove mathematically that the invariant
extended Kalman filter (IEKF) perfectly respects this kind
of state constraints, contrarily to the standard EKF, or the
unscented Kalman filter. This is a strong indication that the
IEKF is particularly well suited to navigation when motion
sensors are highly precise. The theory is applied to a non-
holonomic car example on SE(2), and to an attitude estimation
example on SO(3).

I. INTRODUCTION

The Kalman filter (KF) and its extended version (EKF)
have appeared in the 1960s, and played a big role in the
guidance of spacecrafts during the space age. It has been the
state of the art for industrial applications since the 1960s,
notably for navigation. However, due to the nonlinear nature
of the navigation equations, and in particular to the fact the
orientation of the aircraft (i.e., the attitude) does not live in a
vector space, the EKF may have some shortcomings. This has
motivated the development of alternative filters, especially
for attitude estimation, see e.g., [12], [19], [6], [15], [13],
[10], [16], [20], [7].

The Invariant Extended Kalman Filter (IEKF) is a rela-
tively recent variant of the EKF meant to account for the
nonlinearities of the state space when devising EKFs on Lie
groups, see [9], [8], [14], [2]. As such, it can be viewed as a
variant of the multiplicative extended Kalman filter (MEKF)
[11] for attitude estimation, and as an extension to it for more
general state spaces. The two main arguments that advocate
its use over other EKF variants are 1- its (local) guaranteed
convergence properties [4], and 2- the fact it solves the well-
studied inconsistency issues of the EKF for simultaneous
localization and mapping (SLAM) and competes with state
of the art SLAM algorithms, see [1].

The object of the present paper is to derive a novel general
theory that advocates the use of the IEKF for attitude estima-
tion, and more generally state estimation in navigation, when
using very precise motion sensors. Indeed, the IEKF has
been shown to literally outperform the EKF when the process
noise is very small in simulations [4], and patented industrial
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results have shown great improvement over existing method
for the so-called inertial measurement unit (IMU) alignment
problem [5]. To be able to derive mathematical result, we
need to consider the limit case where the motion sensors
are ideal, that is, noise free, and when we have as well some
prior deterministic information on the state (that is, the initial
covariance matrix is rank deficient). Even if the mathematical
guarantees obtained below do not strictly apply to the case
of highly precise - but not perfect - sensors, they provide a
strong indication that the IEKF is particularly suited for this
setting, as previously observed [4], [5]. However, the impact
of a rank-deficient initial covariance matrix was only studied
in the very particular case of a non-holonomic car with GPS
measurements [3].

In the present paper we consider mixed invariant dynamics
on a Lie group. We assume the motion is noise free (i.e.,
no process noise) and the measurements are noisy. We
furthermore assume the covariance matrix of the initial state
to be rank deficient. Combined with noise-free dynamics
this implies that at all times 1- the covariance matrix is
rank deficient and 2- the state can only “reach” a well-
characterized submanifold of the state space, that is, the
“physical” state space is constrained at all times. Unfortu-
nately, due to the fact it is based on approximations, the EKF
(and the other Kalman variants such as the unscented Kalman
filter) fail to capture those constraints. On the other hand, the
IEKF embraces the Lie group structure of the state space,
and is shown to perfectly ensure properties 1 and 2 above.
Thus, the present paper allows to theorize and generalize
our previous results on a non-holonomic car example in [3],
where properties 1 and 2 have been shown “manually” on the
studied example, and then leveraged to derive some global
convergence properties of the filter for that example.

There has been prior authoritative work on Kalman fil-
tering with state constraints, see [18], [17]. Indeed, in case
of state constraints various methods exist to make the KF
or the EKF respect them, ranging from the addition of
perfect measurements to the addition of a projection step
and probability density function truncation. But to our best
knowledge, nothing has been done in this direction when the
state constraints derive from symmetries. To this respect one
could object it suffices to devise a state constrained EKF
instead of using an IEKF. This might work, but then the
obtained filter cannot be used with very small process noise,
whereas the IEKF is still shown to outperform the EKF then
[4] (but there is no more state constraint to preserve).

The paper is organized as follows. Section II presents the
implications of deterministic dynamics in the linear case, and
how the KF naturally encodes this information. Section III



describes the counterparts for systems devised on Lie groups
and concisely summarizes the general derivation of the IEKF
equations. Section IV contains the main theorem of this work
stating the Invariant EKF naturally encodes the considered
constraints. Finally, the implications of the theorem are
illustrated on two examples, the non-holonomic car from [3]
and an attitude estimation example.

II. LINEAR KALMAN FILTERING WITH INITIAL STATE
CONSTRAINT

We recall in this section a known property of linear
Kalman filtering regarding its ability to handle partially
deterministic information if no process noise is added. Al-
though theoretical, this limit case is pivotal to filter robust-
ness as will be illustrated on a simple example.

A. Considered system

Consider a classical continuous-discrete linear system in
Rp:

Ẋt = AtXt , (1)
Yn =CnXtn +Vn, (2)

where Xt ∈ Rp is the state of the system at time t, (tn)n≥0
the sequence of observation times, (Yn)n≥0 the corresponding
observations and Vn a Gaussian noise polluting observation
n. At and Cn are the matrices defining the dynamics of the
system and the function of the system observed through Yn,
respectively. Note that process noise has been deliberately
removed in Equation (1).

We also make the additional assumption that the initial
distribution of the state lies in an affine subspace V0 of Rp:

∃a ∈ Rp, X0 ∈ a+V0. (3)

It can then be immediatley deduced from (3) that Xt lives in
a known affine subspace at any time t:

Xt ∈ Fta+FtV0, (4)

where Ft is the matrix solution of the equation F0 =
Ip,

d
dt Ft = AtFt and the vector space defined as FtV0 =

{Ftx,x ∈ V0}. We will see now that the constraint (4) is
automatically met, by the estimate of a Kalman filter.

Remark 1: In the framework of classical Kalman theory,
system (1)-(2) is pathological, inasmuch as the state prop-
agation is deterministic. This limit case is intended to give
insight into the way a filter handles initial hard constraints
such as (3) when the process noise is not sufficient to balance
the ill-conditioning of the initial covariance matrix. Section
V will show this situation can be extremely troublesome for
non-linear systems.

B. The Linear Kalman Filter preserves the additional infor-
mation

Initial linear information of the form (3) on a linear system
is flawlessly captured by a Kalman filter (KF), as illustrated
by the following proposition.

Proposition 1: Let X̂0 and P0 be respectively the intial
estimate and covariance matrix of a Kalman Filter tracking

System (1)-(2), and assume they are consistent with condition
(3) in the following sense:

X̂0 ∈ a+V0, H0P0HT
0 = 0p×p, (5)

where matrix H0 is the orthogonal projection over the or-
thogonal complement of subspace V0. Then, the state X̂t and
covariance matrix Pt returned at any time by the Kalman
filter are consistent with (4), i.e., we have:

X̂t ∈ a+Vt , HtPtHT
t = 0p×p, (6)

Proof: Between two measurements, the Ricatti equation
d
dt Pt = AtPt +PtAT

t implies HtPtHT
t = 0. Before an update, as

Ptn is symmetric, HtnPtn = 0 necessarily, and thus HtnKn = 0.
In turn, this implies HtnP+

tn HT
tn = 0 and that x+tn remains in

the subspace, as the update writes P+
tn = (I−KnCn)Ptn and

x̂+tn = x̂tn +Kn(Yn−Cnx̂tn).
Conditions (5) and (6) are easily interpreted: initial error

covariance over a direction orthogonal to V0 (resp. Vt ) is
zero at time 0 (resp. t). Thus, Proposition 1 implies that
at all times the estimate of the Kalman filter remains in
the subspace the state lives in (if initialized in V0), and Pt
keeps reflecting the absence of dispersion of the probability
distribution of the state orthogonally to this subspace.

C. Non-linear case

In the non-linear case, the initial subset in which the state
lives may not be a vector space. But even if it is, it is distorted
by the dynamics. Therefore, linearizations do not lead to
updates that remain in that space. In turn, this leads the EKF
to degradated performance, even in the presence of small
process noise, as illustrated in the simulations of [3] and [4].

The aim of the present paper is to show that although
the property above, along with Proposition 1, seems to be
reserved for linear systems, it has in fact a counterpart for a
class of non-linear dynamics and carries over to the Invariant
EKF. This was already proved “manually” for a particular
example in [3]. The results of the latter paper will prove to
be a particular case of the general theorey developped herein.

III. INVARIANT KALMAN FILTERING WITH GEOMETRIC
CONSTRAINTS

In this section, the general results will systematically be
illustrated by an attitude estimation example, to help the
reader grasp the theoretical ideas and concepts.

A. A short primer on matrix Lie groups

A matrix Lie group G is a subset of square invertible N×N
matrices MN(R) verifying the following properties:

Id ∈ G, ∀g ∈ G,g−1 ∈ G, ∀a,b ∈ G,ab ∈ G

If γ(t) is a curve over G with γ(0) = Id, then its derivative
at t = 0 necessarily lies in a subset g of MN(R). g is a vector
space, called the Lie algebra of G and has same dimension as
G. Thanks to a linear map from Rdimg→ g denoted by ξ 7→
ξ ˆ, one can advantageously identify g to Rq where q= dimG.
Besides, the vector space g can be mapped to the matrix
Lie group G through the classical matrix exponential expm.
Thus, Rq can be mapped to G through the Lie exponential



map defined by exp(ξ ) := expm(ξ ˆ) for ξ ∈ Rq. We have
thus exp(ξ ) = Id +ξ ˆ+O(ξ 2) ∈MN(R).

B. Dynamics on a Lie group with equivariant state equality
constraints

1) Considered nonlinear system: We first introduce a sub-
class of systems of [4]. Consider the following deterministic
dynamics on a matrix Lie group G⊂ RN×N :

d
dt

χt = χtut + vt χt , (7)

where χt ∈ G is the state space, ut and vt are processes
taking values in the Lie algebra g.

Note that, although the system might “look” linear, (7) are
non-linear dynamics. Indeed, linearity may not even make
sense in this context, as G is usually not a vector space.

2) Geometric constraints: Suppose that initially the state
is known to satisfy k equivariant constraints of the form

χ0bi = ci, (8)

for some (bi,ci)1≤i≤k ⊂ RN . That is, the system verifies a
multiplicative counterpart of (3), as (8) is equivalent to

χ0 ∈ a ·G0 = {ax,x ∈ G0},

where a is an element of G verifying a · bi = ci and G0
is the stabilizer subgroup of G with respect to bi, i.e.,
G0 = {x,xb = b}. Now, we derive in Proposition 2 the
multiplicative counterpart of condition (4) of the linear case.

Proposition 2: Consider the dynamics (7) with initial con-
dition (8). For all 1≤ i≤ k, let bi

t and ci
t be defined by the

differential equations

bi
0 = bi d

dt
bi

t =−utbi
t (9)

ci
0 = ci d

dt
ci

t = vtci
t (10)

Then at all times we have necessarily

∀t ≥ 0, χt ∈ {χ ∈ G | ∀i, χbi
t = ci

t}. (11)

Proof: It is straightforward to see that, for all i,
d
dt (χtbi

t − ci
t) = ut(χtbi

t − ci
t). This linear system being equal

to zero at t = 0 and linear, it is identically zero, which leads
to ∀t, χtbi

t − ci
t = 0.

C. Illustration in terms of attitude estimation

As announced, let us present now a specific case of
(7) modeling an attitude estimation problem. The state is
represented by a rotation matrix Rt ∈ SO(3), which maps the
coordinates of a vector expressed in the body frame to those
in the static frame. Letting ωt denote the perfectly measured
angular velocity, the dynamics read:

d
dt

Rt = Rt(ωt)×, (12)

with (a)× the skew symmetric matrix associated to vector a.
A geometric constraint of the form of (8) for this system

can mean that, when initialising, the vehicle was able to

measure in its frame a known vector with certainty, say the
direction of a distant star thanks to a high-definition camera.
Denoting by s f ixed and s0 the direction of the star in the fixed
and the initial mobile frame respectively, this reads:

RT
0 s f ixed = s0⇔ R0s0 = s f ixed (13)

Thus, Proposition 2 states that the true system always
knows the true direction of the star, i.e., satisfies, for st such
that d

dt st =−(ωt)×st ,

∀t, RT
t s f ixed = st . (14)

D. Invariant filtering on a Lie group

Consider a system with equivariant constraints such as in
Section III-B, and left-equivariant noisy output Y L:

Y L
n = χtn ·d +Vn, (15)

where d ∈Rp and the Vn’s are Gaussian independent noises.
Of course the output can consist of several measurements of
this type at each tn considering various vectors d1,d2, · · · .

1) Review of the L-IEKF equations for this system: The
systems described in this section are suitable for the design
of a Left-Invariant EKF (LIEKF), see e.g., [4]. It is defined
through the usual propagation and update sequence. Assume
discrete observations at times (tn)n>0, then it writes:

d
dt

χ̂t = χ̂tut + vt χ̂t , tn−1 ≤ t < tn Propagation (16)

χ̂
+
tn = χ̂tn exp

[
Kn(χ̂

−1
tn Yn−d)

]
LIEKF Update (17)

where the function Kn : RN → Rq (q = dim G) is defined
through linearizations as in the conventional EKF theory,
using the following left-invariant state estimation error:

ηt = χ
−1
t χ̂t . (18)

Such a non-linear error ηt can be associated to a vector
ζt ∈ Rq such that ηt = expζt . This form, along with the
extensive use of the first-order linearization ηt ≈ Id + ζt ˆ
allow us to derive the equations defining the observer’s
covariance, its propagation, and the gain used in (17). Indeed
the linerizations of the left-invariant error system associated
to (16), and (17) write:

d
dt

ζt = Atζt (19)

ζ
+
tn = ζtn +Kn(Cζtn +V̂n) (20)

where V̂n = χ̂
−1
tn represents the observation noise, At is the

map defined by (Atξ )ˆ = ξ ˆut − utξ ˆ (see indeed Theorem
2 of [4]) and C is the matrix defined by Cξ = −ξ ˆd.
Linearizations leading to (19)-(20) are detailed in the proof
below.

The state error covariance Pt output by the IEKF is an
approximation to E(ζtζ

T
t ). Thus Equations (19) and (20) lead

to the following Kalman gain and covariance updates, where
N̂ denotes the covariance matrix of the observation noise V̂n:

Ṗt = AtPt +PtAT
t (21)

Sn =CPtnCT + N̂, Kn = PtnCT S−1
n (22)

P+
tn = (I−KnC)Ptn (23)



IV. MATHEMATICAL RESULTS

In this section, we show our main result, stating that the
equivariant equality constraints defined by Equation (8) are
propagated by the LIEKF the same way as in Proposition 2,
without having to incorporate them in the filter as hard
constraints like (artificial) perfect measurements [17].

Theorem 1: Consider the LIEKF described by (16) and
(17), associated to the dynamics (7), with initial equality
constraint (8). It implies the constraint (11) at all times. Now,
note that χ̂tbt = c rewrites ηtbt = bt due to definition (18).
For small ηt the linearization of the latter equality writes
Htζt = 0, where Ht : ξ 7→ ξ ˆbt since ηt = exp(ξt) = Id +
ξt ˆ+O(ξ 2

t ). Suppose now that the filter is initialized such
that

η0b0 = b0, H0P0HT
0 = 0 (24)

Then the LIEKF estimate lies in the same submanifold (11)
as the true system at all times since:

∀t ≥ 0, χ̂tbt = ct , HtPtHT
t = 0 (25)

The second equality indicates the covariance output by the
LIEKF correctly encodes an absence of dispersion orthogo-
nally to the submanifold (11).

Proof: Let Tt denote the condition HtPtHT
t = 0. To

prove the theorem, it is enough to show the following four
implications:

(i) ηtnbtn = btn ⇒ ηtbt = bt , for tn ≤ t < tn+1
(ii) T+

tn ⇒ Tt , for tn ≤ t < tn+1
(iii) Ttn ⇒ T+

tn for n > 0
(iv) [ηtnbtn = btn ]∧Ttn ⇒ η

+
tn btn = btn

Proof of (i) : As the considered system has deterministic
dynamics, this directly comes from Proposition 2 and (16).
Proof of (ii) : We have η̇ =ηut−utη . Linearizing, it follows
that ζ̇ ˆ = ζ ˆut − utζ ˆ and we get ζ̇ = Atζ . Recall also that
d
dt Pt = APt + PtA. As Pt is symmetric, we can write Pt =

QtQT
t , where d

dt Qt = AtQt . We will then prove that HtQt is
identically zero, which implies HtPtHT

t = 0 as wanted. We
have:

d
dt

HtQt = (Ḣt +HtAt)Qt

From the definitions of Ht and At , we get that for all ζ ,
Ḣtζ =−ζ ˆutbt , and HtAtζ = (ζ ˆut −utζ ˆ)bt . Finally,

(Ḣt +HtAt)ζ =−utζ ˆbt =−utHtζ

Replacing ζ by the columns of Qt , we get d
dt [HtQt ] =

−ut [HtQt ], a linear system initialized at 0. Thus, it is
identically zero, which proves T+

tn ⇒ Tt for tn ≤ t < tn+1.
Proof of (iii) : Equation (17) rewrites in terms of error:

η
+
tn = ηtn exp

[
Kn(η

−1
tn d−d +V̂n)

]
. (26)

Linearizing then leads to ζ
+
tn ≈ ζtn +Kn(η

−1
tn d−d+V̂n)≈

ζtn + Kn(−ζtn ˆd + V̂n), that is, Equation (20). As
Kn = PtnCT S−1

n from (22), the image of Kn is
included in that of Ptn , which means that, thanks to
Ttn , we have Im Kn ⊂ ker Htn . This directly leads to

HtnP+
tn = HtnPtn −Htn KnCPtn = 0, i.e., Ttn ⇒ T+

tn .

Proof of (iv): Suppose that ηtnbtn = btn . The matrix
exponential map is defined by expM = Id + ∑k≥1

Mk

k! . By
noting z = η

−1
tn d−d, we thus have according to (26):

η
+
tn btn = ηtn(Id + ∑

k≥1

(Knz)ˆk

k!
)btn

= ηtnbtn +(∑
k≥0

(Knz)ˆk

k!
)Htn(Knz) = btn

which concludes the proof.

A. Direct corollary for the RIEKF

If the output is of the form

Y R
n = χ

−1
tn ·d +Vn, (27)

rather than (15), then it is said to be right-equivariant, and
one should use a right-invariant EKF (RIEKF), see [4]. The
results remain entirely valid then, by symmetry.

Theorem 2: If the hypotheses of Theorem 1 are satisfied,
with output (27) instead of (15), then the RIEKF estimates
also verify (25).

Proof: The dynamics (7) is neither right nor left
invariant. It is such that χ

−1
t satisfies similar dynamics. Using

χ
−1
t ∈ G as the state variable, the output (27) becomes left-

equivariant as (15). And the RIEKF update for the variable
χ
−1
t is exactly the LIEKF update. Theorem 1 then applies.

B. Graphical illustration of the theorem and discussion

As it was already known, part of what makes the IEKF
work where a filter with linear update such as the EKF fails
mostly is where the linearization is done. Indeed, the EKF
tries to linearize on a non-linear space by embedding the state
in the ambient vector space. Think again of SO(3) : there is
no simple way of expressing a rotation as the sum of another
rotation and some matrix. The IEKF however linearizes on
the Lie algebra of the system, which is a linear space in
its own right, the exponential map being just a translation
between the two. When one writes χ = exp(ξ ), ξ is the
axis of rotation of χ , the angle being the vector’s norm, and
summing rotation vectors makes perfect sense. It was already
the idea behind the MEKF.

The second main argument which makes the proof work is
the fact that the image of a Lie sub-algebra by the exponential
map is a subgroup of the associated Lie group. This comes
from the Baker-Campbell-Hausdorff formula, which states
that if X ,Y ∈ g, then eX eY = eZ where Z is a series of X , Y
and nested Lie bracket terms. Z thus stays in the sub-algebra.

This is illustrated by Figure 1, which gives a schematic
view of the difference among the linear, the MEKF and IEKF
updates, for an estimate lying on the subgroup represented
by the circle. The IEKF update, through the exponential
map, makes the estimate move along the circle. Since the
covariance is expressed in the Lie algebra, its alignment
stays consistent with the subgroup (11). On the contrary,



the MEKF gives no guarantee that the estimate will stay in
the subgroup. In the meantime, the EKF updates along a
straight line in the direction of the covariance, so there are
no guarantee that the estimate will even remain in G, or that
the covariance will stay consistent with the curvature of the
space.

Fig. 1: Schematic difference among the linear, the MEKF
and the IEKF updates, illustrating Theorem 1. The dotted
curve represents the subgroup (11), and the hatched areas
the covariances, originally consistent with (11). The IEKF
stays on the subgroup, while the MEKF and the EKF update
respectively leave the subgroup and even the group G.

As already said, the interest is that when process noise
is low, the hard constraint becomes useless. However, the
state will live near the manifold defined by (11), and so
will the IEKF estimate due to the filters’ very structure! It
is easily understood that small process noise will lead to
a situation being close to the one of Figure 1 indeed (the
system smoothly depends on the process noise amplitude).

V. EXAMPLES

This section presents two examples illustrating the im-
plications of Theorems 1 and 2. The first one shows that
the result of [3] now appears as a direct application of
Theorem 1. The second one presents the implications of
Theorem 2 for the attitue estimation example of Section III-
C, and illustrates what happens when noise is turned on.

A. Car position and heading estimation

1) Recall of the results of [3]: Consider the simple case
of a non-holonomic car with perfect odometry, unknown
heading and noisy position measurements. Suppose the initial
position of the car is known. The dynamics are given by:

d
dt

θt = ωt ,
d
dt

xt =

(
cos(θt)ut
sin(θt)ut

)
, (28)

where θt is the heading of the car, xt its position vector, and
ωt ,ut are the angular and linear velocities. Noisy position
measurements Yn = xtn +Vn are acquired at discrete times
(tn)n∈N, corrupted by white noise Vn.

It was then proven in [3] that if R(θ) denotes the rotation
matrix of angle θ , and θ̂t , x̂t denote the IEKF estimates, then

R(θt)
T xt = R(θ̂t)

T x̂t = bt , where bt is defined through the
differential equation

b0 =

(
0
0

)
,

d
dt

bt =−
(

0 −ωt
ωt 0

)
bt +

(
ut
0

)
. (29)

Figure 2, reproduced from [3], displays the trajectories of
the true car and both EKF and IEKF estimates, for ωt ≡
0. The IEKF car estimate is always traveling on a ray that
passes through the origin, while that is not true for the EKF.

Fig. 2: First numerical example of Theorem 1: True, IEKF
and EKF estimates trajectories of a car with perfect odom-
etry, known initial position and uncertain initial heading.
The car gets position measurement every 10 time steps. The
odometry indicates ωt ≡ 0, thus the car is necessarily moving
along a ray emanating from its original position. The IEKF
encodes correctly this information, as its estimates always
move along rays emanating from the initial position indeed.

2) Translation in the Lie group formalism: The sys-
tem (28) can be seen as living in the Lie group SE(2) with
a state χt verifying

χt =

(
R(θt) xt
01,2 1

)
, χ̇t = χtUt , Ut =

 0 −ωt ut
ωt 0 0
0 0 0


(30)

Moreover, the position measurements and initial known
position are respectively given by

Ytn = χtn (0 0 1)T , χ0 (b0 1)T = (0 0 1)T (31)

Thus, Proposition 2 implies that for β0 =
(
b0 1

)T and
β̇t =−Utβt , the state satisfies χtβt =

(
0 0 −1

)T for all t,
which is exactly what is stated in Section V-A.1.

In turn, the result of [3] showing that the LIEKF preserves
the latter property is in fact a direct corollary of Theorem 1.

B. Attitude estimation

This example builds upon the work of [2]. Indeed, it did
not consider the structure of the initial covariance, and in
particular the impact of rank-deficiency. Consider that the
system receives at times tn, a measurement Yn of the gravity



Fig. 3: Second numerical example. Bricks represent rotation
matrices. Dots materialise rotations from one block to the
next one, by highlighting the trajectory of each of the base
vectors. The arrow represents the (known) direction of the
distant star, c0. The rotations induced by the first five updates
of the IEKF are shown (blue), followed by the results after
the 15th and 30th update (red) ,which show the convergence
to the identity matrix (light blue). It can be clearly seen that
they turn around c0.

field g and the earth magnetic field b through a triplet of
accelerometers and magnetometers, i.e.,

Yn = (RT
tng+V g

n ;RT
tnb+V b

n ), (32)

with V g
n ,V b

n two centered noises in R3. It has thus right-
equivariant outputs, and the system is suitable for the design
of a RIEKF. The corresponding filter’s equations for this
problem were already written in [2]. They are similar to
(17), with the update consisting of a left multiplication
by a term of the form exp(Knz), with z ∈ RN , that is, a
rotation around the axis Knz. Thus, theorem 2 implies that,
if initialized correctly, the estimate will correctly estimate
the direction of the star at all times whatever the motion.
Figure 3 displays the results of numerical experiments. As
stated, all the updates consist of rotations sharing the same
axis, the direction of the star denoted c0.

Impact of noise: We also performed simulations with pro-
cess noise having standard deviation equal to 0.02 degrees/s.
During all the experiment, the angle between c0 and the axis
of the updates’ rotations was of course impacted and did not
remain null. However, it never exceeded 0.01 degree, and the
estimated star direction remained in a sharp cone, as could
be expected from the IEKF’s geometrical structure.

VI. CONCLUSION

This paper highlithgted the shortcomings of Extended
Kalman Filtering for high-accuracy navigation problems
through the degenerate situation of an infinitely accurate
geometric prior. Without resorting to artificial process noise,
the EKF fails to propagate this information. These situations
are especially important in inertial navigation where they
have to be handled carefully.

The novel result we proved shows the algebraic approach
to filtering of the IEKF is a robust response to the issue
of assimilating precise nonlinear prior information, ie rank-
deficient initial covariance. In future work, this result will be
extended to any system defined on a Lie group having group-
affine dynamics as defined in [4], and to any information
restricting the admissible state space to a subgroup.
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