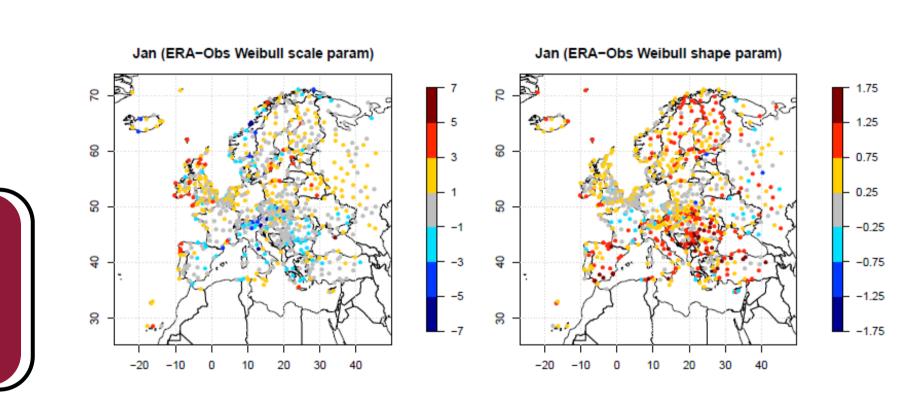
ECEM OCIONO EUropean Climatic Energy Mixes

Novel datasets of energy-relevant climate variables based on ERA-Interim reanalysis


Rationales

- Meteorological reanalysis datasets are being widely used in a number of studies relating to the climate impact on energy.
- Reanalyses have the specific advantage of being complete through the process of physical/dynamic representation of the climate system which provides internally consistent fields across most surface atmospheric variables as well as in the atmospheric column up to the stratosphere.
- The European Climatic Energy Mixes (ECEM) project is primarily focused on users in the energy sector.
- Interest in sub-daily and daily variability of near surfacev ariables: air temperature, dewpoint temperature, precipitation, solar radiation, wind speed and relative humidity.

Reanalysis outputs differ from station observations

There are differences between estimates from the reanalysis and station observations. Bias adjustment is a process to adjust the reanalysis onto observational distributions

Construct a novel bias-adjusted datasets of the energy-relevant climate variables

Correction of bias

Interest of users in energy sector is in the extremes of the distribution. Hence, the whole ERA-Interim distribution is adjusted onto observations in the HadISD or E-OBS or HelioClim-3v5 datasets, using a different statistical distribution for each variable.

- Wind speed: adjust the two-parameter Weibull distribution
- Dewpoint and air temperature: adjust means and standard deviations (relative humidity is computed from these two quantities)
- Precipitation daily totals: adjust gamma distribution
- Surface solar irradiance: adjust the whole distribution of the clearness index (quantile mapping)

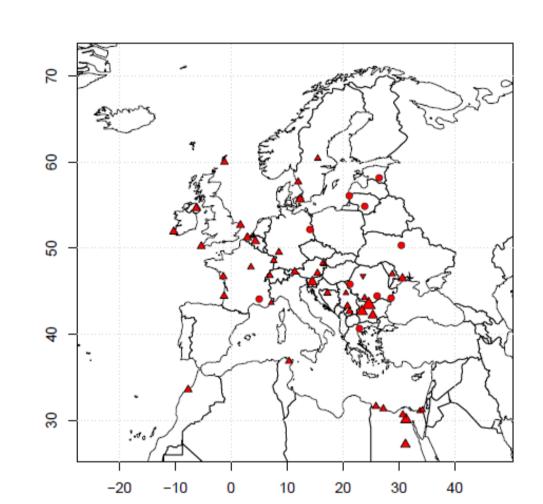
1.75

1.25

Wind speed – Air temperature

Examples of comparison of statistical

distributions for observations (black),


ERA-Interim (green), based on all 6 h

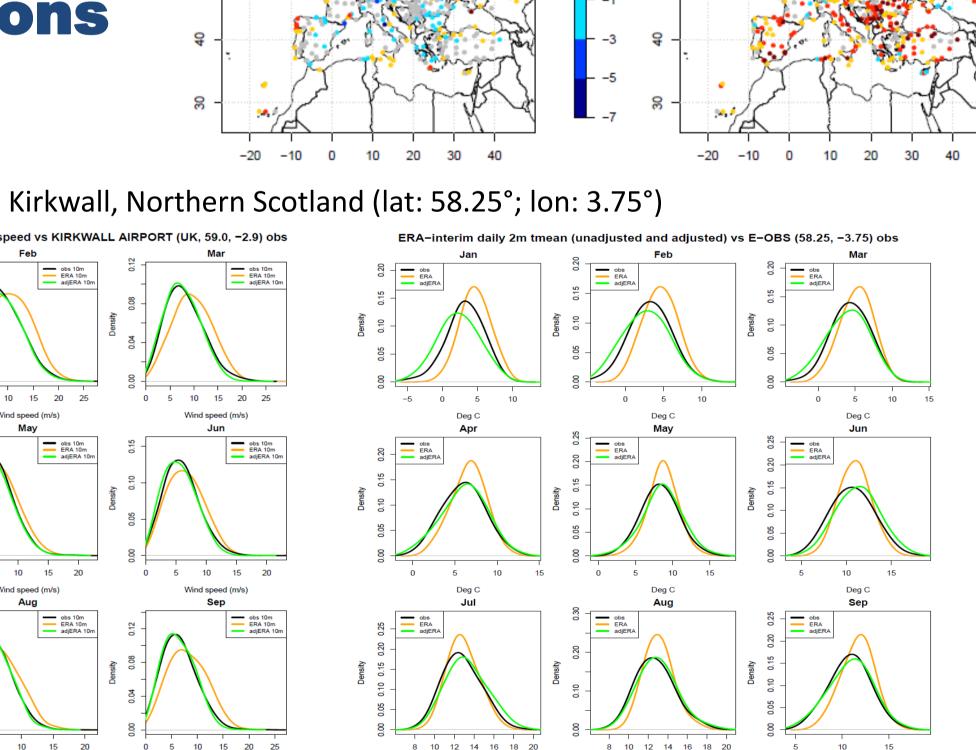
data for the 1981-2010 period

wind speed at 10 m

• surface air temperature

ERA-Interim (orange) and bias-adjusted

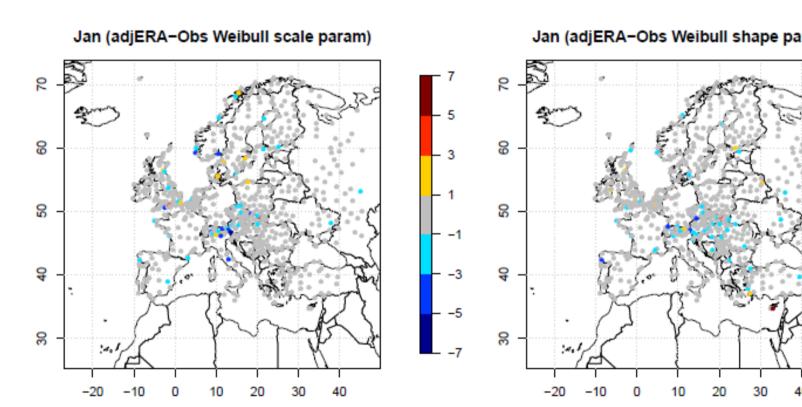
Bias for ERA-Interim vs ground observations of daily mean of surface solar irradiance for 55 stations.


O circles: -5 ≤ bias ≤ +5 W m⁻²

V downward triangles: bias < -5 W m⁻²

∆ upward triangles: bias > +5 W m⁻²

Size increases with increasing absolute value of the bias.


Comparing bias-adjusted datasets to observations

Examples of differences in scale and shape parameters of the Weibull distribution between left: between ERA-Interim and HadISD station observations for wind speed at 10 m,

right: between bias-adjusted ERA-Interim and HadISD.

Based on all 6 h data for January for 1981-2010

Bias is improved for daily mean of surface solar irradiance 22 stations out of 55 exhibit a bias less than 5 W m⁻²

in their absolute values, compared to 12 stations for the original ERA-Interim data

Absolute values of bias after adjustment are coded in three colours:

Red: abs(bias) > +10 W m⁻²

Change in bias is coded by symbols:

 $abs(bias) \le +5 \text{ W m}^{-2}$

 $5 < abs(bias) \le +10 \text{ W m}^{-2}$

Change in bias is coded by symbols:
 O circles: abs(change) ≤ +5 W m⁻²
 ∇ downward triangles: improvement,

i.e. decrease in abs(bias) riangle upward triangles: degradation

Size of symbols increases with increasing absolute value of the bias.

Philip Jones Colin Harpham Alberto Troccoli

Benoît Gschwind
Thierry Ranchin
Lucien Wald
Clare Goodess
Stephen Dorling

University of East Anglia

ARMINES

MINES

Paris Tech

Conclusion

The comparison between initial and bias-adjusted data against station observations and gridded observation products has demonstrated the benefit of performing bias-adjustment and has provided an assessment of the quality of the novel datasets.

These datasets are available to anyone this ftp site: ftp://ecem.climate.copernicus.eu.

More in the following paper: Jones, P., Harpham, C., Troccoli, A., Gschwind, B., Ranchin, T., Wald, L., Goodess, C., and Dorling, S.: Using ERA-Interim Reanalysis for creating datasets of energy-relevant climate variables, Earth System Science Data, 2017.

