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Tracking the Frenet-Serret frame associated to a highly maneuvering
target in 3D

Marion Pilté, Silvère Bonnabel, Frédéric Barbaresco

Abstract— In this paper we consider the problem of tracking
a maneuvering aircraft. The dynamical model used is based on
assumptions of nearly constant tangential velocity, curvature,
and torsion, of the target trajectory. Using the Frenet-Serret
frame, that is, an element of the special orthogonal group SO(3)
we cast the tracking problem into a filtering on Lie groups
framework. We then use an invariant extended Kalman filter
to estimate the various quantities involved. The resulting filter
is simple to implement, and shown to gracefully accomodate
some realistic target trajectories.

I. INTRODUCTION

In radar applications, track maintenance is one essential
component of the process. Mathematically, it boils down to a
filtering problem, where one must filter the current position
of the aircraft as well as its velocity and possibly higher
order derivatives, from noisy position measurements. We
will refer to this problem simply as “target tracking”. When
the aircraft is maneuvering, the problem is difficult due to
the unpredictable nature of the motion. This area has been
the object of extensive research over the four past decades,
see [1]. The main degrees of freedom for tracking are 1-
the dynamical model describing the motion of the target,
and 2- the (statistical) filter used. As concerns dynamical
models, there are many possibilities, but linear models are
often used in industrial applications, the most famous being
the Singer model [2]. As concerns the filters, a simple
robust solution is the noise process-adaptative Kalman filter
of Castella [3]. More modern approaches include particle
filters [4] and the reference filter for tracking which is
the interacting multiple model (IMM) filter, see e.g. [1].
The latter filter runs banks of (extended) Kalman filters in
parrallel based on various models and assess weights to each
model by evaluating likelihood of the measured outputs.
This allows accomodating the various types of targets and
degrees of maneuverability a single radar can be confronted
with. The acadamic community has now largely turned to the
challenges of multi-target tracking, with joint applications in
video, see [5].

Nowadays, the radar air defense industry is facing novel
challenges with ever increasingly maneuvering targets. Some
targets can reach Mach 7 velocities with 15g accelerations.
A way to inject some structure through a motion model
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into a trajectory that is deliberately trying to make the radar
lose track of it, is to resort to physical considerations: The
changes in aerodynamic lift and thrust-drag accelerations are
limited, and those accelerations can in fact be expected to
be piecewise nearly constant.

In the present paper, we propose to study the problem of
tracking a highly maneuvering target in the 3D space. We
propose as a very simple geometric model to use the Frenet-
Serret formulas to describe the motion and assuming nearly
constant curvature and torsion. This model includes helical
motions that are particularly challenging to track. Our model
can be related to [6], [7] and more recently [8], see Section
II-B for more information. The position x is a 3D vector
and the Frenet-Serret frame a rotation matrix R of SO(3), so
(x,R) can be viewed as an element of the Lie group SE(3).
Using this fact, we cast the tracking problem (partially)
into a filtering problem on Lie groups. Slightly extending
the Invariant Extended Kalman Filter (IEKF), introduced in
[9] and [10], we obtain a novel tracking algorithm. The
IEKF is indeed a recent methodology that accounts for
the geometric nature of the state space, and comes with
convergence properties [11]. It can also be related to the
discrete EKF on Lie groups of [12], or to the generalized
multiplicative EKF of [13], see also [14].

The paper is organized as follows. In Section II we
derive a stochastic evolution model from the Frenet-Serret
equations and discuss the design of estimation algorithms.
In Section III, we explain how the theory of [11] can be
adapted when the state space consists of a Lie group and
of additional quantities, and we describe the IEKF equations
for the tracking problem. Finally, in Section IV, simulations
illustrate the relevance of the filter.

II. PROBLEM AND PROPOSED MODELING

Consider a vehicle, say, an aircraft, evolving in the 3D
space. It seems natural to describe the motion using piece-
wise constant control commands in a frame attached to the
aircraft, that is, using intrinsic coordinates, as proposed in
e.g., [15]. As rotations of the aircraft around its velocity vec-
tor are unobservable from position measurements only, we
propose to model its trajectory using Frenet-Serret formulas
and to assume the tangential velocity, curvature, and torsion
to be nearly constant. Denoting by xt ∈ R3 the position of
the target, the Frenet-Serret formulas write

d
dt

xt = uT (1)

d
dt

T = uκN,
d
dt

N = u(−κT + τ̃B),
d
dt

B =−uτ̃N (2)



where u≥ 0 will be referred to as the (norm of the) tangential
velocity, κ is the curvature, τ̃ is the torsion, and T,N,B are
all unit vectors perpendicular to each other. Those equations
are also known as Frenet-Serret theorem and using a concise
matrix notation, equation (2) can be re-written

d
dt

(
T N B

)
= u

(
T N B

)0 −κ 0
κ 0 −τ̃

0 τ̃ 0

 (3)

Defining γ and τ as γ = uκ, τ = uτ̃ we finally get:

d
dt

(
T N B

)
=
(
T N B

)0 −γ 0
γ 0 −τ

0 τ 0

 (4)

In the sequel, the parameters γ and τ will be referred to as
curvature and torsion with a slight abuse of language, but in
the application section, we will come back to κ and τ̃ .

A. Proposed model for the target

Using Frenet-Serret formulas, we let Rt ∈ SO(3) be the
matrix Rt =

(
T N B

)
. We then assume nearly constant

tangential velocity, curvature, and torsion, leading to the
following model for the dynamics:

d
dt

xt = Rtvt + wx
t ,

d
dt

Rt = Rt(ωt + wω
t )×,

d
dt

γt = wγ

t ,
d
dt

τt = wτ
t ,

d
dt

vt = wu
t (5)

where the curvature γt , the torsion τt and velocity norm ut
are unknown parameters, ωt = (τt 0 γt)

T , νt = (ut 0 0)T ,
and wω

t ,w
x
t ,w

γ

t ,wτ
t ,w

u
t are white noises that account for small

changes over time in the motion parameters. Moreover, we
let (a)× ∈R3×3 denote the skew symmetric matrix associated
with cross product with the vector a ∈ R3.

Remark 1: The model (5) can be easily extended to
accommodate nearly constant accelerations of the Singer
model type [2], by replacing d

dt vt = wu
t with d

dt vt = at and
d
dt at =−αat +wu

t . The filter below can easily be adapted.
The observations are the noisy positions at times t1, t2, ...:

Yn = xtn +Vn (6)

where the Vn’s are Gaussian independent observation noises
in R3. It is also common to express the radar position
measurements in spherical coordinates of range, elevation
and azimuth angles which leads to a nonlinear measurement
model. Even if it poses additional difficulties in its own
right, it is not the main object of the present paper and
the technique presented here can be adapted linearizing the
output map as in the EKF methodology. There are also
techniques to transform (more precisely estimate without
bias) the measurements from spherical to Cartesian, see [16].

B. Associated difficulties and links with prior literature

The proposed model (5) seems well suited to the tracking
of highly maneuvering targets. Indeed it is closely related to
constant commands in the body frame, albeit different. De-
vising a filter to track equations (1)-(2), or more precisely the

retained model (5), from position measurements is difficult
for various reasons. First, because there are many quantities
to be estimated only from position measurements and which
appear nonlinearly in the equations. Then, because of the
constraint of T,N,B forming an orthonormal base of the 3D
space. It is not trivial to encode such nonlinear constraints
in an extended Kalman filter. Using the model (5), we see
that the pair (xt ,Rt) defines an element of the Lie group
SE(3). This indicates (part of) the state could be estimated
by bringing to bear the Lie group structure underlying the
state space. There has been extensive work on observers on
Lie groups over the past years. However, for target tracking
applications it is important that the filter output a covariance
matrix, preventing the use of deterministic observers. Indeed,
radar tracking involves the non trivial task of associating
radar reports (so called “plots”) with targets. This task (which
is not considered in the present paper that is only concerned
with tracking) is critical and requires an associate window
based on the estimation error dispersion (covariance). This is
why we resort to a Lie group based extended Kalman filter
- the invariant EKF of [11] - for the tracking task.

There has been various prior attempts to use intrinsic
coordinates to describe the target motion. The most promi-
nent work in this direction is, to our best knowledge, the
pioneering work of Antoulas and Bishop, see e.g., [7], [17].
If we assume the acceleration of the target is large with
respect to the gravity vector field g, which is the case for
highly maneuvering targets the NCS-CT model of [7] writes

...x t =
ẋt × ẍt

‖ẋt‖2 × ẍt (7)

This equation is obtained assuming the kinematic acceler-
ation ẍt , when projected onto the body frame, is constant.
Although the motivations for this model is akin to our
motivations, the obtained equations are slightly different.
Note indeed that, first the velocity of the target ẋt must
always be different from zero for the model to be valid,
which is not the case with equations (5). Moreover, the model
(7) is based on a zero torsion assumption. As a result quoting
[17] “necessary condition for the model to be an accurate
representation of actual trajectories is for the real trajectories
to have small torsions”. It is easily seen that the retained
model (7) does not lend itself very well to extended Kalman
filtering due to its strong nonlinearities. The authors thus
propose a geometric filter, which is in fact a deterministic
observer (of the Luenberger type [18]), but for a nonlinear
model, see [19].

Another work that is akin to the proposed Frenet-Serret
model (1)-(2) or equivalently (5) in state space form, is [8].
The proposed model is based on constant tangential and
normal accelerations and constant-plane motion, and differs
from [20], [1] only in the way the noise enters the system.
The authors assume indeed the system to be deterministic,
and the acceleration to jump from time to time. They then use
a particle filter to select the most likely accelerations. This
method is fundamentally different from the Kalman filtering
approach adopted in the present paper, and way more costly



than an EKF computationally speaking.

III. PROPOSED INVARIANT EKF

In the present section we propose a novel extended
Kalman filter for the tracking problem (5). Since the state
space is not a Lie group, the invariant EKF theory cannot
be readily applied. It is however easy to generalize to this
problem, as we explain in the following paragraph.

A. Extending the Invariant EKF methodology

The early theory of the Invariant extended Kalman filter
[10], [9] was concerned with invariant dynamics on Lie
groups. In [11], the theory was generalized to account for
a broader class of dynamical systems on Lie groups and
convergence properties were obtained. Indeed, it suffices that
the dynamics, defined on a matrix Lie group G⊂RN×N with
state χt ∈ G and input ut ∈U ⊂ Rl , satisfy:

d
dt

χt = fut (χt)+χtwt (8)

where wt is a continuous white noise, with additional con-
dition

fu(ab) = a fu(b)+ fu(a)b−a f −u(Id)b (9)

for all (u,a,b) ∈U×G×G. As early noticed in [21], when
the state space consists of a Lie group element χt and some
additional vector zt ∈ Rk, and the dynamics write

d
dt

χt = fut (χt ,zt)+χtw
χ

t , (10)

d
dt

zt = g(zt)+wz
t , (11)

an Invariant EKF can still be devised formally by merely
using an invariant error for the Lie group variable χt and a
usual linear error for the vector variable zt . This comes at a
price, though, as convergence properties are lost. However,
the structure of the filter which embraces the partial Lie
group structure of the state space is relevant, and in practice
very good performances can be expected.

Finally note that, a trivial Lie group structure can be
defined on such an extended state space, by multiplying the
χ’s and adding the z’s. This route was recently pursued in
[12], to estimate pose and velocities of a body in space from
pose measurements. Unfortunately, this trivial extension does
not make the overall dynamics for the extended state (χt ,zt)
satisfy condition (9), so convergence properties are lost no
matter what, and the end filter is very similar anyway.

B. Proposed filter’s structure

In the present paper we propose to partition the state
space using the following Lie group embedding in the special
Euclidean group SE(3) using the homogeneous matrices:

χt =

(
Rt xt

01,3 1

)
,wt =

(
(wω

t )× wx
t

01,3 0

)

χt is an element of SE(3), and letting zt = (γt ,τt ,ut)
T , the

system (5) can be rewritten in the form (10)-(11), with

fω,u :
(

R x
01,3 1

)
→
(

R(ω)× Rv
01,3 0

)
, g(z) = 03,1

and the observation (6) can be re-written as:

Yn = χtn

(
03,1
1

)
+

(
Vn
0

)
(12)

The reader can easily verify condition (9). To linearize the
equations and tune the gains, we propose to use a state
estimation error of the form (χ−1

t χ̂t , ẑt−zt), that is, the error
consists of a left-invariant error on SE(3) as concerns the
Lie group part of the state space, and a mere difference as
concerns the vector part. The error is thus defined as follows:

η =


ηR

t
ηx

t
η

γ

t
ητ

t
ηu

t

=


RT

t R̂t
RT

t (x̂t − xt)
γ̂t − γt
τ̂t − τt
ût −ut

 (13)

As the conventional EKF, the IEKF relies on two steps.
During the propagation step it is a mere copy of the system’s
equations (5), using the compact notation (10)-(11):

d
dt

χ̂t = fωt ,ut (χ̂t),
d
dt

ẑt = g(ẑt) (14)

Whenever a measurement is available, i.e., at t = tn, the state
is updated

χ̂
+
tn = χ̂tn exp(Lχ

n (χ̂
−1
tn Yn)), ẑ+tn = ztn +Lz

n(χ̂
−1
tn Yn) (15)

where exp denote the exponential map of SE(3) (see equation
(17) for the detailed formula). In other words, the update
of χt follows directly from [11], whereas the update of
zt mimics the one of the conventional EKF. Indeed, the
innovation χ̂

−1
tn Yn was defined as in the standard IEKF

methodology.
Back to the problem’s original variables of System (5), the

propagation step writes:

d
dt

R̂t = R̂t(ω̂t)×,
d
dt

x̂t = R̂t v̂t ,
d
dt

γ̂t = 0,
d
dt

τ̂t = 0,
d
dt

v̂t = 0
(16)

where ω̂t = (τ̂t 0 γ̂t)
T , ν̂t = (ût 0 0)T , and the update writes:

R̂+
tn

x̂+tn
γ̂
+
tn

τ̂
+
tn

û+tn

=


R̂tn expm[(δω)×]
R̂tn x̂tn +B(δω)δx

γ̂tn +δγ

τ̂tn +δτ

ûtn +δu

 (17)

where
(
δω δx δγ δτ δu

)T
= Ln(R̂T

tn(Yn − x̂tn)), expm
denotes the matrix exponential map in R3×3, and

B(δω) = I3 +
1− cos‖δω‖
‖δω‖2 (δω)×+

δω − sin‖δω‖
‖δω‖3 [(δω)×]

2.

The gain matrix Ln ∈ R9×3 is computed through a Riccati
equation based on linearizations around the estimated trajec-
tory, as in the conventional EKF theory.



C. Linearization of the error system and gain computation

To tune the gains, we need to compute how the error
(13) evolves during the propagation, and to write the update
step, up to first order terms in the error (linearization). As in
the standard EKF, the linear Kalman theory will then allow
to estimate the error and its dispersion (covariance matrix)
through a Riccati equation.

1) Propagation step: During the propagation step, the
system’s equations are (5), and the filters’ are (16). As a
result, the time derivative of the error (13) is

d
dt

ηt =


−(ωt +wω

t )×ηR
t +ηR

t (ω̂t)×
−(ωt +wω

t )×ηx
t + vt +wu

t −ηR
t v̂t

−wγ

t
−wτ

t
−wu

t

 (18)

To linearize this equation, following the IEKF methodology,
see [11], we let ηR

t ≈ I3 +(ξ R
t )×. This means that ξ R

t ∈ R3

is a small instantaneous rotation (random Gaussian) vector
that encodes the discrepancy in orientation between the true
and the estimated vehicles. We also let ξ x

t = ηx
t , ξ ω

t = ηω
t ,

ξ τ
t = ητ

t , ξ u
t = ηu

t . The rationale, akin to the standard EKF
methodology (in the presence of non-additive noise), is then
to neglect all second order terms in the components of ξ

as well as terms of order ‖ξ‖‖w‖, that is the noise when it
enters multiplicatively the linearized error equation. First we
use (ξ R

t )×(ω̂t)×− (ω̂t)×(ξ
R
t )× = (ξ R

t × ω̂t)×. This allows to
identify the term d

dt ξ R
t we are seeking using that (a)×= (b)×

implies a = b. Let

ξ =


ξ R

t
ξ x

t
ξ

γ

t
ξ τ

t
ξ u

t

 ∈ R9 (19)

During the propagation step we have d
dt ξt = Atξt +wt with

At =



0 −γ̂t 0 0 0 0 0 −1 0
γ̂t 0 −τ̂t 0 0 0 0 0 0
0 τ̂t 0 0 0 0 −1 0 0
0 0 0 0 −γ̂t 0 0 0 −1
0 0 −ût γ̂t 0 −τ̂t 0 0 0
0 ût 0 0 τ̂t 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(20)

and with wt = ((wω
t )

T ,(wx
t )

T ,(wγ

t )
T ,(wτ

t )
T ,(wu

t )
T )T

2) Update step: Here we must compute the impact of the
update step (17) on the linearized error (19). To do so, we
first note that the innovation as we define it in (15), that is
χ̂
−1
tn Yn = R̂T

tn(Yn− x̂tn), verifies

R̂T
tn(Yn− x̂tn) = R̂T

tn(xtn − x̂tn)+ R̂T
tnVn =−(ηR

tn)
−1

η
x
tn + R̂T

tnVn

and thus since ηx
t = ξ x

t and (ξ R
t )×ξ x

t is second order, we have
R̂T

tn(Yn− x̂tn) ≈ −Hξ + R̂T
tnVn where H ∈ R3×9 is defined by

H =
(
03,3 I3 03,3

)
. Looking at (17) and using the fact that

the first order approximations of B and expm be the identity,
we easily derive the effect of the update (17) on the error
(13), and its linear approximation in ξ , see (19), writes

ξ
+
tn = ξtn −Ln

[(
03,3 I3 03,3

)
ξtn − R̂T

tnVn
]

(21)

3) Resulting gain: Let Qt be the trusted covariance of
the process noise wt and Nn the trusted covariance of the
measurement noise Vn. Considering the linearized system
obtained with propagation d

dt ξt = Atξt +wt and update ξ
+
tn =

ξtn − Ln
[
Hξtn − R̂T

tnVn
]

the corresponding Kalman gain is
obtained through the standard following Riccati equations:

d
dt

Pt = AtPt +PtAT
t +Qt

Sn = HPtnHT + R̂T
tnNnR̂tn

Ln = PtnHT S−1

P+
tn = (I9−LnH)Ptn

D. Discussion on the filter’s expected stability

Unfortunately, as previously underlined, the obtained EKF
does not possess convergence guarantees. However, we have
the following result, that indicates some stability properties,
at least in practice, should be inherited from the IEKF
structure of the filter:

Proposition 1: Consider model (5) with noise turned off,
measurements with noise turned off too, and assume that the
quantities ut ,γt ,ωt are all known, and may be freely varying
inside an interval (α,β ) with α,β > 0. Assume also that the
lowest eigenvalues of Qt and Nn are lower bounded by some
ε > 0. Then the IEKF proposed above when reduced to the
task of estimating xt and Rt , locally converges around any
trajectory of the system.

Proof: The reduced system can be viewed as a non-
holonomic car in 3D, that is, evolving in SE(3) instead
of SE(2). The result appears then to be a straightforward
extension of the simplified car example of [11].

The result above indicates that if the tangential velocity,
curvature, and torsion, were known at all times, and if the
IEKF were used as a nonlinear observer for the correspond-
ing tracking problem, then this observer would converge. Of
course those quantities are not known, so the result above is
only partially satisfying. However, it is reassuring as it would
not even be provable for an (M)EKF (see [11] indeed).

IV. SIMULATIONS

In the previous section, we derived the filter equations
for the tracking problem. In the present section, we test this
filtering method on two different trajectories with motions
close to real tracking problems.

A. Aircraft trajectory

The first trajectory tested has been simulated using a
trajectory simulation program designed by the company
Thales Air Systems. It is inspired by data from a real fighter
flight experiment. The trajectory is presented on Figure 1,
along with the noisy Cartesian measurements. The results
are presented on Figure 2. In all Figures, the red curve



corresponds to the estimation and the blue one to the real
data. Remember that we had defined γ = uκ and τ = uτ̃ . So
we have estimated γ and τ . Here we directly plot κ = γ/u
and τ̃ = τ/u, the real curvature and the real torsion. For

Fig. 1. Reference and noisy aircraft trajectory inspired by real flight data

Fig. 2. Estimation of the position (top left) and of parameters ut (top
right), γt (bottom left), τt (bottom right) for the aircraft trajectory

this trajectory, the position, norm of velocity and curvature
are very well estimated by the filter. We see the curvature
is in fact piecewise constant, and not nearly constant, but
the process noise we added allows the filter to track it very
well. The torsion curve shows some peaks. These peaks are
filtered out by any algorithm since the quantity measured (the
position) is obtained through three integrations of the torsion.
More generally, it is hopeless to track the torsion correctly
unless it is fairly large and fairly constant over time.

B. Helical trajectory

To simulate the second trajectory, we describe the evolu-
tion of a maneuvering target by (5). We add some measure-
ment Gaussian noise. The noise added is greater along the
third coordinate, z (as it is the case in practice). The reference
trajectory and the noisy measured trajectory are presented
on Figure 3. We have simulated two consecutive maneuvers.
The first one switches from a constant velocity straight line
motion to a motion with non-zero curvature and torsion (they
remain constant during the motion) along with a change in
the norm of the velocity. The second maneuver switches from

this last motion to a motion with another constant curvature
and norm of velocity and no more torsion. So the target
undergoes first a straight line motion, then a helical motion
with a change in speed, and then a circle in a plane, with
again a change of speed. Such trajectories can be encountered
in current air defense applications, and are very challenging
to track.

Fig. 3. Reference and noisy trajectory simulated.

We then perform filtering with the IEKF presented in the
previous section. The estimations of the position x, of the
curvature κ , of the torsion τ̃ , and of the norm of the velocity
u are displayed on Figure 4. We have poorly initialized all
parameters to see the behaviour of the filter when confronted
to high initial errors (in practice, the position is relatively
well-known, but neither are the velocity nor the curvature).

Fig. 4. Estimation of the position (top left) and of parameters ut (top
right), γt (bottom left), τt (bottom right)

The norm of the velocity and the position are the parts of
the state that converge the fastest. The curvature is also quite
well estimated, even though it converges slower than the
norm of the velocity. The torsion is again the most difficult
parameter to estimate, although it eventually converges, it
is not well estimated by the filter. This stems from the
fact that it is weakly observable since it is small. This is
problematic, as even very small values of the torsion lead
non negligible helical motions, due to the three integrations
over time. However, if it is relatively well-known initially,
then the initial covariance can be adjusted so that the initial



TABLE I
COMPARISON OF THE RMSE FOR THE POSITION AND THE VELOCITY

FOR THE IEKF AND CASTELLA’S KALMAN FILTER

Parameter IEKF Castella
x 3.15 4.94
y 3.15 4.91
z 5.42 2.84
ẋ 0.76 1.51
ẏ 0.71 1.47
ż 0.49 0.50

part suits more to the real data, after a jump, it also converges
to the true value, if we wait for a sufficiently long time.

C. Comparison with other filtering algorithms

As explained in Section II, few filtering algorithms per-
form well on this kind of trajectories. Indeed, most of the
time the models are expressed in two dimensions. The well-
known IMM designed by Bar-Shalom in [1] is itself in 2D,
so is the one presented in [22]. It is also difficult to build
an Extended Kalman Filter from the Frenet-Serret equations
above, because there are orthogonality constraints that cannot
easily be dealt with the standard EKF formulation.

The Variable Rate Particle Filter, introduced in [8] might
work well, but it involves high computation cost, and the
comparison thus seems unfair.

In industrial radars, a well-known trick is to use a linear
model (constant acceleration) and adapt the process noise as
in the work of Castella [3]. Just to have an idea of what it
might yield we have compared the root mean square errors
(RMSE) of both filters in Table I. The noises have been tuned
manually to get the best possible results with both filters. The
Castella seems to perform better for the third coordinate z.
It is due to the fact that the noise along this coordinate is
higher, and the estimations of the Castella tend to follow the
measurement and do not filter the noises enough, especially
when it is high.

V. CONCLUSIONS

We have considered a tracking problem, modeled the
trajectory assuming constant norm of the velocity, curvature,
and torsion, and cast the model into a Lie group setting.
Then, the theory of the invariant EKF, originally devoted to
pure Lie groups was adapted to allow the estimation of some
extra parameters, namely the norm of the velocity, and the
curvature and torsion.

Two challenging tracking examples, close to real industrial
problems, have been simulated. The position, the curvature,
and the norm of velocity are very well tracked by the filter
although they undergo various jumps over the experiment.
This is satisfying, as the position and velocity vectors are the
only two quantities that need be output with great accuracy.
In future work, we plan to integrate our IEKF as a building
brick into an IMM or a Rao-Blackwellized particle filter to
accommodate jumps and multi-model estimation.
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