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A novel method for decomposing electricity feeder load into elementary proles from customer information

To plan a distribution grid involves making a long-term forecast of sub-hourly demand, which requires modeling the demand and its dynamics with aggregated measurement data. Distribution system operators (DSOs) have been recording electricity sub-hourly demand delivered by their medium-voltage feeders (around 1,00010,000 customers) for several years. Demand proles dier widely among the various considered feeders. This is partly due to the varying mix of customer categories from one feeder to another. To overcome this issue, elementary demand proles are often associated with customer categories and then combined according to a mix description. This paper presents a novel method to estimate elementary proles that only requires several feeder demand curves and a description of customers. The method relies on a statistical blind source model and a new estimation procedure based on the augmented Lagrangian method. The use of feeders to estimate elementary proles means that measurements are fully representative and continuously updated. We illustrate the proposed method through a case study comprising around 1,000 feeder demand curves operated by the main French DSO Enedis. We propose an application o that uses the obtained proles to evaluate the contribution of any set of new customers to a feeder peak load. We show that proles enable a simulation of new unmeasured areas with errors of around 20%. We also show how our method can be used to evaluate the relevancy of dierent customer categorizations.

1 Introduction

Motivation

Electricity represented 18% of total nal energy consumption in 2013 [START_REF]Key World Energy Statistics[END_REF] and is expected to constitute a quarter of nal energy consumption by 2040 [START_REF] Agency | World Energy Outlook[END_REF]. 42% of global CO2 emissions in 2012, i.e. 13.8 gigatons of CO2, are due to electricity and heat production [START_REF]Co2 emissions from fuel combustion highlights 2016[END_REF]. To reduce CO2 emissions due to electricity, many states are developing energy transition strategies. This kind of transition involves signicant changes to electricity ows in the distribution network (with e.g. x Column vector associated with X y Year ⊗ Kronecker product response enabling energy consumption management [START_REF] Jin | Mod-dr: Microgrid optimal dispatch with demand response[END_REF]).

These changes impact the planning process of distribution system operators (DSOs). The current network planning process considers the two most extreme situations [START_REF] Ding | Load models for operation and planning of electricity distribution networks with metering data[END_REF], i.e. maximum demand with minimum supply, and maximum supply with minimum demand. While planning with such a method does not require a deep modeling of the dierent dynamics and their correlations, it does not take into account the aggregation eect between supply and demand [START_REF] Dickert | Residential load models for network planning purposes[END_REF].

The above-mentioned changes make it necessary to model all of the aggregated demand dynamics.

Literature review

In this section we present two kinds of existing approach for modeling aggregated demand. The rst is bottom-up, and uses individual customer proles, which are summed to obtain aggregated demand.

The second is a global approach in which the aggregated load curve is directly modeled using aggregated measurement data.

Bottom-up approaches

Measuring the electricity demand of individual electricity customers is a simple way to establish their load proles and dynamics, and therefore a necessary step in bottom-up modeling. The current smart-meter roll-out in Europe will provide precise measurements of individual demand proles. Around 80% of customers are scheduled to receive a smart-meter by 2020 [START_REF] Service | Smart electricity grids and meters in the EU Member States[END_REF]. However, this massive deployment is hindered by cost and privacy issues [START_REF] Mckenna | Smart meter data: Balancing consumer privacy concerns with legitimate applications[END_REF]. In 2014, only 23% of smart-meters in the European Union were installed in localized areas for private customers [START_REF] Commission | Benchmarking smart metering deployment in the EU-27 with a focus on electricity[END_REF]. In some countries, this share is still insu-cient to be representative, and the corresponding deployment is too recent to adequately cover long periods. To deal with the lack of individual measurements and characterize the behavior of electricity customers, researchers have attempted to classify them into dierent categories.

The classication of electricity demand proles is a ourishing research topic (see reviews [START_REF] Zhou | A review of electric load classication in smart grid environment[END_REF], [START_REF] Rhodes | Clustering analysis of residential electricity demand proles[END_REF]). Researchers use individual measurements from smart-meters as input and apply different clustering methods [START_REF] Viegas | Classication of new electricity customers based on surveys and smart metering data[END_REF]. This reduces the dimension, which makes it easier to manipulate data [START_REF] Mcloughlin | A clustering approach to domestic electricity load prole characterisation using smart metering data[END_REF]. With the resulting classication, each customer is associated with a cluster and its corresponding load prole [START_REF] Räsänen | Data-based method for creating electricity use load proles using large amount of customer-specic hourly measured electricity use data[END_REF]. The classication and the obtained load proles can be used for a number of applications.

First, a ne classication can be made in order to help decision-makers design personalized policies for specic customers [START_REF] Bassamzadeh | Multiscale stochastic prediction of electricity demand in smart grids using bayesian networks[END_REF].

Secondly, the classication allows a DSO to plan its network and anticipate its investments [START_REF] Mutanen | Customer classication and load proling method for distribution systems[END_REF][START_REF] Seppälä | Load research and load estimation in electricity distribution[END_REF]. For example, the French DSO uses a model named "Bagheera" combining about 50 customer categories to plan its low-voltage network [START_REF] Ding | Load models for operation and planning of electricity distribution networks with metering data[END_REF]. Classication is combined with the evolution of category distributions to forecast aggregated demand in prospective scenarios [START_REF] Andersen | Long term forecasting of hourly electricity consumption in local areas in Denmark[END_REF].

Last, classication and load proles allow us to understand the contribution made by each category to aggregated demand [START_REF] Seppälä | Load research and load estimation in electricity distribution[END_REF].

Large measurement campaigns are necessary with these methods since a representative set of customers is required. This constraint makes continuous updating of the proles dicult, which is an issue since it remains necessary to adapt the proles to the changing consumption habits [START_REF] Andersen | Long-term forecasting of hourly electricity load: Identication of consumption proles and segmentation of customers[END_REF][START_REF] Räsänen | Data-based method for creating electricity use load proles using large amount of customer-specic hourly measured electricity use data[END_REF].

Global approaches

In global approaches, models forecast aggregated electricity demand with past measurements and explanatory variables, such as expected temperature or sometimes economic progress [START_REF] Shao | Multivariate statistical and similarity measure based semiparametric modeling of the probability distribution: A novel approach to the case study of mid-long term electricity consumption forecasting in China[END_REF].

In order to obtain past measurements, most

DSOs have been recording the electric power delivered by their medium-voltage feeders (around 1,00010,000 customers) for several years.

These measurements are aggregated, but exhaustive, since all electricity customers' contributions are taken into account. This aggregated electricity demand data is considered as a nonlinear, non-stationary series, and is often made up by a superposition of several distinct frequencies [START_REF] Shao | A review of the decomposition methodology for extracting and identifying the uctuation characteristics in electricity demand forecasting, Renewable and Sustainable Energy Reviews[END_REF] with daily to monthly periods in global models [START_REF] Boroojeni | A novel multi-time-scale modeling for electric power demand forecasting: From short-term to medium-term horizon[END_REF]. Additionally, the demand series can be divided into dierent parts (e.g. working time, holidays) [START_REF] Boroojeni | Optimal twotier forecasting power generation model in smart grids[END_REF][START_REF] Goude | Local short and middle term electricity load forecasting with semi-parametric additive models[END_REF].

The global approach produces accurate forecasts. However, these are based on aggregated past measurements, which are not available when planning a new unmeasured zone. This type of planning is improved with specic information about customers, which DSOs possess thanks to the Customer Information System (CIS) [START_REF] Mutanen | Customer classication and load proling method for distribution systems[END_REF].

The CIS stores information on all customers regarding their electric connection to the grid, annual energy consumption, type of contract, and contracted power.

In all of the reviewed global methods [START_REF] Shao | A review of the decomposition methodology for extracting and identifying the uctuation characteristics in electricity demand forecasting, Renewable and Sustainable Energy Reviews[END_REF] for modeling demand dynamics, the explanatory variables used, such as expected temperature or sometimes economic changes [START_REF] Shao | Multivariate statistical and similarity measure based semiparametric modeling of the probability distribution: A novel approach to the case study of mid-long term electricity consumption forecasting in China[END_REF], do not characterize the feeder-specic local features. In particular, none of them employs CIS general statistics.

Finally, the drawback of these methods when used for planning purposes is that they cannot adapt to a change in the mix of customer cate-gories. For example, in the case of the development of a commercial area in a residential feeder, such methods fail to take into account the corresponding information. If the prole dierences of the two sectors is not accounted for, this might result in an overestimation of the future peak and hence an over-sizing of the network. We illustrate the proposed method through a case study comprising around 1,000 feeder demand curves operated by the main French DSO Enedis. The proles obtained are essential to size the distribution network. This is illustrated by an application that evaluates the contribution of any set of new customers to a feeder peak load. We show that proles enable a simulation of new unmeasured areas with errors of around 20%. We also show how our method can be used to evaluate the relevancy of dierent customer categorizations.

Description of the paper

In section 2, the methodology is described. A case study is presented in section 3 with the resulting proles by category. Section 4 describes two applications that use the obtained proles.

One is employed to estimate the contribution of set of new customers to a feeder peak load. The other evaluates forecasting errors for unmeasured areas, by testing dierent categories and comparing performances with a similar framework case study in the literature. Finally, some conclusions are presented and discussed in section 5.

2 Methodology

The problem of recovering load proles and the forecasting method

Our paper assumes that the sub-hourly demands

d f (t) of a feeder f aggregate dierent proles d 1 (t), . . . , d K (t) associated with K categories of customers with weights p f 1 , . . . , p f K , d f (t) = K k=1 p f k d k (t) + ε f (t). (1) 
We take the elementary proles d k (t) to be common to all feeders, while the weights vary from one feeder to another. The corresponding residual term ε f (t) is meant to be small. The time t can vary along any set. The aim is to recover unknown elementary electricity proles d k (t). For each feeder f ∈ {1, . . . , F }, d f (t) is observed and, thanks to the CIS, for each category k ∈ {1, . . . , K}, we also have access to the weight p f k .

The process of obtaining proportions from the CIS and dening categories is the categorization step, and is described in subsection 2.3. Once the K proles have been obtained on a set of feeders, it is possible to turn Equation (1) into a simulation algorithm. The process is described in Figure 1. In the signal processing community, the corresponding problem is called blind signal separation and is well-known (see e.g. [START_REF] Cardoso | Blind signal separation: statistical principles[END_REF]).

Optimization problem

The aim is to nd the elementary proles d k (t) from aggregated demand d f (t) according to Equation (1). We write and solve the following optimization problem.

To mathematically write this optimization problem, we dene a matrix A of size (F, K) whose elements are proportions p f k for k ∈ {1, . . . , K} and f ∈ {1, . . . , F }. Aggregated demands d f (t) for all feeders and instants {1, . . . , T } are gathered in a matrix X of size (F, T ). We are trying to compute demand prole d k (t) for all categories and instants: these unknown values can be put in a matrix B of size (K, T ). It is useful to dene β (resp. x), the column vector obtained by stacking rows of B (resp. X) on top of each other. Two constraints limit the values of matrix B: The optimization problem then writes

min β x -(A ⊗ I T )β 2 (2) s.t. β ≥ 0 (I K ⊗ v )β = u
An alternating direction method of multipliers [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF] is used to recursively solve problem (2):

1. minimize the function with the equality constraint by employing the augmented Lagrangian method, 2. retain only positive components to satisfy the positivity constraint, 3. adjust a penalty variable balancing positivity and the minimization.

The algorithm is implemented with the R language [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF]. Special care is taken on the rst step, since the minimization requires inverting a large matrix of size K(T + 1). With common Kronecker product rules, matrix to be invert is reduced to size K divided the number of ops by approximately T 3 . 

Categorization of electricity customers

p f k = c f k K k=1 c f k ∈ [0, 1] (3) 
It is important that the size of the dataset F should be larger than the number of categories K. Empirically, it was observed that the condition F > 5K is preferable in order to obtain a wide range in the set of category distributions, and thus a more precise result. Features should be general enough to keep a reasonably low K for three reasons: (i) to obtain a robust prole, (ii) to avoid an excessively long computing time, and (iii) to ensure that user privacy is not violated. On Figure 2, category heights for a category k represent the average demand shares for a given

category m k = 1 F F f =1 p f k .
The share in category distribution is dierent for every feeder. For instance, there are more restaurants in a city center than in a rural area and so the two electricity shares are dierent.

This share has to vary between feeders to eciently compute the demand proles. We computed the coecients of variation

σ k m k (4) 
where σ 2 k is the empirical variance of p 1 k , . . . , p F k .

The coecients are always higher than 40%, and thus the dierent categorizations are suciently spread from one feeder to another for our algorithm.

3 Case study

Data description

In this case study, we use electricity feeder de- from 2010 to 2013. We discard some feeders because the measures are too scarce and their overall quality is not sucient. This can result from database errors or from network reconguration or physical injuries on the grid [START_REF] Goude | Local short and middle term electricity load forecasting with semi-parametric additive models[END_REF]. Ultimately, between 200 and 400 feeders are selected for each region.

mand

Temperature eect and normalization

Aggregated demand measurements cannot be directly compared since some feeders are connected to more customers than others, causing a large discrepancy in average consumption. In order to be used as inputs in the method, measurements therefore need to be pre-processed. The two steps of this pre-processing are: removal of the temperature eect, and normalization by weekly consumption.

Electricity demand is mostly inuenced by outdoor air temperature, as residents turn on electric devices to adjust their indoor temperature (heating and air conditioning). In France, the air conditioning eect is low and not consid- There are F = 320 feeders in this dataset. The height of a division shows the mean share of the category in all feeders in the region.

ered
initial d f 0 (t) d f 1 (t) = d f 0 (t) if T f (t) > b f d f 0 (t) -a f b f -T f (t) otherwise. ( 5 
)
where T f (t) is the outside temperature of feeder f at instant t. In fact, trends a f and threshold b f are calculated for each hour of the day but the hour index is omitted for clearer notation.

The new series is thus supposed to be independent from the temperature, and demand dynamics are supposed to be similar during cold and warm periods.

To obtain comparable measurements between feeders, demand is normalized. Each measurement within a given week is divided by the energy it consumed during that week. This total energy can be predicted using dierent models, such as that employed in [START_REF] Andersen | Dierentiated long term projections of the hourly electricity consumption in local areas. the case of Denmark West[END_REF], and is thereafter supposed to be known. After the normalization, data values uctuate around a dimensionless value equal 

Proles

As previously described (see Figure 1), we disthe electricity demand in order to recover a load prole d k (t) for each category k ∈ {1, . . . , K}. The number of overall categories depends on the customer categorization: 2, 8, 9 and 12 categories were tried out (see Figure 2).

A total of 12 datasets is formed (for each region:

Blois, Lyon and Rennes; and for each year: from 2010 to 2013) and separately used as input into matrix X in problem (2). f at year y 0 with proportions p f 1,y 0 , . . . , p f K,y 0 we can determine the residuals ε f y 0 (t) in Equation 1 and for new proportions p f 1,y 1 , . . . , p f K,y 1 in a future year y 1 the forecast demand is obtained by 

d f y 1 (t) = K k=1 p f k,y 1 d k (t) + ε f y 0 (t). (6) 
V inter = f,k p f k d k -d f 2 2 ,

Comparison to other models

Errors are higher than for middle-term forecasting methods, which can be around 7 to 10% of RMSE (see e.g. [START_REF] Boroojeni | A novel multi-time-scale modeling for electric power demand forecasting: From short-term to medium-term horizon[END_REF], [START_REF] Goude | Local short and middle term electricity load forecasting with semi-parametric additive models[END_REF]). However, our problem is dierent, and the relationship between the demand for a feeder f 1 for a given year y 0 and the demand for a feeder f 1 for the next year y 1 is much stronger than the relationship between the consumption of a feeder f 1 and the consumption of feeder f 2 for the same year y 0 . Their results from simulating local areas without using past measurements are expressed with R 2 value and are between 0.95 and 0.56 (their mean R 2 is 0.84). In their case study, the mean consumption of areas is 55.3 MW while in our case, for a given feeder it is between 0.5 and 7 MW. In order to compare our method with their method, we aggregated our areas to obtain similar average power levels and computed the R 2 between prediction and measurements. The results are shown in Table 2.

The performances of our method are a little the measured demand of the 20 feeders. We also report the average demands, which are comparable to the areas described by Andersen et al. [START_REF] Andersen | Long term forecasting of hourly electricity consumption in local areas in Denmark[END_REF] with similar R 2 values : on average they found R 2 of 0.84 for predicting dierent areas with an average demand of 55.3 MW.

Conclusions

Our paper has proposed a novel method to estimate elementary proles. The main assumption of the method relies on feeder demands that ag- 

  decentralized production, improved eciency of buildings and appliances, new uses and demand 1 Outside temperature of feeder f uVector (1, . . . , 1) of length K vVector (T -1 , . . . , T -1 ) of length T

1 .

 1 Each component of β is an electricity demand. Since electricity producers are not considered in this paper, components should be positive. 2. For each class k, components should have an average unit, i.e. t d k (t) = T , to have comparable proles. To write this constraint in mathematical terms, we dene the column of length K, u = (1, . . . , 1) , and the column of length T , v = (T -1 , . . . , T -1 ) in order to write the average unit constraint, with a Kronecker product ⊗, as (I K ⊗v )β = u.

Figure 1 :

 1 Figure1: Diagram detailing the method. A dataset of F feeder measurements is used to nd the K category proles. Once the load proles recovery is operated, a new feeder whose category distribution is known can be run through the simulation algorithm in order to obtain its expected demand.

Figure 2

 2 Figure 2 sets out four dierent categorizations, based on information from the CIS. The rst categorization divides the total energy into two groups: residential and tertiary. The second splits the tertiary into 7 categories to make a total of 8 categories, i.e. residential, agriculture, commercial, public equipment, oce and hospital, industry, restaurant and hotel, and mediumvoltage (MV) customers (e.g. large buildingsthat have a specic contract with the operator).A 9-group division results from splitting the residential share into two groups: base tari and special tari 1 . Finally, an even more precise cat- 1 Special tari charges less during xed o-peak peri-

  measured every ten minutes in 3 geographical regions in France. Data come from the main French DSO, Enedis. The three regions encompass a large French city and the surrounding countryside. The three cities are Blois, Lyon and Rennes. Each region is divided into around 500 feeders, and each of these feeders provides electricity for about 1,000 customers. For each feeder, we know the demand measured for 4 years ods (i.e. during the night) but more during peak hours.

Figure 3 :

 3 Figure 3: Weekday proles of 4 dierent categories computed with the algorithm (9 overall categories) using aggregated consumption data relating to Lyon in 2011. Plots represent the variations around the average weekly consumption and not absolute consumptions.

Figure 3

 3 Figure 3 presents the proles obtained for K = 9 with only 4 categories shown: commercial, public equipment, restaurant and hotel, industry. Proles are computed with the demand dataset of Lyon in 2011. Proles are presented for a typical weekday (144 values, once every 10 minute). Since we have normalized the data, the

Figure 4 Figure 5 .Figure 5 :

 455 Figure 4 depicts the peak change obtained with this formula in the case of dierent evolutions for both oces and special-tari residential consumers. In this case study, the considered feeder is from the Lyon region and has the following distribution of customers: 30% commercial, 15% oces, 30% basic residential and 20% special special-tari residential. The initial peak occurs at 12:10 and is 650 kW. The proles used are taken from the 9-category breakdown. We quantify the inuence on the peak value (black lines with value added to the initial peak value, per 50 kW) by adding an oce category load (Y axis) and a special-tari residential load (X axis). We also depict the evolution of the peak hour (black dashed line). Adding oces contributes to increasing the 12:10 peak, whereas the residential load increases the 23:00 peak, which corresponds to the start of the special-tari period.This is an illustration of an application of the method that can for example help decisionmakers to choose between two projects (oces or

and a total variance by V tot = f d f 2 2 , where x 2 2

 22 is the sum of the square of a vector x. The ratio between inter-groups and the total variance should be as high as possible. Measuring the diversity of congurations in which the nal signal is observed can be related to the variance σ 2 k and mean m k of p f k among the feeders, the larger this variance and mean the more accurate the estimation will be. These separations and variability measures can be used to evaluate the value of adding categories. The inter-variance requires the computation of the d k but σ 2 k and m k can be computed before any estimation.

Framework

  of Andersen et al. is more similar to ours [5]. This presents a model calculating local consumption by categories of customer with specic consumption proles and dierent weights in local areas. Unlike us, their proles are obtained by clustering representative smartmeter measurements, i.e. a bottom-up method.

  gregate various shares of elementary proles associated with dierent customer categories. The proles are optimally found by minimizing pre-diction errors in a new algorithm relying on the augmented Lagrangian method. Unlike bottom-up methods that require individual load curves, our method only requires several feeder demand curves and a description of customers. One of the advantages of using aggregated measurements on a set of individual load curves is that they can be updated regularly and are fully representative. In the meantime, we have shown that our method performs similarly or better than a bottom-up method in the literature to predict a new local area. The method has been applied in a case study comprising three zones in France, with around 300 available feeder measurements over 4 years per zone. The result is a load prole for each customer category. We have shown that each load prole gathers intrinsic features of the given category. A rst application using the resulting proles was presented for planning the expansion of a new area at DSO level. The resulting proles allow for dierent quantication and forecasting of the contribution made by the new set of customers to peak load demand. This was illustrated by a case study on a specic feeder where the evolution of peak demand in the case of adding two share categories was discussed. A second application of the proles is to simulate the electricity demand of the new unmeasured areas. This can be used to test the relevancy of various types of categorization (2, 8, 9 or 12 groups were tested). By analyzing forecasting errors, we observe that using more categories does not necessarily lead to more ecient models, several causes are discussed. Further research could investigate the creation of an automatic way to create categories, e.g.by maximizing entropy information, to create the best proles and minimize prediction errors. Socio-demographic statistics might be ecient to accurately describe categories. Information such as mean household area and building age are very meaningful in electricity demand forecasting, and are thus areas for further research.

Table 1

 1 

	reports the average RMSE and its de-	to dene an inter-group variability measure with
	viation for the Blois, Lyon and Rennes during the	the weighted distance between d k and d f
	4 years for dierent numbers of categories. As a	
	reminder, with consumption normalization, av-	
	erage consumption is dimensionless and equal to	
	1 (see Section 3.2). Hence, the RMSE reported	
	is also dimensionless, and can be expressed as a	
	percentage.	
	4.2.2 Category relevancy	
	Average RMSE is 22.59% for Blois, 18.16% for	
	Lyon and 22.42% for Rennes with 9 categories.	
	The errors are highly dependent on the regions,	
	meaning that some regions are less predictable	
	than others. Increasing the number of categories	
	improves the overall model quality. The 8 cat-	
	egory scheme almost always outperforms the 2	
	category one (by 2.5%). The 9 category scheme	
	slightly improves results compared to the 8 ver-	
	sion (by 1%), and so dividing customers into ba-	
	sic and special taris is meaningful. However,	
	splitting small categories into even smaller cate-	
	gories is not recommended, as can be seen by the	
	poor results of the 12 category scheme. A rst	
	reason may come from the use of CIS for classi-	
	cation: previous works have stated that using	
	directly the CIS classication does not necessar-	
	ily lead to the best proles [12].	
	Another reason can come from the inter-group	
	variability. As in any blind source separation	
	task, a class is easy to recover and predict if it is	
	distinctly separated from the other classes, and	
	if it is observed in many dierent congurations.	
	The statistics literature proposes many dierent	
	separation metrics, but the simplest is a ratio	
	between an inter-group variability measure and	
	a total variability. In this context, since the vari-	
	able of interest if a vector or even a curve it is	
	not obvious to dene the variability. We propose	

Table 2 :

 2 Coecient of determination R 2 for dif-

	higher than Andersen et al.'s method in the Lyon
	and Rennes case studies, and similar in the Blois
	study.		
	Area	Avg. demand 2010 (MW)	R 2
	Blois	31.5	0.82
	Lyon	46.2	0.88
	Rennes	37.4	0.87
	ferent areas showing the predictive performance
	of our method with a 9-category breakdown. The
	prediction of a group of 20 feeders is compared to

The aggregated demand prole d f (t) of a feeder f aggregates a large group of customers (a few thousands). The CIS provides general features on these customers, i.e. annual consumption, type of contract, and contracted power, which can be used to cluster them into K dierent categories. Once the features are selected, the

Acknowledgments

The authors would like to thank Enedis for supplying data to make this work possible, and particularly Nicolas Kong from the Direction Technique, Politiques et Stratégie group, for his precious expertise on measurements, CIS data, and the Bagheera planning model.