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Abstract

To plan a distribution grid involves making a long-term forecast of sub-hourly demand, which
requires modeling the demand and its dynamics with aggregated measurement data. Distribution
system operators (DSOs) have been recording electricity sub-hourly demand delivered by their
medium-voltage feeders (around 1,000�10,000 customers) for several years. Demand pro�les di�er
widely among the various considered feeders. This is partly due to the varying mix of customer
categories from one feeder to another. To overcome this issue, elementary demand pro�les are
often associated with customer categories and then combined according to a mix description. This
paper presents a novel method to estimate elementary pro�les that only requires several feeder
demand curves and a description of customers. The method relies on a statistical blind source
model and a new estimation procedure based on the augmented Lagrangian method. The use
of feeders to estimate elementary pro�les means that measurements are fully representative and
continuously updated. We illustrate the proposed method through a case study comprising around
1,000 feeder demand curves operated by the main French DSO Enedis. We propose an application
o that uses the obtained pro�les to evaluate the contribution of any set of new customers to a
feeder peak load. We show that pro�les enable a simulation of new unmeasured areas with errors
of around 20%. We also show how our method can be used to evaluate the relevancy of di�erent
customer categorizations.

1 Introduction

1.1 Motivation

Electricity represented 18% of total �nal energy
consumption in 2013 [3] and is expected to con-
stitute a quarter of �nal energy consumption by
2040 [1]. 42% of global CO2 emissions in 2012,

i.e. 13.8 gigatons of CO2, are due to electricity
and heat production [2]. To reduce CO2 emis-
sions due to electricity, many states are devel-
oping energy transition strategies. This kind of
transition involves signi�cant changes to electric-
ity �ows in the distribution network (with e.g.

decentralized production, improved e�ciency of
buildings and appliances, new uses and demand

1



Nomenclature

af
Consumption trend of feeder f
relative to temperature

bf Temperature threshold of feeder f

B
Matrix of demand pro�les of
customer categories

β Column vector associated with B

cfk
Annual consumption of category k
for feeder f

df Demand of feeder f

dk
Elementary pro�le of customer
category k

εf
Residual term for modeling feeder
demand f

F Number of feeders
f Feeder
K Number of customer categories
k Customer category

mk
Average demand share of a given
category k

pfk
Share of electricity used by
category k for feeder f

σ2k Empirical variance of p1k, . . . , p
F
k

T Number of instants
t Instant
T f Outside temperature of feeder f
u Vector (1, . . . , 1)ᵀ of length K
v Vector (T−1, . . . , T−1)ᵀ of length T

Vinter
Inter group variability

Vtot
Total variance

X Matrix of feeder demands
x Column vector associated with X
y Year
⊗ Kronecker product

response enabling energy consumption manage-
ment [18]).

These changes impact the planning process of
distribution system operators (DSOs). The cur-
rent network planning process considers the two
most extreme situations [16], i.e. maximum de-
mand with minimum supply, and maximum sup-
ply with minimum demand. While planning with
such a method does not require a deep model-
ing of the di�erent dynamics and their correla-
tions, it does not take into account the aggre-
gation e�ect between supply and demand [15].
The above-mentioned changes make it necessary
to model all of the aggregated demand dynamics.

1.2 Literature review

In this section we present two kinds of existing
approach for modeling aggregated demand. The
�rst is bottom-up, and uses individual customer
pro�les, which are summed to obtain aggregated
demand. The second is a global approach in
which the aggregated load curve is directly mod-
eled using aggregated measurement data.

1.2.1 Bottom-up approaches

Measuring the electricity demand of individual
electricity customers is a simple way to establish
their load pro�les and dynamics, and therefore
a necessary step in bottom-up modeling. The
current smart-meter roll-out in Europe will pro-
vide precise measurements of individual demand
pro�les. Around 80% of customers are sched-
uled to receive a smart-meter by 2020 [28]. How-
ever, this massive deployment is hindered by cost
and privacy issues [21]. In 2014, only 23% of
smart-meters in the European Union were in-
stalled in localized areas for private customers
[13]. In some countries, this share is still insu�-
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cient to be representative, and the corresponding
deployment is too recent to adequately cover long
periods. To deal with the lack of individual mea-
surements and characterize the behavior of elec-
tricity customers, researchers have attempted to
classify them into di�erent categories.

The classi�cation of electricity demand pro-
�les is a �ourishing research topic (see reviews
[19], [25]). Researchers use individual measure-
ments from smart-meters as input and apply dif-
ferent clustering methods [31]. This reduces the
dimension, which makes it easier to manipulate
data [22]. With the resulting classi�cation, each
customer is associated with a cluster and its cor-
responding load pro�le [26]. The classi�cation
and the obtained load pro�les can be used for a
number of applications.

First, a �ne classi�cation can be made in or-
der to help decision-makers design personalized
policies for speci�c customers [7].

Secondly, the classi�cation allows a DSO to
plan its network and anticipate its investments
[23, 27]. For example, the French DSO uses a
model named "Bagheera" combining about 50
customer categories to plan its low-voltage net-
work [16]. Classi�cation is combined with the
evolution of category distributions to forecast ag-
gregated demand in prospective scenarios [5].

Last, classi�cation and load pro�les allow us to
understand the contribution made by each cate-
gory to aggregated demand [27].

Large measurement campaigns are necessary
with these methods since a representative set of
customers is required. This constraint makes
continuous updating of the pro�les di�cult,
which is an issue since it remains necessary to
adapt the pro�les to the changing consumption
habits [4, 26].

1.2.2 Global approaches

In global approaches, models forecast aggregated
electricity demand with past measurements and
explanatory variables, such as expected temper-
ature or sometimes economic progress [30].

In order to obtain past measurements, most
DSOs have been recording the electric power de-
livered by their medium-voltage feeders (around
1,000�10,000 customers) for several years.
These measurements are aggregated, but exhaus-
tive, since all electricity customers' contributions
are taken into account. This aggregated electric-
ity demand data is considered as a �nonlinear,
non-stationary series, and is often made up by a
superposition of several distinct frequencies� [29]
with daily to monthly periods in global models
[8]. Additionally, the demand series can be di-
vided into di�erent parts (e.g. working time, hol-
idays) [9, 17].

The global approach produces accurate fore-
casts. However, these are based on aggregated
past measurements, which are not available when
planning a new unmeasured zone. This type of
planning is improved with speci�c information
about customers, which DSOs possess thanks
to the Customer Information System (CIS) [23].
The CIS stores information on all customers re-
garding their electric connection to the grid, an-
nual energy consumption, type of contract, and
contracted power.

In all of the reviewed global methods [29]
for modeling demand dynamics, the explanatory
variables used, such as expected temperature or
sometimes economic changes [30], do not charac-
terize the feeder-speci�c local features. In partic-
ular, none of them employs CIS general statistics.

Finally, the drawback of these methods when
used for planning purposes is that they cannot
adapt to a change in the mix of customer cate-
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gories. For example, in the case of the develop-
ment of a commercial area in a residential feeder,
such methods fail to take into account the corre-
sponding information. If the pro�le di�erences of
the two sectors is not accounted for, this might
result in an overestimation of the future peak and
hence an over-sizing of the network.

1.3 Contributions

Our paper presents a novel method to estimate
elementary pro�les. The proposed method re-
lies on a statistical model that takes into ac-
count the mix of customer categories. To do this,
we assume that the demands aggregate di�erent
shares of elementary pro�les associated with dif-
ferent customer categories. These pro�les are op-
timally found by minimizing prediction errors in
a new algorithm relying on the augmented La-
grangian method.

Unlike bottom-up methods, our method only
requires several feeder demand curves and a de-
scription of customers. The advantages of aggre-
gated measurements compared to a set of indi-
vidual load curves are: the availability of long-
term historical data, full representativeness, and
continuous updates. We show that the method
performs similarly or better than a bottom-up
method in the literature when predicting new lo-
cal areas.

We illustrate the proposed method through a
case study comprising around 1,000 feeder de-
mand curves operated by the main French DSO
Enedis. The pro�les obtained are essential to
size the distribution network. This is illustrated
by an application that evaluates the contribu-
tion of any set of new customers to a feeder peak
load. We show that pro�les enable a simulation
of new unmeasured areas with errors of around
20%. We also show how our method can be used

to evaluate the relevancy of di�erent customer
categorizations.

1.4 Description of the paper

In section 2, the methodology is described. A
case study is presented in section 3 with the re-
sulting pro�les by category. Section 4 describes
two applications that use the obtained pro�les.
One is employed to estimate the contribution of
set of new customers to a feeder peak load. The
other evaluates forecasting errors for unmeasured
areas, by testing di�erent categories and compar-
ing performances with a similar framework case
study in the literature. Finally, some conclusions
are presented and discussed in section 5.

2 Methodology

2.1 The problem of recovering load

pro�les and the forecasting

method

Our paper assumes that the sub-hourly demands
df (t) of a feeder f aggregate di�erent pro�les
d1(t), . . . , dK(t) associated with K categories of

customers with weights pf1 , . . . , p
f
K ,

df (t) =

K∑
k=1

pfkdk(t) + εf (t). (1)

We take the elementary pro�les dk(t) to be com-
mon to all feeders, while the weights vary from
one feeder to another. The corresponding resid-
ual term εf (t) is meant to be small. The time t
can vary along any set. The aim is to recover un-
known elementary electricity pro�les dk(t). For
each feeder f ∈ {1, . . . , F}, df (t) is observed
and, thanks to the CIS, for each category k ∈
{1, . . . ,K}, we also have access to the weight pfk .
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The process of obtaining proportions from the
CIS and de�ning categories is the categorization
step, and is described in subsection 2.3. Once
the K pro�les have been obtained on a set of
feeders, it is possible to turn Equation (1) into
a simulation algorithm. The process is described
in Figure 1. In the signal processing community,
the corresponding problem is called blind signal
separation and is well-known (see e.g. [11]).

2.2 Optimization problem

The aim is to �nd the elementary pro�les dk(t)
from aggregated demand df (t) according to
Equation (1). We write and solve the following
optimization problem.
To mathematically write this optimization

problem, we de�ne a matrix A of size (F,K)

whose elements are proportions pfk for k ∈
{1, . . . ,K} and f ∈ {1, . . . , F}. Aggregated
demands df (t) for all feeders and instants
{1, . . . , T} are gathered in a matrix X of size
(F, T ). We are trying to compute demand pro-
�le dk(t) for all categories and instants: these
unknown values can be put in a matrix B of size
(K,T ). It is useful to de�ne β (resp. x), the col-
umn vector obtained by stacking rows of B (resp.
X) on top of each other. Two constraints limit
the values of matrix B:

1. Each component of β is an electricity de-
mand. Since electricity producers are not
considered in this paper, components should
be positive.

2. For each class k, components should have
an average unit, i.e.

∑
t dk(t) = T , to have

comparable pro�les. To write this constraint
in mathematical terms, we de�ne the col-
umn of length K, u = (1, . . . , 1)ᵀ, and the
column of length T , v = (T−1, . . . , T−1)ᵀ in

order to write the average unit constraint,
with a Kronecker product⊗, as (IK⊗vᵀ)β =
u.

The optimization problem then writes

min
β

‖x− (A⊗ IT )β‖2 (2)

s.t. β ≥ 0

(IK ⊗ vᵀ)β = u

An alternating direction method of multipliers
[10] is used to recursively solve problem (2):

1. minimize the function with the equality con-
straint by employing the augmented La-
grangian method,

2. retain only positive components to satisfy
the positivity constraint,

3. adjust a penalty variable balancing positiv-
ity and the minimization.

The algorithm is implemented with the R lan-
guage [24]. Special care is taken on the �rst step,
since the minimization requires inverting a large
matrix of size K(T + 1). With common Kro-
necker product rules, matrix to be invert is re-
duced to size K divided the number of �ops by
approximately T 3.

2.3 Categorization of electricity cus-

tomers

The aggregated demand pro�le df (t) of a feeder
f aggregates a large group of customers (a few
thousands). The CIS provides general features
on these customers, i.e. annual consumption,
type of contract, and contracted power, which
can be used to cluster them into K di�erent
categories. Once the features are selected, the
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DATASET

LOAD PROFILES
RECOVERY

DECOMPOSITION

UNKNOWN DEMAND

SIMULATION
ALGORITHM

Catw1 CatwK

0 24

0 24

DemandsProportions

Feederw1

FeederwF

10% 27%

47% 5%

hour

hour

hour

hour

Profiles

Categoryw1

CategorywK

0 24

0 24

Proportions

Newwfeeder 79% 12%

Newwfeeder
hour

Catw1 CatwK

Catw1 CatwK

0 24

Demand

Figure 1: Diagram detailing the method. A dataset of F feeder measurements is used to �nd
the K category pro�les. Once the load pro�les recovery is operated, a new feeder whose category
distribution is known can be run through the simulation algorithm in order to obtain its expected
demand.

total annual consumption cfk of a category k ∈
{1, . . . ,K} in a feeder f ∈ {1, . . . , F} is com-
puted from each annual individual consumption.
The corresponding weight pfk is a normalized ver-
sion of this consumption

pfk =
cfk∑K
k=1 c

f
k

∈ [0, 1] (3)

It is important that the size of the dataset F
should be larger than the number of categories
K. Empirically, it was observed that the condi-
tion F > 5K is preferable in order to obtain a
wide range in the set of category distributions,
and thus a more precise result. Features should
be general enough to keep a reasonably lowK for
three reasons: (i) to obtain a robust pro�le, (ii)

to avoid an excessively long computing time, and
(iii) to ensure that user privacy is not violated.

Figure 2 sets out four di�erent categorizations,
based on information from the CIS. The �rst
categorization divides the total energy into two
groups: residential and tertiary. The second
splits the tertiary into 7 categories to make a
total of 8 categories, i.e. residential, agriculture,
commercial, public equipment, o�ce and hospi-
tal, industry, restaurant and hotel, and medium-
voltage (MV) customers (e.g. large buildings
that have a speci�c contract with the operator).
A 9-group division results from splitting the res-
idential share into two groups: base tari� and
special tari�1. Finally, an even more precise cat-

1Special tari� charges less during �xed o�-peak peri-
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egorization, i.e. 12 groups, is proposed. Com-
mercial buildings are split into 2 categories re-
�ecting low and high annual consumption. Sim-
ilarly, MV customers are divided into 3 groups:
low, medium and high.

On Figure 2, category heights for a category k
represent the average demand shares for a given
category mk =

1
F

∑F
f=1 p

f
k .

The share in category distribution is di�erent
for every feeder. For instance, there are more
restaurants in a city center than in a rural area
and so the two electricity shares are di�erent.
This share has to vary between feeders to e�-
ciently compute the demand pro�les. We com-
puted the coe�cients of variation

σk
mk

(4)

where σ2k is the empirical variance of p1k, . . . , p
F
k .

The coe�cients are always higher than 40%, and
thus the di�erent categorizations are su�ciently
spread from one feeder to another for our algo-
rithm.

3 Case study

3.1 Data description

In this case study, we use electricity feeder de-
mand measured every ten minutes in 3 geograph-
ical regions in France. Data come from the main
French DSO, Enedis. The three regions encom-
pass a large French city and the surrounding
countryside. The three cities are Blois, Lyon
and Rennes. Each region is divided into around
500 feeders, and each of these feeders provides
electricity for about 1,000 customers. For each
feeder, we know the demand measured for 4 years

ods (i.e. during the night) but more during peak hours.

from 2010 to 2013. We discard some feeders be-
cause the measures are too scarce and their over-
all quality is not su�cient. This can result from
database errors or from network recon�guration
or physical injuries on the grid [17]. Ultimately,
between 200 and 400 feeders are selected for each
region.

3.2 Temperature e�ect and normal-

ization

Aggregated demand measurements cannot be di-
rectly compared since some feeders are connected
to more customers than others, causing a large
discrepancy in average consumption. In order to
be used as inputs in the method, measurements
therefore need to be pre-processed. The two
steps of this pre-processing are: removal of the
temperature e�ect, and normalization by weekly
consumption.

Electricity demand is mostly in�uenced by
outdoor air temperature, as residents turn on
electric devices to adjust their indoor tempera-
ture (heating and air conditioning). In France,
the air conditioning e�ect is low and not consid-
ered in this paper, but the heating e�ect is high
during cold weather. French electric demand
represents 40% of the European thermal sensi-
tivity [14]. Indeed, since most French heating
devices are electric, demand strongly increases
when temperature decreases. However, this ef-
fect is well understood and can be removed and
treated separately with a method used by the
French TSO [20, pp 11�12]: one linear regres-
sion for each hour of week. Therefore, for each
feeder f , we can determine a temperature thresh-
old bf and a trend af > 0 such as for each degree
colder than threshold bf , demand increases by
af . A new demand series is de�ned from the
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2 8 9 12

residential

tertiary

residential
base
tariff

base
tariff

special
tariff

special
tariff

Agriculture

Commercial-low&

Commercial-high

Public&equipment

Office&&&hospital

Industry

Restaurant&&&hotel

MV&customer-low

MV&customer-medium

MV&customer-high
MV&customer MV&customer

Commercial Commercial

Commercial
Mean
share&

of&
demand

Category
name

Number&of&categories

Figure 2: Example of di�erent categorizations (in 2, 8, 9 or 12 groups) for the region near Lyon.
There are F = 320 feeders in this dataset. The height of a division shows the mean share of the
category in all feeders in the region.

initial df0(t)

df1(t) =

{
df0(t) if T f (t) > bf

df0(t)− af
(
bf − T f (t)

)
otherwise.

(5)
where T f (t) is the outside temperature of feeder
f at instant t. In fact, trends af and threshold
bf are calculated for each hour of the day but
the hour index is omitted for clearer notation.
The new series is thus supposed to be indepen-
dent from the temperature, and demand dynam-
ics are supposed to be similar during cold and
warm periods.

To obtain comparable measurements between
feeders, demand is normalized. Each measure-
ment within a given week is divided by the energy
it consumed during that week. This total energy
can be predicted using di�erent models, such as
that employed in [6], and is thereafter supposed
to be known. After the normalization, data val-
ues �uctuate around a dimensionless value equal
to 1.

8



Hour%of%the%day
0 6 12 18 24

average%weekly
consumption

+50q

+100q

+200q

+150q

-50q

-100q

Commercial
Public%eq.

Rest.%.%hotels
Industry

Lyon%2011

Figure 3: Weekday pro�les of 4 di�erent categories computed with the algorithm (9 overall cate-
gories) using aggregated consumption data relating to Lyon in 2011. Plots represent the variations
around the average weekly consumption and not absolute consumptions.

3.3 Pro�les

As previously described (see Figure 1), we dis-
aggregated the electricity demand in order to
recover a load pro�le dk(t) for each category
k ∈ {1, . . . ,K}. The number of overall categories
depends on the customer categorization: 2, 8, 9
and 12 categories were tried out (see Figure 2).
A total of 12 datasets is formed (for each region:
Blois, Lyon and Rennes; and for each year: from
2010 to 2013) and separately used as input into
matrix X in problem (2).

Figure 3 presents the pro�les obtained for
K = 9 with only 4 categories shown: commer-
cial, public equipment, restaurant and hotel, in-
dustry. Pro�les are computed with the demand
dataset of Lyon in 2011. Pro�les are presented
for a typical weekday (144 values, once every 10
minute). Since we have normalized the data, the

variations around the average weekly consump-
tion are displayed. Di�erent e�ects are note-
worthy, e.g. the electricity consumption of com-
mercial buildings increases by around 75% dur-
ing working hours, and decreases by 50% dur-
ing the night. Conversely, the consumption of
public equipment (mainly public lighting and
lifts) greatly increases at night. These pro�les
are a pertinent way to understand electricity de-
mand patterns. Pro�les can be plotted for other
datasets (another region or another year) in or-
der to analyze speci�c characteristics.
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4 Applications of the method

4.1 Estimation of the contribution of

new customer sets to a feeder

peak load

To plan the expansion of a new area, the DSO has
to estimate the evolution of peak demand. The
pro�les obtained enable it to quantify and fore-
cast the contribution of the new set of customers
in the peak load demand. Indeed, for a feeder
f at year y0 with proportions pf1,y0 , . . . , p

f
K,y0

we

can determine the residuals εfy0(t) in Equation 1

and for new proportions pf1,y1 , . . . , p
f
K,y1

in a fu-
ture year y1 the forecast demand is obtained by

dfy1(t) =
K∑
k=1

pfk,y1dk(t) + εfy0(t). (6)

Figure 4 depicts the peak change obtained with
this formula in the case of di�erent evolutions
for both o�ces and special-tari� residential con-
sumers. In this case study, the considered feeder
is from the Lyon region and has the following
distribution of customers: 30% commercial, 15%
o�ces, 30% basic residential and 20% special
special-tari� residential. The initial peak occurs
at 12:10 and is 650 kW. The pro�les used are
taken from the 9-category breakdown. We quan-
tify the in�uence on the peak value (black lines
with value added to the initial peak value, per
50 kW) by adding an o�ce category load (Y axis)
and a special-tari� residential load (X axis). We
also depict the evolution of the peak hour (black
dashed line). Adding o�ces contributes to in-
creasing the 12:10 peak, whereas the residential
load increases the 23:00 peak, which corresponds
to the start of the special-tari� period.
This is an illustration of an application of

the method that can for example help decision-
makers to choose between two projects (o�ces or

a new residential area) and quantify the impact
on the existing feeder demand.

4.2 Evaluation, comparison of the

method and category relevancy

4.2.1 Simulation evaluation

Thanks to the computed pro�les, the aggregated
demand of a feeder can be simulated. Each cat-
egory pro�le is multiplied by the consumption
share of the category. The category distribu-
tion is the only information required for the sim-
ulation; there is no need for historical demand
recordings. We show a simulation example on
Figure 5. Demand is simulated with only two
categories: residential (green area) and tertiary
(orange area). We sum the two pro�les multi-
plied by their respective share (here 75% residen-
tial and 25% tertiary consumption). The mea-
sured consumption of a feeder with a 75/25 pro-
portion is superimposed in black. The respective
contribution of the two categories at each time
step is clearly observable on the aggregated de-
mand.

To assess the quality of the model, we use
the Root-Mean-Square Error (RMSE) index. For
each region and for each year, we compute pro-
�les for 2, 8, 9 and 12 overall categories and use
them to simulate new feeders. We then com-
pare the simulation with actual demand with a
leave-k-out approach (k = 50). This means that
a subset of k feeders (that are not used in the
training stage) is simulated. An RMSE for each
of these feeder subsets is obtained and the aver-
age value is computed. This process is repeated
100 times to remove the volatility e�ect caused
by the random subset of a 50-feeder selection.
Computation takes roughly 16 hours for every
region and every year on a 3.50 GHz machine.
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Table 1 reports the average RMSE and its de-
viation for the Blois, Lyon and Rennes during the
4 years for di�erent numbers of categories. As a
reminder, with consumption normalization, av-
erage consumption is dimensionless and equal to
1 (see Section 3.2). Hence, the RMSE reported
is also dimensionless, and can be expressed as a
percentage.

4.2.2 Category relevancy

Average RMSE is 22.59% for Blois, 18.16% for
Lyon and 22.42% for Rennes with 9 categories.
The errors are highly dependent on the regions,
meaning that some regions are less predictable
than others. Increasing the number of categories
improves the overall model quality. The 8 cat-
egory scheme almost always outperforms the 2
category one (by 2.5%). The 9 category scheme
slightly improves results compared to the 8 ver-
sion (by 1%), and so dividing customers into ba-
sic and special tari�s is meaningful. However,
splitting small categories into even smaller cate-
gories is not recommended, as can be seen by the
poor results of the 12 category scheme. A �rst
reason may come from the use of CIS for classi-
�cation: previous works have stated that using
directly the CIS classi�cation does not necessar-
ily lead to the best pro�les [12].

Another reason can come from the inter-group
variability. As in any blind source separation
task, a class is easy to recover and predict if it is
distinctly separated from the other classes, and
if it is observed in many di�erent con�gurations.
The statistics literature proposes many di�erent
separation metrics, but the simplest is a ratio
between an inter-group variability measure and
a total variability. In this context, since the vari-
able of interest if a vector or even a curve it is
not obvious to de�ne the variability. We propose

to de�ne an inter-group variability measure with
the weighted distance between dk and d

f

Vinter =
∑
f,k

pfk‖dk − d
f‖22,

and a total variance by Vtot =
∑

f ‖df‖22, where
‖x‖22 is the sum of the square of a vector x. The
ratio between inter-groups and the total variance
should be as high as possible. Measuring the di-
versity of con�gurations in which the �nal signal
is observed can be related to the variance σ2k and

mean mk of p
f
k among the feeders, the larger this

variance and mean the more accurate the esti-
mation will be. These separations and variabil-
ity measures can be used to evaluate the value
of adding categories. The inter-variance requires
the computation of the dk but σ

2
k and mk can be

computed before any estimation.

4.2.3 Comparison to other models

Errors are higher than for middle-term forecast-
ing methods, which can be around 7 to 10% of
RMSE (see e.g. [8], [17]). However, our problem
is di�erent, and the relationship between the de-
mand for a feeder f1 for a given year y0 and the
demand for a feeder f1 for the next year y1 is
much stronger than the relationship between the
consumption of a feeder f1 and the consumption
of feeder f2 for the same year y0.

Framework of Andersen et al. is more simi-
lar to ours [5]. This presents �a model calculat-
ing local consumption by categories of customer
with speci�c consumption pro�les and di�erent
weights in local areas�. Unlike us, their pro�les
are obtained by clustering representative smart-
meter measurements, i.e. a bottom-up method.
Their results from simulating local areas without
using past measurements are expressed with R2
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value and are between 0.95 and 0.56 (their mean
R2 is 0.84). In their case study, the mean con-
sumption of areas is 55.3 MW while in our case,
for a given feeder it is between 0.5 and 7 MW. In
order to compare our method with their method,
we aggregated our areas to obtain similar aver-
age power levels and computed the R2 between
prediction and measurements. The results are
shown in Table 2.

The performances of our method are a little
higher than Andersen et al.'s method in the Lyon
and Rennes case studies, and similar in the Blois
study.

Area Avg. demand 2010 (MW) R2

Blois 31.5 0.82
Lyon 46.2 0.88
Rennes 37.4 0.87

Table 2: Coe�cient of determination R2 for dif-
ferent areas showing the predictive performance
of our method with a 9-category breakdown. The
prediction of a group of 20 feeders is compared to
the measured demand of the 20 feeders. We also
report the average demands, which are compara-
ble to the areas described by Andersen et al. [5]
with similar R2 values : on average they found
R2 of 0.84 for predicting di�erent areas with an
average demand of 55.3 MW.

5 Conclusions

Our paper has proposed a novel method to esti-
mate elementary pro�les. The main assumption
of the method relies on feeder demands that ag-
gregate various shares of elementary pro�les as-
sociated with di�erent customer categories. The
pro�les are optimally found by minimizing pre-

diction errors in a new algorithm relying on the
augmented Lagrangian method.
Unlike bottom-up methods that require indi-

vidual load curves, our method only requires sev-
eral feeder demand curves and a description of
customers. One of the advantages of using aggre-
gated measurements on a set of individual load
curves is that they can be updated regularly and
are fully representative. In the meantime, we
have shown that our method performs similarly
or better than a bottom-up method in the liter-
ature to predict a new local area.
The method has been applied in a case study

comprising three zones in France, with around
300 available feeder measurements over 4 years
per zone. The result is a load pro�le for each
customer category. We have shown that each
load pro�le gathers intrinsic features of the given
category.
A �rst application using the resulting pro�les

was presented for planning the expansion of a
new area at DSO level. The resulting pro�les
allow for di�erent quanti�cation and forecast-
ing of the contribution made by the new set of
customers to peak load demand. This was il-
lustrated by a case study on a speci�c feeder
where the evolution of peak demand in the case
of adding two share categories was discussed. A
second application of the pro�les is to simulate
the electricity demand of the new unmeasured
areas. This can be used to test the relevancy
of various types of categorization (2, 8, 9 or 12
groups were tested). By analyzing forecasting er-
rors, we observe that using more categories does
not necessarily lead to more e�cient models, sev-
eral causes are discussed.
Further research could investigate the creation

of an automatic way to create categories, e.g.

by maximizing entropy information, to create
the best pro�les and minimize prediction errors.
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Socio-demographic statistics might be e�cient to
accurately describe categories. Information such
as mean household area and building age are
very meaningful in electricity demand forecast-
ing, and are thus areas for further research.
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Region Year 2 categories 8 categories 9 categories 12 categories

Blois

2010 24.36 (2.32) 23.90 (2.75) 24.04 (2.99) 26.78 (2.91)
2011 23.87 (1.62) 22.79 (1.42) 22.91 (1.16) 24.78 (2.09)
2012 22.84 (1.26) 22.54 (1.17) 22.09 (1.24) 24.09 (2.17)
2013 22.34 (2.06) 22.31 (1.98) 21.32 (1.96) 23.34 (2.04)

Average 23.35 (1.86) 22.89 (1.93) 22.59 (1.98) 24.75 (2.33)

Lyon

2010 19.05 (2.39) 19.42 (2.71) 18.29 (2.24) 19.23 (1.94)
2011 19.28 (1.24) 18.06 (1.55) 18.56 (1.20) 18.46 (1.42)
2012 19.07 (1.35) 18.21 (1.72) 18.30 (1.34) 19.00 (1.86)
2013 18.06 (1.03) 17.92 (2.03) 17.49 (1.12) 18.68 (1.91)

Average 18.87 (1.59) 18.40 (2.05) 18.16 (1.58) 18.84 (1.79)

Rennes

2010 22.57 (0.96) 21.67 (1.23) 21.59 (1.04) 22.70 (1.57)
2011 22.62 (1.22) 21.54 (1.48) 21.57 (1.06) 22.10 (1.08)
2012 22.75 (1.11) 22.96 (0.99) 22.39 (0.98) 22.61 (0.84)
2013 24.94 (1.03) 23.99 (1.37) 24.14 (1.26) 24.08 (1.37)

Average 23.22 (1.08) 22.54 (1.28) 22.42 (1.09) 22.87 (1.25)

Table 1: RMSE (in %) of the models for the 3 di�erent zones over the 4 years with a di�erent
number of categories. The simulation is run 100 times. We reported the average RMSE and its
standard deviation between parentheses. The best results over the 4 numbers of categories are
written in bold.
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