HelioClim-4, or how to build a successful and sustainable business service based on CAMS radiation service
Claire Thomas, Lucien Wald, Etienne Wey, Laurent Saboret, Philippe Blanc

To cite this version:
Claire Thomas, Lucien Wald, Etienne Wey, Laurent Saboret, Philippe Blanc. HelioClim-4, or how to build a successful and sustainable business service based on CAMS radiation service. 4th International Conference on Energy & Meteorology (ICEM), Jun 2017, Bari, Italy. 2017. hal-01556572

HAL Id: hal-01556572
https://minesparis-psl.hal.science/hal-01556572
Submitted on 5 Jul 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
HelioClim-4, a successful and sustainable business service based on CAMS radiation service

ICEM 2017, 27-29 June 2017, Bari, Italy

Claire THOMAS
TRANSVALOR
Lucien WALD
MINES ParisTech
Etienne WEY
TRANSVALOR
Laurent SABORET
TRANSVALOR
Philippe BLANC
MINES ParisTech

Contact: support-sales@soda-is.com
Website: www.soda-pro.com

Many valuable atmospheric parameters, among which:
- CAMS radiation service
- CAMS McClear

HelioClim-4 (HC4) = CAMS radiation enhanced with several value-added post-processing layers

Horizon

- CAMS radiation components are horizon free data (gray + yellow values).
- HC4 proposes an option to take into account (yellow values + a fraction of gray values) the shadowing effect due to the far horizon computed from SRTM

Evaluation of the performance

18 stations (hourly data) => 4 groups (A, B, C, D):
- 17 non-shadowed pyranometers (pyr.) measuring Global Tilted Irradiation (GTI) 25° South => evaluate the performance of fix-tilted data in HC4
- 1 pyr. measuring GHI with a discriminant horizon => horizon

Statistical results (bias in %, Standard Deviation STD in %, Root Mean Square Error RMSE in % and Correlation Coefficient CC) are provided for both HC4 \textit{CASE 1} and \textit{CASE 2}, and for HC3v5

Conclusions
- HC4 is fairly close to HC3v5 in most cases
- HC4 Case 1 returns better results than Case 2: the use of an empirical algorithm should be avoided
- Improvement when horizon is taken into account

Perspectives
- Reliable precursor of service
- Further development: e.g. modulate HC4 value with the height of the selected point inside a Meteosat pixel

Data on every plane orientation
- CAMS radiation service: all components on horizontal plane + Direct Normal Irradiation.
- HC4: all the irradiation components in all plane orientations: fox tilted, 2D Sun tracking, 1D Sun tracking (North-South or East-West axis), tilt or azimuth tracking
- Two models tested to compute fix-tilted components:
 - \textit{CASE 1}: Exploit all CAMS radiation components (GHI and BHI)
 - \textit{CASE 2}: Exploit only GHI, and use an empirical model (Ruiz Arias et al.) to compute BHI prior transfer on the tilted plane

Accuracy

<table>
<thead>
<tr>
<th>Groups of stations</th>
<th>\textit{CASE 1} HC4</th>
<th>\textit{CASE 2} HC4</th>
<th>HC3 V5</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Bias (%) 5% 23% 23% 0.963</td>
<td>9% 23% 25% 0.963</td>
<td>4% 18% 18% 0.975</td>
</tr>
<tr>
<td>C</td>
<td>Bias (%) 4% 21% 21% 0.958</td>
<td>6% 20% 21% 0.960</td>
<td>5% 16% 17% 0.975</td>
</tr>
<tr>
<td>D</td>
<td>Bias (%) 6% 18% 19% 0.971</td>
<td>9% 19% 21% 0.969</td>
<td>4% 16% 17% 0.975</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group of stations</th>
<th>\textit{HC3 V5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bias (%) 8% 25% 26% 0.950</td>
</tr>
</tbody>
</table>

- CONTACT: support-sales@soda-is.com
- Website: www.soda-pro.com