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Abstract 

An analytical model for growth in a semi-infinite matrix with cross-diffusion between species is 

presented. Application is given for precipitation of the   -phase in the  -matrix during isothermal 

holding at 600 °C in the Ni – 7.56 at.% Al – 8.56 at.% Cr alloy. The exact time-dependent solutions 

for the solute profiles and the growth kinetics are validated with a numerical front-tracking 

simulation. The simulation of cross diffusion terms in a multicomponent alloy is thus demonstrated. 

Extension of the analytical solution is given for growth in a matrix of finite size. The driving force 

is then based on a mathematical estimation of the far-field composition. The Gibbs-Thomson effect 

is also accounted for to consider the effect of curvature on the equilibrium tie-lines. Comparison of 

analytical solution with the numerical front-tracking simulation shows excellent agreement. Results 

also point out the detrimental approximation of using the average composition of the matrix for 

computing the driving force as well as the limitation of the solution proposed by Chen et al. [Acta 

Mater. 56 (2008) 1890]. A detailed discussion is finally given on the origin of oscillations observed 

for the time evolution of the precipitate radius which alternates between growth and dissolution 

regimes, pointing out the combined role of solute fluxes and tie-lines compositions at the 

precipitate/matrix interface. 
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1. Introduction  

Industries make significant use of precipitation processing to enhance in-service mechanical 

properties of metallic alloys. The precipitation process is triggered by heat treatments and leads to 

the development of fine particles of a novel phase – often referred to as precipitates – dispersed in a 

pre-existing mother phase – hereafter referred to as matrix phase. One of the goals of precipitation 

processes is to form obstacles to the movement of dislocations and thus increase the yield strength 

of the material. The presence of precipitates may also affect grain boundary motion by means of the 

Zener pinning effect [1]. However, the control of the size distribution of the precipitates remains 

difficult as it is the consequence of complex processes where nucleation, growth and coarsening of 

the particles concomitantly take place. Nevertheless, coarsening can be seen as the result of mass 

exchanges taking place at interfaces between collections of particles embedded in the same matrix 

phase. It manifests itself as the consequence of growth and dissolution of a population of 

precipitates controlled by chemical diffusion of species. Consequently, nucleation and 

growth/dissolution are thus the basic mechanisms by which the precipitation kinetics is controlled. 

The metallurgist community very soon identified these two cornerstones for the tailoring of heat 

treatments in order to reach targeted microstructural features and hence end-use mechanical 

properties [2, 3, 4]. At first coupled with nucleation and coarsening models, analytical 

approximations for precipitate growth could provide with global precipitation kinetics [7, 8]. 

Numerical tracking of the particle size distribution (PSD) was then achieved [9, 10], providing the 

possibility to deal with non-isothermal heat treatments [11], multicomponent alloys [12, 13] or even 

coupling with long range diffusion processes [14, 15] for the prediction of particle free zones at 

grain boundary. 

But recent simulations were also carried out with the goal to reach a direct representation of the 

precipitates in an elementary volume, for instance using the Monte-Carlo method [16]. Comparison 

of simulations with Atom Probe Tomography (APT) for chosen ternary alloys subject to interrupted 

isothermal holding clearly revealed the role of interaction between chemical species on the 

diffusion kinetics and the effect of curvature on thermodynamic equilibrium. These results justified 

recent efforts to introduce systematic coupling with thermodynamic and kinetics databases 

[13, 14, 15, 17, 18]. However, while global PSD precipitation models offer versatility for the design 

of heat treatments in industrial alloys [15], reliability of their approximate growth kinetics is not yet 

well established. Spreading and success of numerical tools developed to meet the growing industrial 

needs in metal forming processing [19] still requires efforts to improve and validate previously 

developed growth kinetics. 

Few models are yet available that account for multicomponent growth kinetics [11, 17, 20, 21]. Du 

and Friis [22] recently demonstrated their limitations. Large differences were observed for various 

alloys and thermodynamic databases. These comparisons showed the need to revisit and validate an 

analytical solution for the grow kinetics of precipitates and to discuss usual hypotheses encountered 

in the literature. 
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The present contribution only focusses on growth/dissolution processes. An analytical model 

previously derived for solidification of globulitic grains in multicomponent alloys [23, 24] is 

extended and applied to precipitation. The mathematical model and its assumptions are first 

introduced. A numerical front-tracking method is then described, followed by the exact analytical 

solution of the mathematical model. A set of validations based on precipitation in a Ni-Al-Cr 

ternary alloy are proposed. Extensions of the analytical solution include the treatment of a non-

stoichiometric precipitate and the role of curvature on the interfacial equilibrium, while the far-field 

composition that controls the driving force is estimated with integration of the solute profiles as 

previously proposed [23]. The present model requiring the treatment of dissolution, a generalized 

Laplace solution including cross diffusion is also introduced. Finally, an oscillation regime showing 

alternate growth and dissolution is identified as part of the evolution of the system toward its 

thermodynamic equilibrium. It is discussed in details in order to identify its origin and its possible 

consequences on the precipitation process. 

 

2. Mathematical model 

A single precipitate of phase   growing in a matrix phase   is schematized in Figure 1. Its 

geometry is assumed one-dimensional (1D), with radius   and growth velocity   only made of a 

unique component   along the radial unit vector  ̂. The matrix domain adopts the same spherical 

geometry. It is limited by radius    defining the volume of the system  . This volume may simply 

be set proportional to the inverse of the density of precipitates per unit volume. The domains 

defining the precipitate,   , and the matrix,   , are separated by a phase interface,     , located 

at     at a given time  . The molar volume,   , is assumed equal and constant in the   and   

phases. A multicomponent alloy is considered with   solute elements added to the solvent element. 

In Fig. 1, only the solute profiles in phases   and   of two elements – indexed 1 and 2 – are 

schematized. For solute species   in phase  , the molar compositions   
  satisfy the mass 

conservation equations: 

    
 

   
     [∑ (    

         
 ) 

   ]  with    {   } and (   )   {   } (1) 

where the diffusion matrix    
  is hereafter assumed homogeneous in each   domain. The term in 

square brackets represents the diffusion flux associated to element   in phase  ,   
 . It is a 

summation over the  -components located on the  -line of the diffusion matrix,    
 , multiplied by 

the corresponding solute gradient of element  , with    {   }. The cross diffusion phenomena is 

induced by the non-diagonal terms in the diffusion matrix, thus contributing to a diffusion flux of 

element   due to the local composition gradient of element   in phase  , (    
         

 ), with 

    and    {   }. According to the solute balance at the      interface, the precipitate growth 

velocity depends upon the interfacial compositions in the matrix,   
   

, and in the precipitate, 

  
   

, as well as on the composition gradients at the interface in the matrix,           
 , and in 

the precipitate,           
 : 
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       ⁄    
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       ⁄    

 ) 
   

 
    with (   )   {   } (2) 

We assume no solute exchange at the external boundary of the system. This could be justified by 

considering symmetry of solute mass exchange at      when several precipitates interact through 

the matrix. Similarly, the solute flux is null at the center of the precipitate domain, i.e. for       

These two conditions then write for all species  : 

∑     
           

    
    with (   )   {   }  (3a)  

∑     
            

    
    with (   )   {   }  (3b)  

No solute flux being present at its boundaries and no mass source being assumed in its volume, the 

average molar composition of the whole system is kept unchanged and equal to the nominal 

composition,    (           ). Thermodynamic equilibrium is also assumed at the phase 

interface     . The interfacial compositions are thus given by the tie-lines of the phase diagram 

computed at the system temperature   and in the presence of the Gibbs-Thomson effect, i.e. 

accounting for the radius of curvature of the precipitates,  . The set of interfacial compositions, 

     and    ⁄ , are given by the mathematical relations: 

     ⁄ (   ⁄   )  (4a)  

  
  ⁄     

  ⁄ (   ⁄   ) with    {   } (4b) 

where      relates the temperature to the solvus surface of the phase diagram defined by the matrix 

composition      and the radius  , while    
   

 gives the composition of the  -component in the 

precipitate when knowing the equilibrium matrix composition      and its radius  . 

A very small nucleus is initially present. Its composition is uniform. The initial matrix composition, 

also uniform, is       
    , thus neglecting the effect of the nucleus on the global mass balance of 

the system. As the model is thereafter presented and applied for a fixed and homogeneous 

temperature,  , the nominal composition is chosen within the two-phase region of the phase 

diagram thus promoting precipitate growth. It should be pointed out that imposing the temperature 

does not correspond to an adiabatic condition. It was previously shown that coupling of precipitate 

growth with temperature evolution is possible considering a global energy balance [23]. 

 

3. Numerical model 

A numerical solution of the set of Eqs 1-4 has been developed with a so-called front tracking 

approach. It is based on the Landau transform [25] already used by the authors [23, 26, 27]. 

Normalized coordinates,    and   , are respectively defined for the precipitate and matrix phases 

as        and    (   ) (    ), as schematized in Fig. 1, thus always maintaining the 

interface position at      and     . The conservation equations (Eq. 1) are rewritten for both 

the  -phase and the  -phase using    and    as the reference frame, respectively. Moreover, the 

solute flux balance at the    -interface (Eq. 2) is rewritten for the fixed Landau coordinates 

     and     . Similarly, the conditions fixing the solute fluxes at the boundaries of the 
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system are rewritten at      (Eq. 3a) and      (Eq. 3b). A regular grid is initially defined for 

both phases. All equations are discretized in Landau’s coordinate system. They are solved at any 

time   using an implicit time-stepping incremental procedure that covers the whole precipitation 

sequence. The solute balance equations (Eq. 2) for all species are considered with an estimation of 

the solute flux deduced from the current composition field and the tie-lines (Eqs 4). These latter 

equations are solved with a simplex method [28]. A detailed presentation of the numerical 

development is given elsewhere [23]. 

 

4. Analytical model 

4.1. Exact solution 

An analytical solution of Eqs (1)-(4) exists for a semi-infinite medium (    ) [23, 24]. It is an 

extension of the work originally presented by Zener [2] and Aaron et al. [4] for growth limited by 

diffusion of a unique solute specie in a binary alloy, also derived by Carslaw and Jaeger [29] for 

growth limited by diffusion of energy for a pure substance. Analytical expression for spherical 

geometries was also proposed by Horvay and Cahn [5]. Martin et al. [6] also reported the same laws 

with extension to various geometries. The analytical solution of Eqs (1)-(4) is seen as a 

generalization for cross diffusion of species in multicomponent alloys. The steps of the resolution 

may also be compared with the one proposed by Hunziker [30] for the stability analysis of a planar 

interface developed as part of a dendrite tip kinetics model. It should be pointed out that this 

approach makes use of a diagonalization procedure which is comparable with the developments by 

Vermolen et al. [31]. Considering a semi-infinite matrix phase at a fixed temperature and further 

neglecting the curvature effect, both interfacial solute compositions      and      are kept 

constant upon growth. Consequently the solute composition is uniform in the precipitate and given 

by the interfacial composition. In the matrix phase, the solute profiles are time and space dependent. 

For any component, it was demonstrated that the only possible analytical solution is given by: 

  
 ( )      

  ∑         (
  

    
) 

    with    {   } (5) 

where     
  is the matrix composition at infinite distance from the interface,   is the local radial 

position,   is the current time,    is the  -eigenvalue of the diffusion matrix   , with    {   }, 

    is the  -component of the  -unitary eigenvector of matrix   ,    , with (   )   {   }. The 

matrix defined with the     components will be denoted hereafter as the eigenmatrix,  . The set of 

 -values   , with    {   }, are still to be determined. The function  ( ) is written slightly 

differently compared to Aaron et al. [4], yet leading to the same values for given radius,  , and 

time,  : 

 ( )  
 
 
 
 

√ 
 

√ 

 
    (

√ 

 
)  (6) 

The    coefficients are given by the matrix vector product: 

   (  )      (7) 
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where the     vector corresponds to the difference between the interfacial matrix composition and 

the composition at infinity (   
    

   
     

  with    {   }) and the  (  ) matrix is given by: 

   ( 
 )  

   
  

 (
  

  
)
 with (   )   {   } (8) 

where    
   is the (   ) component of the inverse eigenmatrix,    . The   

 parameter
1
 is still an 

unknown coefficient defining the growth velocity of the spherical precipitate. It was demonstrated 

[23] that this key parameter is related to the precipitate radius by the simple relation: 

    
 
   (9)  

providing that the growth is initiated at       when      . It should be pointed out that the 

relation (9) is still valid for any 1D geometry and can consequently be extended to cylindrical and 

planar geometry as detailed in Appendix A. The time derivation of Eq. 9 gives the growth velocity, 

       , and hence the equivalent expression: 

  
  

   
  (10)  

The   
 parameter is computed as the solution of a second matrix system related to the solute balance 

at the interface (Eq. 2). Considering constant compositions at the interface both for the precipitate 

phase and for the matrix phase (i.e. no curvature effect, fixed temperature and semi-infinite matrix), 

the solute flux in the precipitate can be neglected so the system becomes [23]: 

       (  )      (11)  

where the       vector corresponds to the variation of interfacial composition between matrix and 

precipitate (with components    
   

   
   

   
   

,    {   }) and the components of the  (  ) 

matrix are expressed as: 

   ( 
 )  ∑        

   (
  

  
) 

    with (   )   {   } (12)  

where the  ( ) function is linked to the  ( ) function by: 

 ( )    
  ( )

 ( )
 

 

  (  
√ 

 
 √    

 
       (

√ 

 
))

  (13)  

The set of       equations (Eqs 4 and 11) can be solved considering thermodynamic equilibrium 

at the interface. Diagonalization of the diffusion matrix is simply required to extract the eigenvalues 

and the unitary eigenvectors. The corresponding       unknowns are the interfacial 

compositions,      and     , plus the   
 parameter. When a linear approximation of the phase 

diagram is considered, the compositions at the interface are linked by fixed partition coefficients    

using the relationship   
   

      
   

 with    {   }, thus defining simple   
   

 functions 

(Eq. 4b). However, relations are usually non-linear for realistic phase diagram and should be solved 

                                                      
1

 The choice of the notation   
 by the authors for the growth parameter is explained by the need to differentiate this 

value to the one,  , used in the previous mathematical development [23]. However the two parameters are simply linked 

by the relation      
. 
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using an iterative approach. The simplex method is once more well suited for determining the 

solutions [28]. It is a   vertices polyhedron and each vertex corresponds to     interfacial 

compositions of the   components of the matrix composition     , as these compositions are 

linked by Eq. 4a for a fixed temperature,  . After resolution, all interfacial compositions are known 

as well as the   
 parameter which gives the growth kinetics. The radius,  , and the velocity,  , are 

then given for any time,  , using Eq. 9. If required, the current composition profile, at the same time 

 , is expressed with Eq. 5 where the   vector is directly given by Eq. 7. The same approach of 

resolution can also be applied for the others 1D geometrical approximations considering the 

associated  ( ) and  ( ) functions (Appendix A). 

4.2. Application 

We first compare simulations with the analytical and numerical models for the growth of a 

precipitate   in a semi-infinite matrix   at a fixed temperature. The choice of the system is given in 

Table 1. It is inspired from one of the configuration studied by Booth-Morrison et al. [32] and Mao 

et al. [16] by APT, later also considered by Rougier et al. [13, 15]. The alloy composition is 

Ni - 7.56 at.% Al - 8.56 at.% Cr and the aging temperature is 600 °C. The corresponding isothermal 

section of the phase diagram is given in Figure 2. The precipitating phase   – the   -phase – is 

expected to grow at the expense of the matrix phase   – the  -phase –. The atomic structure of the 

 -phase is disordered face-centered cubic while the  -phase adopts the L12 ordering structure. 

Thermodynamic equilibrium computations are performed with the NI20 thermodynamic 

database [33]. When phases are at equilibrium, the Cr-composition in the  -phase is slightly lower 

than in the  -phase. Contrarily, the Al-composition in the  -phase is largely higher than in 

 -phase as illustrated by the tie-lines in Fig. 2. It is worth mentioning the adoption of a tabulation 

strategy for Eqs (4), thus avoiding direct call to the thermodynamic equilibrium computation by 

storing the solvus surface and the tie-lines of the phase diagram. Also to be noticed is the small 

difference of the molar volumes between the  -phase and the  -phase at equilibrium, of the order 

of 1 % [33], thus justifying the similar molar volumes hypothesis introduced in the models. 

In order to validate the exact solution proposed in section 4.1, the numerical front tracking 

simulation (section 3) is applied to the development of an isolated precipitate in a large spherical 

domain where boundary effects can be neglected. As curvature effect is not considered in this first 

validation, the phase diagram corresponds to the one computed without curvature in Fig. 2 (plain 

line –    ). For in-depth validation, we hereafter consider four different diffusion matrices for 

the matrix  -phase. Values of the matrices are given in Table 2. The full diffusion matrix,     
 , 

was derived by Rougier et al. [13] and calculated from literature data [16]. This matrix is modified 

in     
  by keeping the       

  coefficient unchanged but forcing the       
  coefficient to a nil value 

(similarly in     
  by keeping the       

  coefficient unchanged but forcing the       
  coefficient to 

a nil value). This operation permits removing the effect of Cr on the flux of Al for     
  (or 

removing the effect of Al on the flux of Cr for     
 ). The last matrix,     

 , is purely diagonal, i.e. 

with non-diagonal coefficients forced to nil values, thus fully ignoring cross-diffusion phenomena. 

Comparison of simulations using the four diffusion matrices is also used to reveal the effect of the 
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cross diffusion terms on the growth kinetics of the precipitate. The diffusion matrix for the 

precipitate  -phase is chosen diagonal with artificially large values to ensure homogeneous solute 

composition. The size of the simulation domain for the numerical model,          , is large 

enough to mimic the growth in an infinite domain and achieve comparison with the exact analytical 

solution. The conditions for the various computations are presented in Tables 3 and 4. Figure 3 

shows the time evolution for the radius and the velocity, together with the selected interface 

compositions read on the working tie-line, for the 4 diffusion matrices. In order to help comparisons 

and discussions, the four simulations have been shifted in time in order to have a 1 nm precipitate 

for time      . The same approach was proposed by Rougier [13]. Consequently, precipitate 

nucleates with a small radius equal to 0.1 nm but presentation of its time evolution starts when its 

radius has reached 1 nm. The 4 exact analytical solutions ([ ] , filled diamond symbols) are 

superimposed to the 4 numerical solutions ([ ] , thin dotted curves). The key parameters 

characterizing growth,   
, as well as the interfacial compositions in the  -matrix phase and  -

precipitate phase, are given in Table 5 (Exact resolution [ ] ). They correspond to a steady regime 

for the interfacial compositions. The radius quickly evolves at the beginning of precipitation due to 

the large diffusion gradients and associated solute fluxes at the interface. Progressive decrease of 

the interface velocity then takes place. These comparisons demonstrate the validity of the exact 

analytical solution and/or validate the numerical model based on the front tracking method. The 

consequence is that, once knowing the   
 parameters reported in Table 5 (Exact resolution [ ] ), 

one can directly compute the evolution of the precipitate radius and velocity reported in Figs 3(a) 

and 3(b) by using Eqs (9) and (10). The solute compositions at the     (    ) interface can be 

read in Fig. 3(c) considering extremities of the thin dotted curves as well as the diamond symbols. 

Again, these results are superimposed. One could notice that the tie-lines are not aligned with the 

nominal composition. This phenomenon was already identified for a diagonal matrix as the 

consequence of non-equal values for the diffusion coefficients [34]. Another noticeable observation 

is the difference on the growth kinetics and hence the time evolution of the radius as a function of 

the diffusion matrix. The ratio between the times required to reach a specific value of the precipitate 

radius when considering the slower (    
 ) and the faster (    

 ) kinetics is 3.3. In fact, this is 

nothing but the ratio of the corresponding   
 values reported in Table 5. 

The time evolution of the solute profiles in the  - and   -phases is also shown in Fig. 4 for 

computations with the     
  matrix. The numerical and analytical solutions are compared at 4 

different times. The exact solutions are derived from Eqs 5-8 with the interfacial composition, 

    , and the   
 parameter reported in Table 5. An excellent match is found between the numerical 

and analytical profiles. In particular, the same non-monotonic behavior induced by the cross 

diffusion phenomenon is retrieved for the profile of the Cr-specie in the  -matrix. Due to the form 

of the diffusion matrix (      
   ), the flux of Cr is influenced by the Al-composition gradient. 

This is not the case for the flux of Al which is only proportional to the flux of the Al-composition 

gradient (      
   ). In Fig. 4, both the time evolution of the radial positions of the interface and 

the interfacial compositions are found to superimpose when computed with the analytical and 
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numerical solutions. This also validates the large values of the diffusion coefficients used for the 

  -phase precipitate ( ) reported in Table 2. The stable interfacial compositions in the matrix and 

precipitates phases correspond to the ones reported on the (red) tie-line in Fig. 3(c) and in Table 5 

for the     
  matrix. Interaction with the domain boundary of the system starts to be observed at 

           when the Cr-composition predicted at position    becomes lower than the one given 

by the exact analytical solution. This is due to the fact that the value chosen for    in order to 

mimic a semi-infinite domain starts becoming too small. 

4.3. Literature solution 

Now that it is validated by comparison with a numerical simulation, the present exact analytical 

solution can be compared to the one proposed in the literature. Chen, Jeppsson and Ågren (CJA) 

have also proposed a model to compute the growth of a spherical precipitate in a matrix phase 

dedicated to multicomponent alloys with cross diffusion [17], later used by Rougier et al. [13, 15]. 

It has been the subject of comparisons with concurrent approaches [22]. As previously written, the 

growth velocity is linked to the solute fluxes at the     interface following Eq. 2. In the absence of 

solute flux in the spherical precipitate, the last term of Eq. 2 vanishes. This was justified for 

application in section §4.2 when considering a fixed temperature and no curvature effect. However, 

the estimation of the interfacial solute gradient,          
  with    {   }, was based on a 

diffusion length approach [17]: 

  (  
  ⁄    

  ⁄ )  ∑ (    
       ⁄    

 )  ∑    
  

  
   

  ̅ 
 

  

 
   

 
    with (   )   {   } (14)  

where    refers to the diffusion length associated to element   and  ̅ 
  is the average composition 

for component   in the matrix phase. When a precipitate develops in a semi-infinite matrix,  ̅ 
  is 

equivalent to the composition at infinite,     
 , which is well approximated by the nominal 

composition,     . The main approximation in this approach is that any diffusion length,   , is given 

by an expression that solely depends upon the  -component, i.e. without consideration of species 

interaction [4]: 

   
    

    
  with    {   } (15)  

where the variable    (  
  ⁄   ̅ 

 ) (  
  ⁄    

   
) is the supersaturation associated to 

element   and    is a specific growth parameter also given for element  : 

   
 

 (    
 )

     
 (  √      

  
 

)      (  ) with    {   } (16)  

The growth kinetics of a spherical precipitate can still be reduced to the resolution of a set of solute 

balance conservation equations at the     interface. Considering Eqs (14)-(16) these conservation 

equations are: 

  
  ⁄    

  ⁄  
 

  
∑    

   
  

  ⁄
  ̅ 

 

  

 
    with    {   } (17)  

The latter equation has a general expression similar to Eq. 11 where the       vector is expressed 

with the average composition vector,  ̅ , and the  (  ) matrix depends upon the diffusion 
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coefficient,    
 , of the diffusion matrix   , or its eigenvalues as reported in Eq. (12)

2
. 

This diffusion length approach has been first applied considering a semi-infinite matrix. The 

average composition defining the driving force,  ̅ 
 , is then approximated by the nominal 

composition,     , as previously stated. The results of the Chen, Jeppsson and Ǻgren model [17] are 

hereafter referred to as [   ] . It leads to a growth regime with fixed interfacial compositions. A 

resolution algorithm of the non-linear set of Eqs (4) and (17) has been developed based on the 

simplex method. In Figures 5(a) and 5(b), the time evolutions of the radius and velocity using the 

diffusion length approach ([   ] , unfilled diamond symbols) for the four    diffusion matrices 

(Table 2) are compared with the numerical simulations ([ ] ,thin dotted curves) already introduced 

in Fig. 3. Presentations are also developed considering that the radius is equal to 1 nm when time   

is equal to    , as done previously in Fig. 3. The computed   
 parameters and interfacial 

compositions are also reported in Table 5. Large differences with the numerical front tracking 

simulations are clearly revealed. In case of     
 , the growth parameter   

 is decreased by 84% 

compared to the value extracted from the exact analytical solution. This leads to large differences 

for a given precipitate size, largely shifted toward longest growth times. However, no difference is 

observed for     
  as no cross diffusion is introduced. The eigenvalues of the diffusion matrix are 

nothing but the diagonal coefficients and the unitary eigenvectors are the unit vectors (   ) and 

(   ). As a consequence, the [   ]  approximation given by Eq. (17) is then the same as the exact 

solution, [ ] , when Eq. (11) is written for a pure diagonal diffusion matrix. For case     
 , the 

value of the   
-parameter, the interfacial compositions in the  -phase (   

   
    

   
) and in the   -

phase (   
   

    
   

) are then the same (Table 5). Finally, one may pay attention to the fact that the 

4 interfacial compositions in Fig. 5(c) for case [   ]  (unfilled diamond symbols), are spread over 

a smaller composition range compared with the values reported by the tie-lines drawn for [ ]  

(thin dotted curves). Consequently, the Chen et al. model [17] is not able to reproduce correctly the 

effect of a full diffusion matrix accounting for interaction between species. Except for the particular 

case of a diagonal matrix, it must be considered as approximate compared with the present 

analytical model [23]. 

 

5. Extensions of the analytical solution 

The exact analytical solution (§4.1) must be extended to account for a finite matrix domain and the 

effect of curvature on thermodynamic equilibrium. Thus, several improvements are proposed 

hereafter, together with their comparison with the front-tracking numerical model, thus permitting 

simulation of the growth of a single precipitate in practical situations. 

5.1. Curvature 

                                                      
2
 It should be pointed out that variables    are used by Chen et al. [17] to define the relation between the supersaturation 

and the diffusion length for each element   through Eq. (15). We use the same notation here. However these variables 

are linked neither with the   
 growth parameter introduced in Eq. (10) nor with the   growth parameter introduced in 

reference by Guillemot et al. [23]. 
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In order to estimate the role of a curved interface on thermodynamic equilibrium, also referred to as 

Gibbs-Thomson effect, the excess energy of the   -precipitate phase due to the curvature of a 

spherical particle with radius  ,      , is computed [13]: 

            
   

  

  (18)  

where the values of the interfacial energy,      
, and the molar volume,   

  

, for the alloy studied 

are given in Table 1 [32]. The effect of curvature is revealed in Fig. 2 and compared with the 

equilibrium phase diagram without curvature (   ). The dashed curves are generated by 

imposing an increase to the Gibbs free energy to the   -precipitate phase, given by Eq. (18), and 

re-computing the equilibrium for values of the radius equal to 0.8 nm, 1.5 nm and 6 nm. As 

expected, curvature has a clear influence on interfacial compositions for small precipitate sizes. The 

displacement of both the   and    equilibrium lines toward higher solute contents are also clearly 

shown. It is noticeable that large evolutions of the composition in the   -precipitate phase occurs, as 

revealed by the tie-lines given at nominal composition. With curvature, the change of the 

Al-composition is also found larger than the one for Cr. As previously explained, the equilibrium 

phase diagram has been tabulated at the chosen temperature. This not only includes storing the 

solvus surface and the tie-lines of the phase diagram for a flat interface (   ), but also as a 

function of the precipitate radius  , thus explaining the formulation of Eqs (4). This strategy offers 

a significant reduction of computational time as direct thermodynamic equilibrium calculations are 

then only performed once for the creation of the tabulations and can be used for as many 

calculations as desired. 

5.2. Far-field composition 

The exact analytical solution previously detailed (§4.1) is restricted to situations when the 

interfacial solute composition in both the precipitate phase and the matrix phase are known and 

fixed with time. This situation is yet of little practical interest for realistic modelling. Indeed 

precipitates may develop in regimes including a complicated temperature history, modification of 

the far-field matrix composition due to nucleation of a high density of particles in the same matrix 

domain, diffusion process in the precipitate phase and effect of the radius of curvature on the 

equilibrium tie-line. All these effect do lead to time evolution of the interfacial compositions. The 

most common method found in the literature to estimate the far-field composition is based on 

reevaluation of the average composition in the matrix phase,  ̅  [13, 17]. It is also currently used in 

solidification [35, 36]. The average composition is simply given by a global solute balance: 

   ̅ 
     ̅ 

       with    {   } (19)  

where  ̅ 
  is the average composition in the precipitate and    and    are the atomic fractions of 

the precipitate phase and the matrix phase, respectively. Note that equal and constant molar 

volumes being considered for the phases, no contraction/dilatation or shrinkage occur and atomic 

fractions are equivalent to volume fractions. The latter are easily computed from the current radius, 

 , and the fixed dimension of the matrix phase available for mass exchange with the precipitate,    

(Fig. 1), while  ̅ 
  can be computed step by step during growth assuming perfect diffusion in the 

precipitates.  
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An alternative method was proposed for the simulation of globular solidification in a 

multicomponent alloy with cross diffusion and uniform but non-isothermal temperature [23]. It 

estimates the driving force in the matrix endured at the    -interface with an integrative approach. 

A natural hypothesis is made that the solute profiles follows the expression given by Eq. 5. The 

current composition far from the     interface, written as  ̃ 
 , has to be updated from the average 

matrix composition  ̅  deduced by the integration of the solute profiles in the range   [    ]: 
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where the function  ( ) is defined by: 
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)  (21)  

Eq. (20) thus defines the far-field composition,  ̃ 
 , to be used in Eq. (11) in order to compute the 

  
 parameter in a spherical geometry. The difference between the interface and far-field 

compositions corresponds to a new vector   ̃  replacing vector     in Eq. (11). The   ̃  vector 

is defined similarly but considering this new current far-field composition,   ̃        ̃ 
 , for 

a finite matrix domain delimited by radius   . Expressions of  ̃   
  can also be developed for planar 

and cylindrical precipitates considering the corresponding expression of the far-field compositions 

as well as the associated  ( ) function (Appendix A). 

5.3. Interfacial mass balance with complete back diffusion 

A no-flux hypothesis in the precipitate phase was so far applied [23, 24]. However, considering a 

spherical precipitate   with an inner composition field   
 , a mass balance equation can be written 

for the solute content for element   with the hypotheses mentioned in part 2: 

 
 

 
∫

   
 

   
    (  

   
   

   
)   

 

   
 with    {   } (22) 

where   refers to the volume of the precipitate,   to its interfacial area and  
 

   
 corresponds to the 

diffusion flux of element   in phase   at the     interface. Further considering that the spherical 

precipitate is homogenous in composition for any element  , the radial flow of solute at the     

interface can be expressed as follows: 

 
 

   
  (  

   
   

   
)  

 

  

   
   

  
 with    {   } (23)  

The first term on the right hand side part of Eq. (23) represents the evolution in precipitate 

composition due to the interface evolution, while the last term is the solute flux under the 

assumption of complete mixing in the precipitate. It can also be interpreted as the limit of the last 

term of Eq. (2) for large values of the    
  coefficients or small values of          

 . The same 

limit is found in modelling of microsegregation during solidification [14]. For any other 1D 

geometry (e.g. planar, cylindrical), similar expressions can be proposed by adaptation of the volume 

over surface ratio, equal to     in Eq. (23) for spherical coordinates. Because Eq. (11) was derived 
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from the solute balance at the interface (Eq. 2) under the assumption of no flux in the precipitate, it 

has to be similarly modified: 

       (  )   ̃  
    

     

     

  
  (24)  

5.4. Dissolution regime and Laplace approximation 

The current approach is restricted to growth regime, i.e. considering only positive values for the 

  
 parameter. This is due to the form of the expressions for the    coefficients (Eqs 6-8) and the far-

field composition (Eqs 20-21), only valid when   
 is positive (i.e.    ). The difficulty to produce 

an analytical expression for the solute profile under dissolution was already mentioned by Aaron et 

al. [4]. However, when the time-evolution of the composition profile is negligible (i.e., the Laplace 

approximation), a single analytical expression can be applied for both growth and dissolution 

regimes. The composition profile for this quasi-stationary regime is yet restricted to low 

supersaturations that corresponds to the lowest values of the far-field composition,   ̃ . 

Consequently, it is proposed to extend the mathematical solution of the Laplace equation to the 

present multicomponent alloy with cross-diffusion when a dissolution regime is encountered and 

thus no exact analytical solution exists (    ). It can be easily demonstrated that this extension is 

no more than the exact analytical solution when the   
 parameter decreases toward 0, which may 

also correspond to the expression of  ( ),  ( ) and  ( ) functions for   tending to 0. In this case, 

function  ( ) in Eq. (6) is replaced by its expression for small   values leading to the simple 

expression for Eq. (5) in a finite domain: 

  
 ( )   ̃   

  
 

 
  ̃ 

  with    {   } (25)  

The time evolution of the radius,  , is therefore given by a corrected expression compared to 

Eq. (9). The initial radius,   , at the beginning of the dissolution process,   , is known and future 

evolution of the precipitate size is given by a simple time integration: 

     
    (    )  (26)  

where the   
 parameter can now take negative values. The threshold time to switch from growth to 

dissolution is defined when     . It should also be pointed out that Eq. (26) leads to the same 

relation than Eq. (10) for the expression of the velocity,  , as a function of time   and radius  . The 

  
 parameter is still to be determined. It is the solution of Eq. (24) where the components of the 

 (  ) matrix in Eq. (12) are replaced by: 

   ( 
 )  

 

  
∑        

    
 
    with (   )   {   } (27)  

and the far-field composition in Eq. (20) is expressed as: 

 ̃   
   ̅ 

  
 

 

(
  

 
)
 

  

(
  

 
)
 

  

  ̃ 
   (28)  

Eq. (25) as well as Eq. (28) shows that the cross-diffusion effect does not influence the composition 

profile directly. Neither the diffusion coefficients nor the eigenvalues of the diffusion matrix appear 

in these two expressions. When Laplace hypothesis is made, the cross-diffusion terms of the matrix 
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vanish compared to the original expressions given by Eqs (5) and (20). The effects of the diffusion 

terms are only restricted to the computation of the  (  ) matrix where the eigenvalues of the 

diffusion matrix show up. It should also be pointed out that the present approach developed for low 

supersaturation with the use of the Laplace approximation cannot be directly extended to planar and 

cylindrical geometries. Indeed, in such geometry, the analytical solution of the Laplace equation is 

not compatible with boundary conditions at infinite [4]. Consequently no expression similar to Eq. 

(28) can be proposed for planar and cylindrical geometries. 

 

5.5.  Algorithms 

Analytical solution – growth regime 

For a current time  , the computation of precipitate growth between time   and      corresponds 

to the following steps for the growing regime (    ): 

(i) Diagonalization of the diffusion matrix for the matrix phase,   , associated to the current 

temperature     if the matrix is temperature dependent. 

(ii) Resolution of the set of Eqs (4) and (24) considering the current radius     for the effect of 

curvature on thermodynamic equilibrium. The far-field composition  ̃   
 

  
 is introduced in 

Eq. (24). The     interfacial compositions are the unknown values to estimate,   
   

     
 

and   
   

     
 , as well as the   

      coefficient. 

(iii) Computation of the   ̃ 
      vector as the difference between the interfacial composition 

  
   

     
 and the far-field composition  ̃   

 

  
 (i.e.   ̃ 

 
     

   
   

     
–  ̃   

 

  
). 

(iv) The value of the computed   
      parameter is used to update the radius        and the 

velocity        with an incremental approach thanks to the Eq. (10). The latter relation is 

time-independent which is of paramount importance for this model as it is not necessary to 

consider that nucleation occurs at time      . 

(v) Update of the average precipitate composition  ̅ 
 
     

 considering the complete mixing 

hypothesis,  ̅ 
 
     

   
   

     
. 

(vi) Computation of the   current average compositions in the matrix phase,  ̅ 
 

     
 , from the 

global solute balance (Eq. 19). 

(vii) Computation of the   far-field compositions,  ̃   
 

     
 from       ,  

 
      and the 

  ̃ 
      vector with Eq. (20). 

If a heat extraction rate or a non-isothermal temperature history is considered, the temperature may 

be updated at each time step [23, 24] as well as the estimation of the diffusion matrix coefficients 

and its related eigenmatrix. However, as mentioned previously, only an isothermal heat treatment is 

considered in the present contribution.  

Analytical solution – dissolution regime 

The dissolution regime is characterized by the fact that no positive solution can be found for 

Eqs (12) and (24). In such situation, a solution should exist with      for Eq. (24) when the 

components of the  (  ) matrix are replaced by expression in Eq. 27. This solution leads to an 
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estimation of the size evolution of the precipitate using Eq. (10). Consequently, two steps have to be 

replaced for the computation when dissolution occurs: 

(ii) Resolution of the set of Eqs (4), (24) and (27) using the current radius     for the effect of 

curvature on thermodynamic equilibrium. The far-field composition  ̃   
 

  
 , is introduced 

in Eq. (24). The     interfacial compositions are the unknown values to estimate, 

  
   

     
 and   

   

     
, as well as the   

      coefficient. 

(vii) Computation of the   far-field compositions,  ̃   
 

     
, from        and the   ̃ 

      

vector with Eq. 28. 

Literature solution 

Computation of precipitate growth with the approximation proposed by Chen et al. [17] can also be 

conducted step by step. In such case, the average composition of the matrix phase,  ̅ 
 , is used to 

estimate the interfacial solute gradients (Eq. 17). Two approximations can be highlighted in this 

model. Firstly the back diffusion process in the precipitate phase is ignored compare to Eq. (24). 

Therefore, the solute balance expressed with the diffusion length (Eq. 14) ignores the diffusion flow 

of solute in the precipitate phase. Secondly, composition  ̅ 
  entering equation (14) is estimated 

with the global solute mass given by the equation (19), not using the integral method proposed in 

equation (20-21). For a current time  , computation of precipitate growth between time   and      

is the same as steps (i)-(viii) described previously except for step (ii) which is replaced by: 

(ii) Resolution of the set of Eqs (4) and (17) considering the current radius     for the effect of 

curvature on thermodynamic equilibrium. The average composition  ̅ 
 

  
 is used in 

Eq. (17). The supersaturation     
 is computed based on the current interfacial and average 

compositions in the matrix phase. The   
 
  

 values are deduced from the resolution of 

Eq. (16) for all the   solutal species. The     interfacial compositions are the unknown 

values to estimate,   
   

     
 and   

   

     
, as well as the   

 
     

 coefficient. 

Moreover the steps (iii) and (vii) have no meaning as the estimation of the far-field compositions, 

 ̃   
 , is ignored in this approach. 

 

6. Comparisons 

6.1. Effect of a finite domain size 

Restarting from the alloy and process conditions previously introduced (Table 1), the effect of a 

finite size of the matrix domain is first considered. This is typical in industrial alloys as the volume 

available for growth, defined by radius    in Fig. 1, is inversely proportional to the density of 

precipitates,   , itself dependent on nucleation. The size of the matrix domain available for 

precipitation is reported in Table 4. It was computed as    (  ⁄      )     by Rougier et al. [13] 

considering              . It should be noticed that this representation of interacting 

precipitates in the same matrix phase by considering a limited domain size justifies the zero flux 

condition applied at the boundary of the numerical front tracking model, i.e. at radial coordinate   . 
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Incoming and outgoing solute flux at this boundary must indeed cancel, the boundary being 

symmetrical with respect to mass exchange between precipitates. At time        , a small   -

precipitate nucleates in the  -matrix at the center of the spherical domain,       , with a 

composition equal to the nominal composition. Its initial size,   , is arbitrarily chosen very small, 

as reported in Table 4. 

Figure 6(a) shows the evolution of the radius of the precipitate simulated with the front tracking 

numerical model in a finite domain sizes ([ ]  , thick dashed curves), compared with the 

previously presented results using the numerical model for growth in a semi-infinite domain ([ ] , 

thin dotted curves), for the 4 diffusion matrices given in Table 2. Results are superimposed up to 

reaching about 4 nm precipitate sizes. Indeed, the radius evolutions computed with case [ ]   first 

follow a free growth regime as no solute interaction takes place with the boundary of the domain. 

Then, the driving force for growth, or supersaturation, decreases as solute profiles start modifying 

composition at position   . A change in the growth regimes is then observed for all diffusion 

matrices, with a radius progressively reaching the value that corresponds to the thermodynamic 

equilibrium fraction of the phases in the absence of curvature effect, i.e. 5.7 nm. For the highest 

velocity, computed with the     
  diffusion matrix, the size of the radius is found to oscillate, 

corresponding to successive growth and dissolution regimes progressively damped to reach the 

equilibrium value. This phenomenon is also associated to an overshoot of the radius that can 

overpass its equilibrium value before to dissolve. For the 3 other diffusion matrices, it is not so 

clearly observed, the radius continuously increasing to stabilize to its expected equilibrium value. In 

fact, detailed observation shows that this oscillation regime is still present for matrix     
 , and thus 

not only linked with the cross diffusion term of     
 . We shall later provide with a detailed 

discussion of this phenomenon. Evolutions in Fig. 6(a) are now compared with the ones computed 

by the analytical approach reported in Fig. 6(b). As for the numerical solution, modifications of the 

far-field composition,  ̃   
 , takes place when considering a finite domain ([ ] , plain lines with 

plus symbol), explaining departures from the steady computations ([ ] , filled diamond symbols) 

where  ̃   
  is simply kept constant and equal to the nominal composition     . Very similar 

consequences as for the numerical simulations [ ]   on the precipitate size reaching an equilibrium 

value are observed in simulations [ ] . In particular, similar oscillations are predicted for 

computations developed with     
 . As presented in the modeling part, the dissolution regime 

implemented in the analytical model is yet computed with the Laplace approximation. Detailed 

comparisons of the curves deduced from the numerical and analytical models reveal different 

damping wavelengths, yet finally reaching the same equilibrium value for the radius size. 

The same analytical approach is now applied to highlight the effect of the estimation of the driving 

force, i.e. computation of the far-field compositions  ̃   
 . As mentioned previously, most authors 

base their analysis on the average composition  ̅ 
 . This is the case for Chen et al. [17] and Rougier 

et al. [13]. This is yet only valid in the early stage of the phase transformation when composition at 

a large distance is close to the nominal composition. When solute composition increases at the 

boundary of the domain, this choice is no longer relevant. Demonstration is given in Figure 7(a) by 
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comparison of simulation results using ([ ] , plain lines with plus symbol) the integral method to 

compute the far-field composition (Eqs. 20-21) with the ([ ] , dash-dotted curves) the average 

matrix composition (Eq. 19). Even if the beginning of the growth is quite similar (up to reaching 

about 2.5 nm), deviations become large during subsequence growth, the average composition 

matrix underestimating the growth velocity for all diffusion matrices. For instance, while the 

integral method ([ ] ) has shown that the radius almost remains on the exact analytical solution 

([ ] ) up to 5 nm precipitate size (see Fig. 6(a)), analytical predictions using the average matrix 

composition shows a slower growth with up to 34 % deviation in precipitation time for     
 . This 

difference may be even more important for alloys with high fraction of precipitate phase, such as 

industrial nickel based alloys. We also have to notice the large difference in radius during the 

growth/dissolution regimes when time is higher than 1000 s with     
 . Both the amplitude and the 

frequency of the oscillations are clearly different. Thus,  ̃   
  using the integral method is clearly the 

best choice for the estimation of the driving force that controls the growth of the precipitates. A 

second computation is shown in Fig. 7(b), based on the approach by Chen et al. [17] with the 

resolution of Eq. (17) and to the choice of  ̅ 
  (Eq. 19) for the far-field composition ([   ] , short 

dash-dotted curves). The evolutions computed with this approach are very close to the ones 

provided by Rougier et al. [13] for the same alloy and temperature conditions. Similarly to 

Fig. 7(a), the beginning of growth are similar to results ([   ] ) for a semi-infinite matrix domain. 

A slow decrease in the growth velocity is then observed and the precipitate size evolves slowly 

toward the equilibrium radius, yet with a large deviation compared to the correct solution as already 

revealed in Fig. 5. Oscillations yet also appear for     
 , but with a minimized amplitude compared 

to Fig. 7(a). However, we have to notice that the model developed by Chen et al. [17] as presented 

and applied previously (Eqs 15-17) is unable to model dissolution regime. Indeed, the set of 

equations does not offer the possibility to consider negative values neither for the supersaturation, 

  , nor for the diffusion length,   , or the growth parameter    associated to each element  . 

Consequently, the curves are limited to the growing regime when these latter values are still 

positive. When the supersaturation evolves and growth velocity tends towards zero, computations 

are terminated. This growing regime is the one shown by the [   ]  curves in Fig. 7(b). 

6.2. Effect of curvature 

So far, all simulations were conducted without consideration of the effect of curvature. This is a 

very crude approximation in precipitation kinetics as the size of the precipitates is very small and 

hence significantly changes thermodynamic equilibrium, as already illustrated in Fig. 2. The 

previous models are thus now applied with the effect of curvature on interfacial compositions by 

accounting for the effect of the radius size in Eqs 4. 

This is first done with the numerical front tracking approach ([ ] 
  

, plain curves) when compared 

with results without curvature ([ ]  , dashed curves) previously shown in Fig. 6(a). Computations 

are carried out with the numerical parameters reported in Table 4. As can be noticed, the initial 

radius is changed. Indeed, the effect of curvature for a 0.1 nm precipitate at the nominal 

composition shows that it falls in the  -domain of the isothermal section of the phase diagram. It is 



18 

 

thus dissolved with time at the beginning of the simulation. Using an increase value of 0.8 nm is 

sufficient to reduce the effect of curvature and fall in the two-phase domain of the phase diagram, as 

shown in Fig. 2. Figure 8(a) shows the time evolution of the precipitate radius with the front 

tracking numerical approach ([ ] 
  

, plain curves) while considering curvature, compared with the 

numerical simulation ([ ]  , dashed curves) without curvature. Curvature is found to delay the 

growth in the early stages, as verified when drawing the velocity in Fig. 8(b). This is interpreted by 

considering the smaller difference between the interfacial and nominal compositions in the presence 

of curvature shown in Fig. 2. Upon growth, the equilibrium line for the matrix phase shifts toward 

lower aluminum compositions. The driving force thus increases and velocity progressively evolves 

toward higher values for times around      . Highest velocities are reached for time between       

to        for the various matrices. These evolutions thus clearly differ from the one observed 

without curvature. In the latter case, the velocity continuously decreases as       as long as no 

boundary effect is taking place. However, it appears that the curvature effect is negligible as soon as 

the velocity has reached its highest value. After this threshold time, similar velocities are computed 

with and without curvature. A large change in the time evolution of the radius is yet seen in 

Fig. 8(a) with lower radii whatever the time and diffusion matrix considered. As an example, at 

time         , the radius is 13 % (    
 ) and 36 % (    

 ) lower with curvature. The final radii are 

smaller even at equilibrium with a decrease of around 5 %. Again, the oscillation regime previously 

reported is still present when considering     
 . A Supplementary Material has been added to the 

paper in order to show as a video the time-evolutions of interfacial tie-lines positions as well as the 

average and boundary compositions when considering the     
  diffusion matrix. The same video 

also includes the time-evolutions of the radius and the velocity as well as the solute profiles for both 

Al and Cr elements.  

Finally, the analytical approach ([ ] 
 , plain lines with cross symbols) with curvature using the 

integral method for the far-field composition is presented in Figure 9. This is the most advance 

configuration for the analytical model. Compared with ([ ] , plain lines with plus symbols) the 

analytical simulations without curvature, it shows very similar trends of slower growth kinetics for 

all diffusion matrices. But it also comes very close to the general evolutions of precipitate radius 

computed with the numerical front tracking approach (Fig. 8(a)) for both radius and velocity 

evolutions. The set of curves give the same trends in the first growth regime. The main differences 

remain the oscillations observed for     
 , with different amplitudes and frequencies. For the three 

other diffusion matrices, the evolution of the precipitate radius is the same, thus validating the 

analytical model. Its relevance in predicting the precipitate radius considering curvature and 

interaction between species is thus demonstrated. 

 

7. Discussions 

The front tracking approach has demonstrated that oscillation can be observed in the precipitate 

radius evolution, corresponding to alternate growth and dissolution regimes. Simulations with the 
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diffusion matrix     
 , both (Fig. 6(a)) without and (Fig. 8(a)) with the effect of curvature, clearly 

show this phenomenon. Some oscillations are also visible in Fig. 8(a) with the diffusion matrix     
  

but their amplitudes are smaller than with matrix     
 . In order to clarify and explain these 

oscillations, a discussion is given hereafter based on results produced with matrix     
  and the 

effect of curvature (Fig. 8(a)). Figures 10 and 11 respectively show the interfacial solute gradients 

and interfacial fluxes at the     interface (i.e. at      ) for (a) Al and (b) Cr. The time evolutions 

are restricted to the range [    ,      ] s. Points are highlighted in the two figures, corresponding 

to the four first times   ,     {       }, when velocity becomes null. These times also correspond to a 

change in the sign of the velocity,  , or a local extrema in the evolution of the precipitate radius,  , 

found in Fig. 8(a). Table 6 lists these computed times and the corresponding values of the interface 

and average phase compositions, as well as the values of the solute gradients and fluxes at the 

interface. It should be pointed out that these times are regularly spaced (                ) as 

expected from damping oscillations. The interface positions at zero velocity, also reported in 

Table 6, correspond to a global solute flux also equal to zero (Eq. 2). Consequently, the fluxes 

computed using the Fick’s law with cross diffusion in (first right-hand-side term in Eq. 2) the 

matrix phase   and (second right-hand-side term in Eq. 2) the precipitate phase   are equal. This is 

shown in Fig. 11 where the Al and Cr solute fluxes are equal to zero at the same times,   . Indeed, at 

these times, the curves corresponding to the evolutions of the solute flux in the   and   phases 

intersect, indicating that both solute fluxes take the same value, the value of which is reported in 

Table 6. 

The signs of the gradients are due to the position of the equilibrium tie-line compared with the 

average phase compositions. In order to evidence this observation, one can plot the paths for the 

average composition of the phases in the phase diagram, together with the interfacial compositions. 

This is done in Figure 12 where the compositions at times    to    are identified and labelled. The 

continuous black curves define the equilibrium limits for the existence of the two-phase domain 

when no curvature is present, as in Fig. 2. Because of the effect of curvature, the interfacial 

compositions are not restricted to follow these domain limits, especially when the radius of the 

precipitate is small. The     (   ) equilibrium curves giving the composition in the  -phase 

( -phase) progressively evolves toward the left-hand-side black lines of phase diagram, hence the 

blue (orange) paths. When equilibrium is reached (for time larger than   ), the interfacial 

compositions still depart from the black lines as an effect of the curvature is still present for the 

radius estimated at 5.44 nm. At the beginning of the computation, free growth proceeds as no 

interaction with the boundary takes place. The selected tie-lines can then exhibit a large deviation 

from the equilibrium one, and do not go through the nominal composition, corresponding to a 

maximum driving force and velocity reached with interfacial compositions of the order of 5 at.% Al 

and 12.5 at.% Cr as shown on the evolution of the      composition (blue line). During this first 

burst of growth, the average composition in the  -phase,  ̅ 
 , (purple line) is almost constant in Cr 

but shows a large decrease in Al up to    (Fig. 12 (a)). 

Before reaching time   , the Al (resp. Cr) composition is lower (resp. higher) at (blue curve) the 
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 -interface compared to (purple curve) the average matrix composition, thus corresponding to 

positive (resp. negative) composition gradients plotted in Fig. 10. Soon after time   , before 

reaching time   , the situation is reversed, with the Al (resp. Cr) composition higher (resp. lower) at 

(blue curve) the  -interface compared to (purple curve) the average matrix composition, thus 

corresponding to negative (resp. positive) composition gradients. Movie of these time evolutions is 

provided in the Supplementary Material, offering a clear visualization of these changes of sign. 

Thus, it is the working tie-line that mainly dictates the oscillation regime as adaptation of the 

interface composition is assumed instantaneous. This explains the general trend of the observations 

in Figs 10 and 11 where gradients and solute fluxes oscillate, in both the  - and  -phases. 

However, the composition difference between the average and interface compositions in the 

 -phase is too small to be visualized in Fig. 12. In fact, values of the diffusion coefficients in the 

 -phase have been chosen large enough to almost reach homogenization (Table 2). Consequently 

the Al and Cr gradients in the  -phase remain smaller than in the  -phase (Fig. 10).  

Oscillations are also found in the evolution of both the interfacial and average compositions in 

Fig. 12, as these compositions alternate around the equilibrium position. Consequently the two 

curves progressively turn and finally stabilize toward the same positions in the phase diagram where 

velocity is equals to zero and radius equals to 5.44 nm. The equilibrium tie-line corresponding to 

this radius gives the position of this point (i.e. (   
   

    
   

)  ( ̅  
   ̅  

 )  (         )      ). 

These two curves help to estimate the times corresponding to a change in velocity when growth and 

dissolution alternate. As shown in Fig. 12(a) and its magnification in Fig. 12(b), the Al composition 

is the same at the interface and in the matrix for the four first times   . So these times can be directly 

estimated as the ones where    
   

  ̅  
 . This is shown when comparing the horizontal position of 

the symbols indicating the time    on the two curves or when we read the composition in aluminum 

in Table 6. 

The interfacial fluxes in the matrix phase are also found ten times lower for the chromium 

component ( 
  
 ) compare to aluminum component ( 

  
 ). This is simply due to the values of the 

diffusion coefficients       
  and       

  compared to the diffusion coefficients       
 . The same 

difference is observed in the total solute flux defined as the difference between the fluxes associated 

to  - ( -) and  - (  -) phases. Higher values for  
  
 – 

  
  is reached compared to  

  
 – 

  
 . In 

Fig. 11, a dephasing is also observed between the   ( ) and   (  ) solute fluxes mainly for the 

chromium component where cross-diffusion phenomena act. 

The damping process is shown with a decrease of both   and   solute fluxes for the two 

components. Between growth/dissolution regimes, the magnitude of the solute fluxes progressively 

decreases in the same way as the velocity. The radius equilibrium value, 5.44 nm, retrieves the 

estimation deduced from the phase diagram (Fig. 2) and the solute conservation equation (Eq. 19). 

The damping process is explained by the progressive convergence of the interfacial solute 

composition as well as the average composition in each phase toward their equilibrium value as 

deduced from the phase diagram. The difference between interfacial and average composition 

slowly decreases, thus reducing the driving force for diffusion in the precipitate and matrix phases 
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and the associate fluxes at the interface. 

 

8. Conclusion  

A time-dependent analytical growth model for a precipitate is derived from the exact solution of the 

solute conservation equation in a semi-infinite medium considering a multicomponent alloy [23]. 

This model is based on the computation of a far-field composition defining the driving force, and 

includes back diffusion of solute in the precipitates yet assuming its remains homogenous. 

Curvature effect is included that modifies both the composition of the matrix and the precipitate. 

Demonstration is given for   -precipitation in a  -matrix for Ni – 7.56 at.% Al – 8.56 at.% Cr alloy 

hold at the 600 °C, showing the effect of cross-diffusion terms on the precipitation kinetics. The 

simulations are well validated against numerical solutions. The present model is thus considered as 

an improvement of previously proposed solution for multicomponent alloys. In particular, this work 

shows that i- estimation of the driving force using the average matrix composition is detrimental to 

accurate results and ii- the solution previously proposed in the literature is inaccurate when a full 

diffusion matrix is considered [17]. Another finding is the complicated path towards equilibrium 

that can experience the system. Rather than a simple growth process, it is shown that alternate 

growth and dissolution regimes can take place, corresponding to a damped oscillation toward 

equilibrium of the velocity. Because the time-dependent analytical growth model cannot be 

extended to deal with dissolution, a simpler generalization of the Laplace solution including cross 

diffusion is also introduced. Combined with the time-dependent analytical growth model, it 

provides with an acceptable treatment of the dissolution regime.  

This work presents a relevant contribution for the computation of precipitate growth/dissolution 

velocities for practical application, i.e. for heat treatments with industrial alloys. Coupling with 

thermodynamic database [33], one of the key component to deal with multicomponent alloys, is 

already demonstrated by the present contribution and others [17, 14]. However its application has 

been limited to the evolution of precipitates with a single size and developing upon an isothermal 

treatment. Its integration in a mean field approach considering a PSD model [9-15] is required for 

further applications. Also the present analytical model has solution for non-spherical 1D geometries 

(Appendix) and can be extended by considering growth morphologies with chosen shape factors. 
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Nomenclature 

  [m
2
·s

-1
] eigenvalue of the diffusion matrix 

  [m
2
·s

-1
] diffusion coefficient 

  [m
2
·s

-1
] diffusion matrix 

  [at.%] coefficient in composition profile expression 

   [-] density of precipitates 

  [-] number of added elements  

  [m] radial coordinate 

 ̂ [m] radial unit vector 

  [m] growth radius  

   [m] maximal radius  

  [s] time 

  [K] temperature  

  [-] unitary eigenmatrix 

    [-] unitary eigenvector  

    [-] component of the unitary eigenmatrix  

  [m·s
-1

] interface velocity  

  [m·s
-1

] interface velocity vector 

  [m
3
] volume  

  
  

 [m
3
·mol

-1
] molar volume of the   -phase 

  [at.%] atomic/molar composition  

  [at.%] vector of atomic/molar composition  

 ̅ [at.%] average atomic/molar composition 

 ̅ [at.%] vector of average atomic/molar composition 

   [at.%] atomic/molar composition at an infinite distance 

   [at.%] vector of atomic/molar composition at an infinite distance 

 ̃  [at.%] atomic/molar far-field composition 

 ̃  [at.%] vector of atomic/molar far-field composition 

 

Greek symbols 

  [m] diffusion length 

    [J·mol
-1

] Gibbs free energy added due to curvature effect  

   [s] time step 

   [at.%] difference between compositions 

  [-] matrix defining the solute profile evolution 

  [m
-1

] curvature 

  
 [m

2
·s

-1
] growth parameter defining radius evolution 

   [-] parameter defining solute supersaturation [   ] 

  [-] matrix defining the interfacial composition difference 
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   [at.%·m
-2

·s
-1

] atom solute flow of component i 

  [-] normalized Landau coordinate 

     
 [J·m

-2
] interfacial energy between   and   -phases 

  [at.%·at.%
-1

] atomic/molar fraction 

  [-] supersaturation 

 

Superscripts 

   phase 

    -phase 

      -phase 

   matrix 

   precipitate 

     matrix/precipitate interface 

 

Subscript 

       component indexes 

   Laplace expression 

0  initial value 

 

Mathematical notations 

    ( ) complementary error function 

  ( )  exponential integral function 

‖ ‖  norm of vector 

 ( )  F function 

 ( )  G function 

 ( )  I function 

  ( )  Function defining the interfacial compositions 
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Appendix A: Precipitate growth evolution for 1D geometry 

 

The present model has been detailed for 1D spherical geometry corresponding to usual modelling of 

precipitate geometries. However, some geometry or cylindrical geometries are also encountered in 

precipitate geometry assumptions for their evolution modelling. The following simple expressions 

correspond to the function which should be introduced for modelling precipitate growth in other 1D 

geometry [23]. These expressions are similar to the ones given in Eqs 5, 6, 12, 13, 20 and 21. 

 

Planar growth 
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Cylindrical growth 
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Figure captions: 

 

Figure 1: Illustration of the precipitate   plus matrix   system with homogeneous but 

non-isothermal temperature  , together with schematized molar composition profiles for 

components 1 (green line) and 2 (blue line) in the precipitate and matrix domains, respectively    

and   , on each side of the interface,     . 

 

Figure 2: Ni-rich corner of the cross section of the Ni-Al-Cr phase diagram at 600 °C with 

composition in atomic percent of Al and Cr. Curves (in black) show the domains of existence of the 

 ( ) and  (  ) phases as a function of the radius of a spherical   -phase precipitate,  , embedded 

into the  -phase matrix. The corresponding tie-lines (in grey) are plotted for the same alloy 

composition (black square) given in Table 1. In the main text, the  -matrix and the   -precipitate are 

referred to   and  , respectively. 

 

Figure 3: Time evolutions of (a) radius and (b) velocity of a single   -precipitate growing in an 

infinite  -matrix for the four diffusion matrices reported in Table 2 using ([ ] , thin dotted curves) 

the numerical front-tracking model and ([ ] , filled diamond symbols) the exact analytical 

solution. No curvature effect is accounted for and the temperature   is fixed (see Tables 3 and 4). 

The associated tie-lines are added to the isothermal section of the phase diagram in (c) and the 

nominal composition of the alloy is reported (see Table 1). No curvature effect and a constant 

uniform temperature   are considered. 

 

Figure 4: Composition profiles in the matrix for (a) Al and (b) Cr at times 100 s, 1000 s, 10 000 s 

and 50 000 s comparing ([ ] , thin dotted curves) the numerical front-tracking simulations with 

([ ] , filled diamond symbols) the exact analytical solution. The color code is the same as in 

Fig. 3, corresponding to the     
  diffusion matrix (Table 2). The vertical lines in grey correspond to 

the radial position of the precipitate/matrix interface as computed by [ ]  the exact analytical 

solution. No curvature effect and a constant uniform temperature   are considered. 

 

Figure 5: Time evolutions of (a) radius and (b) velocity of a single   -precipitate in a semi-infinite 

medium for the four diffusion matrices using ([   ] , empty symbols) exact resolution of the 

analytical model proposed by Chen et al. [17] and ([ ] , thin dotted curves) front tracking 

simulations developed in a large domain. Tie-lines associated to the interfacial equilibrium are 

drawn in (c) for both approaches. No curvature effect and a constant uniform temperature   are 

considered. 

 

Figure 6: Time evolutions of radius of a single   -precipitate in a finite domain of radius    for the 

four diffusion matrices. Solutions corresponding to (a) the front tracking simulation ([ ]  , thick 

dashed curves) are compared with the solution developed in a large domain ([ ] , thin dotted 

curves), as well as with (b) the analytical approaches proposed in this paper when ([ ] , plain lines 
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with plus symbol) the far-field compositions is derived from Eqs. 20-21 and ([ ] , filled diamond 

symbols) the exact analytical solution for a semi-infinite matrix domain. No curvature effect and a 

constant uniform temperature   are considered. 

 

Figure 7: Time evolutions of radius of a single   -precipitate in a finite domain of radius    for the 

four diffusion matrices. In (a), the analytical approach based on estimation of the far-field with 

([ ] , plain lines with plus symbols) the integral method (Eqs. 20-21) is compared with ([ ] , 

dash-dotted curves) the average matrix composition (Eq. 19). In (b), comparisons are also 

conducted with ([   ] , short dash-dotted line) the approach proposed by Chen et al. [17] and 

applied by Rougier et al. [13,15] for a domain of finite domain size    and ([   ] , empty 

symbols) the exact solution for a semi-infinite domain corresponding to the same model. The 

original results by Rougier are superimposed using thin black lines for the four diffusion matrices. 

All simulations in (b) approximate the far-field composition using the average matrix composition 

(Eq. 19). No curvature effect and a constant uniform temperature   are considered. 

 

Figure 8: Time evolutions of (a) radius and (b) velocity of a single   -precipitate in a finite domain 

of radius    for the four diffusion matrices reported in Table 2. Solutions corresponding to the front 

tracking numerical simulation ([ ]  , thick dashed curves) without and ([ ] 
  

, plain curves) with 

the effect of curvature. Effect of the precipitate size on the thermodynamic equilibrium 

compositions at the     interface are extracted from Fig. 2. 

 

Figure 9: Time evolutions of the (a) radius and (b) velocity of a single   -precipitate in a finite 

domain of radius    for the four diffusion matrices reported in Table 2. Solutions corresponding to 

the analytical model using the integral far field composition method (Eqs. 20-21) are compared 

([ ] , plain lines with plus symbols) without and ([ ] 
 , plain lines with cross symbols) with the 

effect of curvature. Effect of the precipitate size on the thermodynamic equilibrium compositions at 

the     interface are extracted from Fig. 2. 

 

Figure 10: Time evolution of solute gradients at the     (    ) interface with the numerical front 

tracking model [ ] 
  

 developed with the     
  diffusion matrix. The curvature effect on equilibrium 

compositions is considered. Gradients are shown in (plain lines)   and (dashed lines)   phases for 

the components (a) aluminum (Al) and (b) chromium (Cr). Symbols refer to the values of 

composition gradients when velocity is equal to 0 and correspond to the time   . These symbols 

highlight the transitions observed between growth and dissolution regimes in the time range 

[1000 s, 11000 s]. Values of solute gradients corresponding to these four times are reported in 

Table 6. 

 

Figure 11: Time evolution of solute flux for (a) aluminum (Al) and (b) chromium (Cr) component at 

the     (    ) interface in front tracking computation developed with     
  diffusion matrix. The 

curvature effect on equilibrium compositions is considered. Diffusion fluxes are shown in both 
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(plain lines)  - and (dashed lines)  - phase as defined by the Fick’s law at the     interface. 

Differences between solute fluxes are presented in order to highlight the changes of the sign of the 

velocity. Symbols refer to the times    when velocity is equal to 0 also corresponding to a null value 

for the difference between solute fluxes. Values of solute fluxes in the two elements corresponding 

to these four times are reported in Table 6. 

 

Figure 12: Evolution of interfacial compositions in (blue)  -phase,   
   , and (orange)  -phase, 

  
   , and average composition in (purple)  -phase,  ̅ , using the numerical front tracking model 

with curvature, [ ] 
  

, for the diffusion matrix     
  . The average composition in precipitate,  ̅ 

 , is 

equal to interfacial composition,   
   . The notations   and  , respectively refer to the  - and 

  -phases. The equilibrium lines are drawn considering (dark gray - dashed) or not (dark gray - 

plain) the effect of curvature. The tie-line corresponding to full-equilibrium is drawn on the same 

diagram (black - dashed). The symbols highlight the four times    corresponding to the change of 

the velocity sign as presented in Fig. 10 and 11. Values of interfacial and average compositions in 

the two elements for times    are reported in Table 6. Movie of this time evolution is provided in the 

Supplementary Material. 
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Tables captions: 

 

Table 1: Properties of the ternary Ni-Al-Cr alloy. 

 

Table 2: Diffusion matrices in the  -phase ( ) [13,16] and in the   -phase ( ), with first component 

Al and second component Cr. Eigenvalues and eigenvectors of the diffusion matrices are also 

provided for the  -phase. 

 

Table 3: List of the figures relating to the various simulation cases. Table 1 and 4 provides with 

values for    and   , respectively. Values for  ̃ 
  and  ̅  are recomputed at each time step during 

simulations. The curve styles are reported in the last column for all the simulations. However the 

color code corresponding to each diffusion matrix is shown in Table 2 depending from the diffusion 

hypothesis for Fig. (3-9). 

 

Table 4: Parameters for the various simulation cases listed in Table 3. 

 

Table 5: Interfacial compositions in the  -matrix phase ( ),      (   
   

    
   

) and in the 

  -precipitate phase ( ),      (   
   

    
   

), and   
 parameter associated to the free growth 

regime without curvature effect for the four diffusion matrices of the  -matrix phase. Results are 

given considering [ ]  
the exact analytical solution and [   ]  the diffusion length approach 

proposed by Chen et al. [17]. 

 

Table 6: Values associated to the four first growth times,   , corresponding to a velocity, v, equal to 

zero. Computations have been developed with the front tracking approach including the curvature 

effect with the     
  diffusion matrix. The times are presented in the first line, followed by the 

corresponding values of the precipitate radius,  . In the next lines, the following values are 

presented (in this order): interfacial (    ) compositions, average compositions and interfacial 

gradients. These values are respectively given in the    ( ) and   ( ) phases. The two last lines 

show the value of the Al and Cr fluxes. These latter values are the same in    and   phases as the 

growth velocity is equal to 0. 

 



Composition                        7.56 [at.%] 

       8.56 [at.%] 

Thermodynamic database [33] NI20  [-] 

Temperature for heat treatment T 600 [°C] 

Interfacial energy [32]      
 2710

-3
 [J∙m-2

] 

Molar volume of the    phase [32]   
  

 6.810
-6

 [m
3∙mol

-1
] 

 

Table 1: Properties of the ternary Ni-Al-Cr alloy. 
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Table 2: Diffusion matrices in the  -phase ( ) [13,16] and in the   -phase ( ), with first component 

Al and second component Cr. Eigenvalues and eigenvectors of the diffusion matrices are also 

provided for the  -phase. 



Description  Case 
Domain 

size 
Curvature 

Far-field 

composition 
Figures 

Curve 

style 

Front 

tracking 

numerical 

simulation 

Large domain size, 

without curvature 

[ ]       Off - 3, 4, 5,  

6a 
 

Finite domain size,  

without curvature 

[ ]      Off - 6a, 8 
 

Finite domain size,  

with curvature 

[ ] 
  

    On - 8, 10,  

11, 12 
 

Present 

analytical 

model 

Large domain size, 

without curvature 

[ ]       Off    3, 4, 6b 
 

Finite domain size,  

without curvature, 

integral far-field 

composition 

[ ]     Off  ̃ 
  6b, 7a, 

9 
 

Finite domain size,  

without curvature, 

average far-field 

composition 

[ ]     Off  ̅  7a 

 

Finite domain size,  

with curvature, 

integral far-field 

composition 

[ ] 
     On  ̃ 

  9 

 

Diffusion 

length 

approach 

[17] 

Large domain size, 

without curvature 

[   ]       Off    5, 7b 
 

Finite domain size,  

without curvature, 

average far-field 

composition 

[   ]     Off  ̅  7b 

 

Table 3: List of the figures relating to the various simulation cases. Table 1 and 4 provides with values for 

   and   , respectively. Values for  ̃ 
  and  ̅  are recomputed at each time step during simulations. The 

curve styles are reported in the last column for all the simulations. However the color code corresponding 

to each diffusion matrix is shown in Table 2 depending from the diffusion hypothesis for Fig. (3-9).  

 



 Case 

Parameter 

[ ]  [ ] , [ ] , 

[   ] , [ ]   

[ ] 
 , [ ] 

  
 Unit 

Initial radius    0.1 0.1 0.8 [nm] 

Domain size    100 10.61 10.61 [nm] 

Time step    0.1 0.1 0.1 [s] 

Number of points for the numerical 

[ ] front tracking simulations 

(same for    and   ) 

5000 500 500 [-] 

Table 4: Parameters for the various simulation cases listed in Table 3. 

 



Exact resolution [ ]  
 

Diffusion matrix     
      

      
      

  

  
[10

-21
 m

2·s-1
 9.274 30.59 11.95 15.10 

     [at.%] (3.94, 14.88) (4.54, 12.65) (5.74, 9.30) (5.69, 9.41) 

     [at.%] (14.55, 9.56) (14.98, 8.85) (15.93, 7.59) (15.89, 7.64) 

Diffusion length approach [   ]  

Diffusion matrix     
      

      
      

  

  
[10

-21
 m

2·s-1
 1.452 18.77 10.42 15.08 

     [at.%] (5.49, 9.92) (5.38, 10.20) (5.76, 9.24) (5.69, 9.41) 

     [at.%] (15.73, 7.85) (15.64, 7.96) (15.96, 7.57) (15.90, 7.64) 

 

Table 5: Interfacial compositions in the  -matrix phase ( ),      (   
   

    
   

) and in 

the   -precipitate phase ( ),      (   
   

    
   

), and   
 parameter associated to the free 

growth regime without curvature effect for the four diffusion matrices of the  -matrix phase. 

Results are given considering [ ]  
the exact analytical solution and [   ]  the diffusion 

length approach proposed by Chen et al. [17]. 

 



Time ( ) Unit             

  s 2052 4800 7577 10368 

  nm 6.07 5.32 5.47 5.44 

     
   

    
   

  at.% (15.88, 7.91) (16.60, 7.10) (16.47, 7.24) (16.50, 7.21) 

     
   

    
   

  at.% (5.46, 10.48) (6.28, 8.51) (6.14, 8.82) (6.17, 8.76) 

  ̅  
   ̅  

   at.% (15.87, 7.94) (16.61, 7.10) (16.47, 7.24) (16.50, 7.21) 

  ̅  
   ̅  

   at.% (5.64, 8.70) (6.26, 8.77) (6.15, 8.77) (6.17, 8.77) 

(        
          

 ) at.%∙µm
-1

 (15.8, 19.9) (-2.03, 2.255) (0.431, -0.492) (-0.080, 0.092) 

(        
          

 ) at.%∙µm
-1

 (76.2, -683) (-9.78, 80.05) (2.08, -17.35) (-0.38, 3.27) 

   
      

   at.%∙µm
-2∙s-1

 -1.587 0.2032 -0.0432 0.007963 

   
      

   at.%∙µm
-2∙s-1

 1.99 -0.226 0.04925 -0.009285 

 

Table 6: Values associated to the four first growth times,   , corresponding to a velocity, v, equal to 

zero. Computations have been developed with the front tracking approach including the curvature 

effect with the     
  diffusion matrix. The times are presented in the first line, followed by the 

corresponding values of the precipitate radius,  . In the next lines, the following values are 

presented (in this order): interfacial        compositions, average compositions and interfacial 

gradients. These values are respectively given in the    ( ) and   ( ) phases. The two last lines 

show the value of the Al and Cr fluxes. These latter values are the same in    and   phases as the 

growth velocity is equal to 0. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Illustration of the precipitate   plus matrix   system with homogeneous but 

non-isothermal temperature  , together with schematized molar composition profiles for 

components 1 (green line) and 2 (blue line) in the precipitate and matrix domains, respectively 

   and   , on each side of the interface,     . 
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Figure 2. Ni-rich corner of the cross section of the Ni-Al-Cr phase diagram at 600 °C with 

composition in atomic percent of Al and Cr. Curves (in black) show the domains of existence of 

the      and       phases as a function of the radius of a spherical   -phase precipitate,  , 

embedded into the  -phase matrix. The corresponding tie-lines (in grey) are plotted for the same 

alloy composition (black square) given in Table 1. In the main text, the  -matrix and the 

  -precipitate are referred to   and  , respectively. 
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Figure 3. Time evolutions of (a) radius and (b) velocity of a single   -precipitate growing in an infinite  -

matrix for the four diffusion matrices reported in Table 2 using ([ ] , thin dotted curves) the numerical 

front-tracking model and ([ ] , filled diamond symbols) the exact analytical solution. No curvature effect 

is accounted for and the temperature   is fixed (see Tables 3 and 4). The associated tie-lines are added to 

the isothermal section of the phase diagram in (c) and the nominal composition of the alloy is reported 

(see Table 1). No curvature effect and a constant uniform temperature   are considered. 
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Figure 4. Composition profiles in the matrix for (a) Al and (b) Cr at times 100 s, 1000 s, 10 000 s 

and 50 000 s comparing ([ ] , thin dotted curves) the numerical front-tracking simulations with 

([ ] , filled diamond symbols) the exact analytical solution. The color code is the same as in 

Fig. 3, corresponding to the     
  diffusion matrix (Table 2). The vertical lines in grey correspond to 

the radial position of the precipitate/matrix interface as computed by [ ]  the exact analytical 

solution. No curvature effect and a constant uniform temperature   are considered. 
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Figure 5. Time evolutions of (a) radius and (b) velocity of a single   -precipitate in a semi-infinite 

medium for the four diffusion matrices using ([   ] , empty symbols) exact resolution of the 

analytical model proposed by Chen et al. [17] and ([ ] , thin dotted curves) front tracking 

simulations developed in a large domain. Tie-lines associated to the interfacial equilibrium are 

drawn in (c) for both approaches. No curvature effect and a constant uniform temperature   are 

considered. 
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Figure 6. Time evolutions of radius of a single   -precipitate in a finite domain of radius    for the 

four diffusion matrices. Solutions corresponding to (a) the front tracking simulation ([ ]  , thick 

dashed curves) are compared with the solution developed in a large domain ([ ] , thin dotted 

curves), as well as with (b) the analytical approaches proposed in this paper when ([ ] , plain 

lines with plus symbol) the far-field compositions is derived from Eqs. 20-21 and ([ ] , filled 

diamond symbols) the exact analytical solution for a semi-infinite matrix domain. No curvature 

effect and a constant uniform temperature   are considered. 
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Figure 7. Time evolutions of radius of a single   -precipitate in a finite domain of radius    

for the four diffusion matrices. In (a), the analytical approach based on estimation of the far-

field with ([ ] , plain lines with plus symbols) the integral method (Eqs. 20-21) is compared 

with ([ ] , dash-dotted curves) the average matrix composition (Eq. 19). In (b), comparisons 

are also conducted with ([   ] , short dash-dotted line) the approach proposed by Chen et al. 

[17] and applied by Rougier et al. [13,15] for a domain of finite domain size    and ([   ] , 

empty symbols) the exact solution for a semi-infinite domain corresponding to the same 

model. The original results by Rougier are superimposed using thin black lines for the four 

diffusion matrices. All simulations in (b) approximate the far-field composition using the 

average matrix composition (Eq. 19). No curvature effect and a constant uniform temperature 

  are considered. 
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Figure 8. Time evolutions of (a) radius and (b) velocity of a single   -precipitate in a finite 

domain of radius    for the four diffusion matrices reported in Table 2. Solutions 

corresponding to the front tracking numerical simulation (     , thick dashed curves) 

without and (    
  

, plain curves) with the effect of curvature. Effect of the precipitate size on 

the thermodynamic equilibrium compositions at the     interface are extracted from Fig. 2. 

 



 

(a) 

 

(b) 

 

Figure 9. Time evolutions of the (a) radius and (b) velocity of a single   -precipitate in a 

finite domain of radius    for the four diffusion matrices reported in Table 2. Solutions 

corresponding to the analytical model using the integral far field composition method 

(Eqs. 20-21) are compared ([ ] , plain lines with plus symbols) without and ([ ] 
 , plain 

lines with cross symbols) with the effect of curvature. Effect of the precipitate size on the 

thermodynamic equilibrium compositions at the     interface are extracted from Fig. 2. 
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Figure 10: Time evolution of solute gradients at the     (    ) interface with the numerical 

front tracking model     
  

 developed with the     
  diffusion matrix. The curvature effect on 

equilibrium compositions is considered. Gradients are shown in (plain lines)   and (dashed 

lines)   phases for the components (a) aluminum (Al) and (b) chromium (Cr). Symbols refer 

to the values of composition gradients when velocity is equal to 0 and correspond to the time 

  . These symbols highlight the transitions observed between growth and dissolution regimes 

in the time range [1000 s, 11000 s]. Values of solute gradients corresponding to these four 

times are reported in Table 6. 
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Figure 11: Time evolution of solute flux for (a) aluminum (Al) and (b) chromium (Cr) 

component at the     (    ) interface in front tracking computation developed with     
  

diffusion matrix. The curvature effect on equilibrium compositions is considered. Diffusion 

fluxes are shown in both (plain lines)  - and (dashed lines)  - phase as defined by the Fick’s 

law at the     interface. Differences between solute fluxes are presented in order to 

highlight the changes of the sign of the velocity. Symbols refer to the times    when velocity 

is equal to 0 also corresponding to a null value for the difference between solute fluxes. 

Values of solute fluxes in the two elements corresponding to these four times are reported in 

Table 6. 
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Figure 12: Evolution of interfacial compositions in (blue)  -phase,   
   , and (orange) 

 -phase,   
   , and average composition in (purple)  -phase,  ̅ , using the numerical front 

tracking model with curvature,     
  

, for the diffusion matrix     
  . The average composition 

in precipitate,  ̅ 
 , is equal to interfacial composition,   

   . The notations   and  , 

respectively refer to the  - and   -phases. The equilibrium lines are drawn considering (dark 

gray - dashed) or not (dark gray - plain) the effect of curvature. The tie-line corresponding to 

full-equilibrium is drawn on the same diagram (black - dashed). The symbols highlight the 

four times    corresponding to the change of the velocity sign as presented in Fig. 10 and 11. 

Values of interfacial and average compositions in the two elements for times    are reported in 

Table 6. Movie of this time evolution is provided in the Supplementary Material. 

 


