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Abstract. The fragmentation of α lamellae and the subsequent spheroidization of α laths, in α/β titanium alloys, 

are well known phenomena, occurring during and after deformation.  We will illustrate the development of a 

new finite element methodology to model these phenomena. This new methodology is based on a level set 

framework modeling the deformation and the ad hoc concurrent or subsequent interfaces kinetics. In the current 

paper, we will focus on the modeling of the surface diffusion at the α/β phase interfaces and the motion by mean 

curvature at the α/α grain interfaces. 
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1 Introduction 

Two-phase α/β titanium alloys are materials with 

numerous applications in different industrial domains, 

mostly due to their attractive mechanical properties. 

They present high strength, fatigue and corrosion 

resistance, low density and good ductility [1].  

Titanium alloys exhibit different microstructures 

depending on the applied thermomechanical path.  

Spheroidization is a phenomenon observed at α/β 

titanium alloys with initial stable microstructure of α 

lamellae inside β grains, during deformation and 

subsequent thermal treatment. More precisely, during 

this phenomenon, the fragmentation of α lamellae and 

the subsequent spheroidization and coarsening of α 

laths is observed [2].  

Spheroidization has received considerable 

attention due to its importance in microstructural 

control. The new spheroidized microstructure shows 

enhanced strength and ductility; so evidently, this 

phenomenon raises high interest for the industrial 

applications [1] [2]. 

 In this paper, we will illustrate a new finite 

element (FE) methodology in order to model these 

microstructural evolutions. Our interest is focused on 

the predominant mechanisms occurring during the 

first stages of the spheroidization at the lamellae 

interfaces without considering the microstructure 

deformation modeling. The α/α grain interfaces are 

introduced arbitrarily leading to surface diffusion at 

the α/β phase interfaces and motion by mean 

curvature at the α/α grain interfaces. For the purpose 

of modeling efficiently these interfacial kinetics, a 

level set framework was introduced. If some studies 

concerning the full field modeling of coarsening 

mechanism exist [3], at the authors’ knowledge, the 

2D or 3D full field modeling of the first steps of laths 

spheroidization in α/β titanium alloys is a poorly 

researched subject on the state of the art. 

Some basic cases of surface diffusion will be 

detailed in order to introduce the numerical 

methodology.  A first case of immersion of a real 

microstructure from experimental data will be also 

considered. Finally, a simple case of lamellae splitting 

due to the interaction of motion by surface diffusion 

at the α/β interface and motion by mean curvature at 

the α/α sub-boundaries will be described. 

 



 

 
2 The physical mechanisms 
 

According to Semiatin [2], several mechanisms are 

activated simultaneously during thermomechanical 

process leading to spheroidization. During 

deformation, it is observed that high angle 

misorientations are formed inside the α lamellae. 

Subsequently these misorientations lead to the 

formation of grooves which imply the penetration of 

the β phase and lead to the splitting of the α lamellae 

(see Fig. 1). After the splitting of the α lamellae in 

smaller parts, a microstructure with α pancake shape 

particles is obtained.  In order to reduce the interfacial 

energy, the α particles tend towards a shape where the 

surface area is minimized for a given volume i.e. a 

spherical one. Then, coarsening (i.e. volume diffusion 

well known as Ostwald ripening [4]) can take place. 

To be more precise the spheroidization of the 

microstructure is a consequent event of the four 

combined following mechanisms: 

 

 crystal plasticity during deformation which 

introduces the α/α sub-boundaries inside the 

α lamellae, 

 motion by surface diffusion at the α/β 

interfaces, 

 motion by mean curvature at the α/α 

interfaces, 

 coarsening. 

 

Except the mechanism of crystal plasticity that it 

obviously occurs during hot deformation, there is no 

clear distinction of when each one of these 

mechanisms occurs. At this point it is very important 

to underline that during spheroidization, we do not 

have phase fractions evolution. 
In the following, we will focus on the mechanisms 

which are responsible for the splitting of the α 

lamellae. Grooving is usually initiated by atomic 

scale processes near the region of α/α grain 

boundaries and the α/β phases intersection. 

These kinetics can be described by motion by surface 

diffusion at α/β interfaces and motion by mean 

curvature at the  α/α sub-boundaries (Figure 2).   

These are two competitive mechanisms occurring 

simultaneously which lead to the lamellae splitting. 

After the splitting of the α lamellae, surface diffusion 

at the α/β interfaces of the laths becomes the 

dominant mechanism before the coarsening by 

volume diffusion. Next section illustrates 

experimental data describing this sequence.  

  

3 Experimental analysis 
 

Some hot compression tests have been 

realized (TA-6V alloy) and are detailed below. We 

have worked with double coned samples and three 

experiments have been performed (Fig. 3) at 950°C. 

After the described thermomechanical treatments, a 

middle cut is realized and the microstructure is 

observed by SEM-EBSD analysis exactly at the 

center of the samples corresponding to the maximum 

strain area. 

 

 

 

 

 

 

a) 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

c) 

 

Figure 1:  Splitting of α lamellae into α laths. 
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Figure 3:  Hot compression experiments ( ̇=0.1     after 30 
min of annealing at 950°C: a)   20%, b)   20% and annealing 
of 15 min at 950°C and c)   20% and annealing of 1h at 950°C. 
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All the experiments start with a thermal treatment of 

30 minutes at 950
o
C in order to reach equilibrium of 

the volume fraction of the two phases. The first 

experiment involves only deformation at 950
o
C 

( =20%,  ̇=0.1   ) in order to visualize the 

microstructure exactly after deformation. Additional 

15 min (respectively 1h) of annealing at 950
o
C is 

considered for the second (respectively the third) 

experiment. The purpose is then to quantify the effect 

of the annealing time concerning the evolution of the 

microstructure.  

Figures 4, 5, 6 illustrate representative SEM images 

from each stage of the evolution of the microstructure 

after each experiment. Just after deformation, we can 

see a not so fragmented microstructure but from the 

variation of the grey scale color inside the lamellae 

we can guess a lot of sub-boundaries (Fig. 4). After 

15 min of annealing we see changes on the shape but 

not so sever ones. The shape evolution of the lamellae 

is obvious but we cannot observe spheroidized 

microstructure (Fig. 5). After one hour of annealing 

we can see finally a more spheroidized and 

coarsening microstructure (Fig. 6).    

 

 

 
Figure 4: representative microstructure after 20% 
deformation (Fig. 3a experiment). 

 

 

 
Figure 5: microstructure after 20% deformation and 15 min 
annealing. 

 
Figure 6: microstructure after 20% deformation and 1h 
annealing. 

In order to discuss quantitativel the microstructure 

evolutions, we analyze an important number of such 

representative images in terms of lath area and lath 

aspect ratio evolutions. Basically by approximating 

the α laths as ellipses, the aspect ratio is then defined 

as the ratio between the major axis and the minor one. 

 

By measuring approximately 500 α laths for each case 

we found the mean value of the aspect ratio and of the 

lath surface at each of the three stages. These results 

are summarized in Fig.7. They illustrate a fast 

evolution of the mean shape ratio during the first 

15mins with a quasi-stable mean surface value. 

Figure 2.  Interaction between the two competitive mechanisms of surface diffusion and motion by mean curvature 



 

During 15 mins and 1h, the mean shape ratio 

decreases slowly whereas the increase of the mean 

surface ratio is important. These experimental results 

are coherent with the involved mechanisms [1] [2]: 

 

 After deformation, sub-boundaries inside the 

lamellae are present and sphereodization is 

not activated. 

 During the first minutes of the thermal 

treatment, surface diffusion and motion by 

mean curvature are the predominant 

mechanisms which lead to the laths 

appearance and sphereodization of the laths 

without a real growth of the mean lath 

surface (limited effects of the volume 

diffusion). 

 After this first step, coarsening becomes the 

predominant mechanism. 

  

 
Figure 7: Time evolution of 2D morphological 
characteristics of the laths population. 

 

From the observations above, we believe that, 

modeling the first steps of spheroidization implies the 

necessity to simulate the boundary motion due to 

surface diffusion at α/β interfaces and due to the mean 

curvature at the α/α sub-boundaries. Subsequent 

modelling of coarsening is of course of prime 

importance to predict the laths volume time evolution 

but is only a natural perspective of the present works 

which are, at yet, dedicated to the two first 

mechanisms. 

 

Next section illustrates the governing equations of 

surface diffusion and motion by mean curvature. 

 

 

 

3 The physical equations 

3.1 Motion by surface diffusion 

According to Mullins [5], in order to describe the 

atoms flow at the α/β interface we can consider a 

surface flux   ⃗: 
                                ⃗    ⃗                                  (1) 

 
where   denotes the number of drifting atoms per unit 

area and  ⃗ denotes the average velocity of these 

drifting atoms.   Assuming local equilibrium we can 

express  ⃗ with the Nerst-Einstein formula as 

following: 

 

                                 ⃑⃑  
   

  
                                 (2) 

 

where     denotes the surface diffusivity of the α/β 

interface, μ the chemical potential,   the Boltzmann 

constant and T the absolute temperature. The    

operator corresponds to the surface gradient operator 

defined as the tangential component of the gradient: 

 

                         (                     (3) 

 

with   the outward-pointing unit vector normal to the 

surface and          
By considering Eq.(1) and Eq.(2), the following 

equation is obtained: 

 

                                   
    

  
                                (4) 

 

Assuming that there is mass conservation, the surface 

motion can then be described by: 

  

                                   (                                (5)   

  where      ⃑⃑    denotes the normal velocity of 

the surface and   the atomic volume.  By combining 

Eq. (4) and Eq. (5), we obtain: 

 

                          
     

  
                                 (6) 

 

with            the surface Laplacian operator 

(or Laplace-Beltrami operator). 

From Eq. (6), it is notable that the normal velocity is 

associated with the chemical potential of the atoms. 

Considering κ as the mean curvature (sum of the main 

curvatures in 3D) and     the α/β interface energy 

and by ignoring the possible effects of anisotropy, the 

following relationship is obtained: 

 

        .                            (7) 

 

Thanks to Eq.(6) and Eq.(7), we obtain: 
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                        (8)       

 

with   
         

  
, the kinetic coefficient. Eq. (8) 

describes the relation between the motion by surface 

diffusion and the surface Laplacian of the mean 

curvature [6-9]. 

3.2 Motion by mean curvature  
 

In order to describe precisely the surface evolution 

of an α lamella, the influence of the mean curvature 

should be also considered [8]. 

The grain boundary energy is indeed important for 

the lamellae splitting. 

The grain boundary energy is given by the well-

known Gibbs-Thompson relationship where the 

normal velocity    of the grain boundary is described 

proportionally to the mean curvature κ: 

 

                   
     ̌ 

  
   

 

                    (9)               

 

with   
     ̌ 

  
   

 

  , where     denotes the grain 

boundary energy, b is the burgers vector norm 

associated with the hoping event,  ̌ is the Debye 

frequency, R the gaz constant and Q the apparent 

activation energy. 

 

3.2 Motion of the interfaces 

Surface diffusion and mean curvature motions are 

taking part simultaneously during the phenomenon of 

spheroidization. A global velocity combining both of 

these motions can then be summarized as: 

 

    (                              (10) 

 

with      the characteristic function of the α/β phase 

interfaces and      the characteristic function of the 

α/α grain interfaces (Fig. 2). 
 
4 Level set formulation 

 
A level-set model was formulated in order to deal 

with the topological changes at the α/β interfaces. The 

level set method was chosen due to its capability to 

immerse/describe/capture easily in a FE context the 

interfaces [10-13] and also due to the fact that 

geometrical quantities as the mean curvature κ and 

the outside normal n can be obtained as: 

 

                                     
  

‖  ‖
                               (11) 

and 

 

                            (     
  

‖  ‖
                 (12) 

 

with 

 

 (       (   (   .                 (13) 

 

  is then defined over the domain Ω as a signed 

distance function to the interface Γ of the subdomain 

of interest that we will denote  . 

The sign convention of Eq. (11) corresponds to a 

distance function negative inside   and positive 

outside.  

Thus the interface velocity can be rewritten in a 

level set form as: 

 

            ⃑⃑    
  

‖  ‖
     ( (               (14)  

 

with: 
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     ̌ 
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It can also be proved that in the considered level-set 

formulation [6] [14],    can be re-written as: 

 

    (         
 

‖  ‖
   (‖  ‖       .    (17) 

 

The velocity is then defined in the entire domain and 

corresponds in the vicinity of the zero level-set 

function of φ, i.e.  , to the interfaces velocity [6] [7]. 

A new numerical methodology of resolution is 

detailed in the following section concerning the 

surface diffusion mechanism. 

5 A surface diffusion methodology 

For the modelling of the induced flow from the 

surface diffusion mechanism at the α/β interface, a 

finite element methodology is adopted. At any time t, 

the transport velocity  ⃑⃑  is defined by: 

 



 

             ⃑⃑  ⃑   (      
 

‖  ‖
   (‖  ‖            (18) 

 

with   
         

  
.  The   coefficient is defined as a 

constant and it is chosen to neglect any anisotropy 

concerning the interface energy and the diffusivity. 

Additionally, isothermal conditions are assumed. The 

time evolution of  (   is then obtained by solving the 

following convective system: 

                                  

{

  

  
    ⃑⃑⃑ ⃗    ⃑⃑⃑⃑⃑⃗   

 (       (   (  )    (   (  )  ̅

      (19)     

The interface can then be obtained at each time step 

as the 0-isovalue of the distance function and the 

velocity is updated by following Eq.(18) before the 

following time step. At the following subsections, 

more extensive details are given for the resolution 

algorithm. 

5.1. Surface diffusion velocity identification 
and transport resolution 

The methodology used to obtain the surface 

diffusion velocity is based on the finite element based 

strategy introduced by Bruchon et al. in [6] [17]. 

Indeed, as P1 description of the LS is considered 

in the proposed methodology, one of the basic issues 

in the problem of surface diffusion is that the velocity 

is defined by the Laplacian of the curvature, which 

means that the velocity is a function of the fourth 

order spatial derivative of φ. The numerical strategy 

proposed by Bruchon et al. consists to solve this 

problem by considering a “regularized” formulation. 

More precisely Eq.(18) is solved in a weak form by 

using a FE formulation. Further information can be 

found in [6] [17]. 

5.2. Convection-Reinitialization methodology 

By assuming the appropriate calculation of the 

surface velocity, the traditional strategy of convection 

and subsequent reinitialization steps is used. The 

main idea is to solve the advection equation and to 

rebuild the metric properties of the level-set function 

in order to keep a distance function (‖  (    ‖     

at least near the interface (  . Classical approaches 

consist in solving, separately, the convective part and 

the reinitialization part thanks to the resolution of a 

classical Hamilton-Jacobi system [13] or to adopt an 

unified advection and renormalization methodology 

by solving one single equation based on a smooth 

description of the level-set [16]. Here, a new 

approach is proposed. 

This new approach is based on a separate 

resolution of the transport and of the reinitialization 

part. Convective equation is firstly solved thanks to a 

stabilized P1 solver (SUPG or RFB method). Then, a 

parallel and direct reinitialization algorithm detailed 

in [19], which has been proven to be extremely fast 

and accurate, is used. In this algorithm, the  (   

interface is firstly discretized into a collection of 

segments (respectively triangles in 3D) and the nodal 

values of the level-set function are then updated by 

finding the nearest element of the collection and 

calculating the distance between the considered node 

and this nearest element. This method takes 

advantage of a space-partitioning strategy using k-d 

tree and an efficient bounding box strategy enabling 

to maximize the numerical efficiency for parallel 

computations. 

Moreover, this methodology presents two other 

interest: 

 -it enables to avoid the validation/calibration of 

unphysical parameters necessary to reinitialize the LS 

function [13] [17], 

 -it enables to obtain directly an exact P1 

description of   [20] before to solve Eq. (18) rather 

than following the classical less precise methodology 

where the normal is computed by performing a P1 

interpolation of the first derivative of the level-set 

function. 

 

 
6 First academic case 
 

In this section we examine an ellipsoid shape 

under surface diffusion. We want to test the efficiency 

of the proposed formulation for a simple case with an 

analytical solution. Considered computational domain 

is a 1mm x 1mm square centered in (0,0). An initial 

ellipse (a=0.3mm and b=0.2mm) of 

equation     ⁄        ⁄  is considered. Of 

course, this shape is going to evolve towards a circle 

shape while conserving its area. Thus limit radius, i.e. 

limit value of a and b is given by the value √    
         .  

Initially, in order to test the efficiency of the 

approach without dealing with the effect of the 

meshing and remeshing in the results, a fixed mesh is 

considered during simulations. An initial isotropic 

mesh adaptation is considered in a ring centered in  

(0,0) and defined as              mm in order 

to keep a very fine mesh, defined as h in Table 1, in 

all the zone crossed by the zero isovalue of the level-

set function during the simulation. The figure 8 

illustrates the FE mesh used (a), a zoom on the FE 

mesh (b), the initial distance function field (c), the 

curvature field near the interface (d) and the normal 

b) 

d) 

e) 
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velocity field near the interface obtained initially 

thanks to the FE resolution of Eq. (18) (e). Red or 

white line corresponds to the initial ellipse interface 

(0 isovalue of the level-set function). 

 

a)  b)  

 

c)   d) 

 

 
 

 

 

 

e) 

 

Figure 8. First academic case: the FE mesh used (a),  zoom 

on the FE mesh at the interface between coarse and fine 

mesh (b), the initial distance function field (c),   near the 

interface (d) and    near the interface (e).  

In all simulations   is assumed to be 

homogeneous and equal to        . Exact velocity 

of the point (a(t),0) is known [17] and given by:  

 

             ⃑⃑⃑⃑⃗(    
  (     ) 

   ⃗    (   ⃗            (20)                                                       

 

Hence a(t+dt) can be easily evaluated thanks to a 

forward Euler method: 

 

            (       (        (              (21)                            

 

and b(t+dt) can be easily obtained by verifying the 

area conservation at anytime: 

 

       (       (   (   (      ⁄        (22) 

 

This method is then used with a time step of 1ms to 

evaluate the “exact” evolution of a and b values 

during the shape evolution. Concerning FE 

simulations, at each time step, the positions of (a(t),0) 

and (0,b(t)) are determined on the zero-isovalue of the 

distance function and then compare to the “exact” 

solution. Final time of all simulations is fixed to 1s. 

Table 1 summarizes all the parameters (time step, 

mesh size in the fine mesh zone, number of elements 

of the used mesh, method used), the CPU time of the 

simulations and the corresponding precision of the 

results obtained concerning the positions of (a(t),0)  

for          by using the unified convective-

renormalized approach described in [16][17] and the 

new one proposed here with different time step and h 

values. These cases are representatives of an 

important number of other performed simulations. 

Errors are defined as: 

 

   
‖    (         (  ‖  

‖      (  ‖  

 
∑ |     

        
| 

∑ |       
| 

           (23) 

   
‖    (         (  ‖  

‖      (  ‖  

 
√∑ (     

        
)
 

 

√∑        
 

 

        (24) 

where i denotes the discretization in time. 

From different simulations (Cases 1 to 4 of  Table 

1 are representatives), we can summarize the 

following comments: 

-Considering the precision of a(t) predictions  (see 

   and    errors on Table 1), both approaches are 

relevant to model surface diffusion. Figure 9 

illustrates, at t=0.2s and t=1s, the difference of the 

exact interface and the results obtained with the 

Case1. 

-The time step of the Case4 (         ) is the 

maximal value usable for       and the unified 

formulation to avoid numerical instabilities. Such 

instabilities were not identified for the new proposed 

approach even for important time step and mesh size 

(Case 3 for example). 

-As illustrated in Table 1, calculation time of the 

new proposed approach is then clearly very attractive 

comparatively to the unified approach. 



 

-Even for the new proposed approach, decreasing 

the    and   values below, respectively,       and 

     seem not improve the results quality (   
     It can be explained by the fact that the residual 

error is due to the FE resolution of Eq. (18). 

 
Figure 9: Comparison at t=0s, t=0.2s and t=1s of the exact 
solution (red lines) and the Case 1 0-isovalue (blue lines). 

7 Second academic case: volume 
loss and mesh adaptation 

Next, we consider a more realistic shape of a long 

ellipse with a=0.5mm and b=0.1mm and mesh 

adaptation. Indeed, in order to obtain acceptable 

calculation time to model surface diffusion of 

complex microstructure a fixed meshing strategy as 

the one of the previous section is not an option. A 

meshing and remeshing strategy must be used.  

To begin with, two metric based meshing 

strategies associated with the MTC topological 

mesher were tested. MTC is a P1 automatic remesher 

based on elements topology improvement that was 

developed for Lagrangian simulations under large 

strains [18]. This tool was extended to anisotropic 

mesh adaptation [18], for which it was extensively 

used in context of FE microstructure description [6] 

[12] [13] [16] [17] [19].  

The first metric considered, is the metric 

described in [16]. This metric enables to obtain 

isotropic or anisotropic (in the normal direction of the 

interface) fine mesh in the vicinity of the interface 

without considering its curvature. In this paper, 

isotropic adaptation was considered (Method 1 in 

Table 2). 

The second metric considered, is based on an a 

priori error estimator linking the interpolation error on 

the LS function to its gradient vector and hessian 

matrix. As already described, these variables allow to 

obtain the normal vector to the interface and its main 

curvatures. Using these data, a metric field can be 

built in order to obtain a fine mesh size in the vicinity 

of the interface depending on local curvature [21] 

(Method 2 in Table 2). 

Simulation and data results are reported in Table 2 

for both meshing/remeshing methods. The “Conv + 

exact Reinit” strategy was used. Final time of both 

simulations is fixed to 1s. As the mesh size near the 

interface is of the same order than the mesh size used 

in Case1 and Case2, same precision could be 

expected. However, remeshing is also synonymous of 

diffusion concerning the FE fields carrying the 

interface at each remeshing operation necessary to 

follow interface motion. Then, volume conservation 

was tracked for these cases. 

Results described in Table 2 illustrate that the 

mesh adaptation techniques come with good precision 

and fast calculation times. Meshing adaptation based 

on the curvature enables to obtain a very good 

conservation of the volume. This aspect will be of 

course very important for real configurations where 

the initial thin shape of the α lamellae implies very 

high ratio between the minimal and the maximal 

values of the interface curvature. So, this meshing 

strategy in terms of metric seems particularly 

indicated. 

 

Data Case 5 Case 6 

h in fine zone in μm 1 1 

#Elt <10000 <10000 

Time step in ms 1 1 

Conv+exact Rein. X X 

Calculation time  

12 CPU 
1min 1min 

Remeshing method Method 1 Method 2 

Volume loss in % 7.5 1 

Table 2. Summarized data and results with mesh 

adaptation. 

 

If the results described previously in terms of 

calculation time and precision could be sufficient to 

study the surface diffusion of one thin ellipse, it 

seems clear that to further improve our numerical 

Data Case 1  Case 2 Case 3 Case 4 

h in fine zone in μm 1 1 2 1 

#Elt 2.74e5 2.74e5 7.1e4 2.74e5 

Time step in ms 1 5 10 0.1 

Conv+exact Rein. X X X  

Unified approach    X 

Calculation time 

12CPU 

1h 17mins 1min 6h 28mins 

e1 in % 2.5 2.6 2.1 2.2 

e2 in % 3 3.1 2.9 2.8 

                                 Table 1. Summarized data and results of some tested configurations  
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framework, it is important to deal with real 2D or 3D 

configurations. 

In order to face this problem, we adopt a new 

topological mesher, Fitz, developed by Shakoor et al. 

[21].  With Fitz, a body fitted meshing and remeshing 

is possible while using complex metric as previously 

described. It was then proved in [22] that this new 

mesher associated with a volume conservation 

constraint which is compatible both with implicit and 

body-fitted interfaces, the modification of the 

interface due to remeshing can be delayed enough so 

that a Lagrangian Level-Set method becomes more 

than interesting compared to an Eulerian Level-Set 

method, even when large deformations or 

displacements occur. 

 First tests are very promising, allowing in the 

Case6 configuration to obtain a precision of 2% 

concerning the volume conservation with a 

calculation time of 30s on 12 CPU. Figure 10 

illustrates a result obtained with this numerical 

framework for a “a=0.5mm and b=0.05mm” 

configuration. 

Moreover we anticipate with this mixed 

implicit/explicit description of the interfaces an easier 

coupling between surface diffusion at the α/β 

interfaces and motion by mean curvature at the α/α 

grain interfaces.  

 

 

 
Figure 10:  A “a=0.5mm and b=0.05mm” configuration with 
a mixed implicit/explicit description of the interfaces: (top) 
initial distance function field and the obtained interfaces 
(white lines) at t=0s, 0.2 s and 1s. (Bottom) Zoom on the 
conform mesh at t=0.2s, the interface is defined by the red 
line.  

9 Surface diffusion in real α/β 
microstructures 

Having tested the validity of the surface diffusion 

solver in simple configurations, we consider now a 

more complex one. The FE immersion of a real 

microstructure, from our experimental images, is 

investigated. 

The considered microstructure of size       

     , described by the Fig. 11, is one similar to the 

configuration of the Fig. 5 (20% of deformation and 

15 min of annealing). This configuration is interesting 

as splitting can be considered as achieved (see section 

3). Binarized version (see Fig. 12) of the 

microstructure described by Fig. 11 and the signed 

distance function of the laths was obtained thanks to 

the ImageJ software and immersed in an initial FE 

mesh thanks to our FE C++ library CimLib [15]. 

Some laths, near of the domain boundaries, were 

deleted in order to avoid border effects. 

A first Eulerian Level-Set framework “Conv + 

exact Reinit“simulation has been considered with 

representative physical parameters [2]. We 

t=0s

t=0.2s

t=1s

Figure 11:  α/β microstructure after 20% of deformation 
and 15 min of annealing. 

Figure 12:  Binarized version of Fig. 11. 



 

experienced some difficulties regarding the shape 

evolution of the interface during the simulation.  

Having numerous laths interacting very quickly under 

surface diffusion, lead to oscillations of the interface 

and severe volume loss. 

From the other hand, performing the same 

simulation with the Lagrangian Level-Set framework 

based on Fitz methodology, lead to much more 

reasonable results considering the shape evolution of 

the lamellae and volume loss as illustrated by the time 

evolution of Fig. 13. The size of the mesh elements 

was fixed to          close to the lath interfaces 

and to          otherwise (see Fig. 14). The time 

calculation was 2 hours for 12 CPUs. The volume 

loss from the beginning of the process to the end was 

limited to 2%. More quantitative validations of these 

simulations and discussions of the A and B coefficient 

values will be detailed in a forthcoming publication.  

Interestingly, laths coalescence events are 

observed during surface diffusion. It is logical as one 

level-set function is considered for all the laths (as in 

[3] in context of phase field description of the 

interfaces). However, at the authors knowledge, this 

kind of evolutions was not reported in the state of the 

art of α/β titanium alloys during the first steps of the 

spheroidization. Once again, it seems that consider 

the role of α/α grain interfaces are of prime 

importance to predict a realistic evolution of the 

contacts between the laths during surface diffusion 

phenomenon. 

 

  

(a)  
 

 

(b)  

 

 

(c)  

(d)  
Figure 13:  lath evolutions due to surface diffusion: (a) 
initial configuration, (b) at         , (c) at           
and (d) at       . 

 

Figure 14: Initial mesh adaptation around the α laths 
(zoom). 

10 First simple case of lamellae 
splitting: 

 

As already mentioned, two main competitive 

mechanisms are involved in lamellae splitting. 

Motion by surface diffusion at the α/β interfaces and 

motion by mean curvature at the α/α sub-boundaries 

(see Fig. 2).  The numerical framework based on the 

Fitz meshing/remeshing tools and the enhanced 

lagrangian methodology is now definitively adopted. 

The simple configuration of a lath crossed by a α/α 

grain interface as described by Fig. 15 is considered. 
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Figure 15: Simple case representing a lath crossed by a α/α 
grain boundary. 

 Eq. (17) is taken into account in order to evaluate 

the global velocity which is used to convect the level-

set set functions (L1 and L2) describing the two laths. 

Normalized velocity due to surface diffusion 

(respectively due to motion by capillarity) is 

described by the Fig. 16 (resp. the Fig. 17).  

 

 

 
Figure 16:  Normalized surface diffusion velocity after few 
time steps. 

 
Figure 17:  Normalized mean curvature velocity after few 
time steps. 

 
A realistic ratio between the A and B coefficients is 

used in order to obtain a representative normalized 

evolution of the two laths. Fig. 18 illustrates the mesh 

used for the simulation (conform mesh at the 

interfaces and a ratio of five between the size of the 

coarse mesh elements and the fine ones), this figure 

also clearly illustrates the impact of the mean 

curvature at the α/α grain boundary concerning the 

fast appearance of dynamic triple junctions. Even in 

context of small misorientations and so in context of 

weak values of the     parameter, the mean curvature 

remains extremely high at the initial T-junction 

between the α/β interface and the α/α interface. 

Finally Fig. 19 illustrates the splitting of the lamellae 

in two laths due to surface diffusion and motion by 

capillarity. 

 

 
 

 

 

 

Figure 19:  Splitting modeling, from top to bottom: initial 
configuration, at          ,          ,       . 

This case demonstrates that the proposed formalism 

enables to deal with surface diffusion and motion by 

mean curvature. The volume loss during this 

simulation was around 1.8%. Current calculations are 

dedicated to more complex configurations.  

 

 

10 Conclusions and perspectives 
 

The first steps of a new FE numerical framework 

dedicated to the modelling of the mechanisms of 

spheroidization in α/β titanium alloys have been 

detailed. This numerical framework has been 

illustrated with some basic numerical cases on  

surface diffusion of α laths for checking the efficiency 

of the methodology. Optimal algorithm of resolution 

and meshing strategies were proposed in terms of 

precision and calculation time. A new way was also 

opened by considering a mixed implicit/explicit 

description of the interfaces with the use of body 

fitted meshes.   

A surface diffusion case on a real microstructure 

obtained from experimental images was validated in 

terms of numerical efficiency. We also demonstrate 

that the proposed formalism enables to simulate 

lamellae splitting due to the competitive mechanisms 

of motion by surface diffusion and motion by mean 

curvature.  

The perspectives of this works are numerous. This 

article illustrates a first step to propose full field 

simulation of sphereodization and coarsening in α/β 

Figure 18:  Description of the multiple junctions during 
splitting with a conform mesh strategy. 



 

titanium alloys. First of all, more representative 

simulations in terms of domain size must be realized 

and the obtained results must be validated with in-situ 

experimental results. In this context, the coefficients   

A, B need to be finely calibrated in order to respect 

realistic kinetics. Concerning, the involved 

mechanisms, volume diffusion must be added to the 

global velocity in order to predict realistic volume 

evolution of the laths during spheroidization. It seems 

also important to highlight that the proposed 

methodology is usable in 3D without additional 

developments. At the authors knowledge, 3D full 

field modeling of laths for α/β titanium alloys was 

never addressed. It is then an exciting perspective of 

these developments. Finally, we plan also to simulate 

the deformation step thanks to an existing crystal 

plasticity finite element approach developed in a 

level-set context [23]. 
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