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Abstract. We make precise the rate of convergence in the Lamperti’s
improvement of the Donsker Theorem on the topology of Hölder con-
tinuous functions. Then, we establish that the same rate of convergence
holds true for the convergence of the enhanced, in the sense of rough
paths theory, random walk towards the enhanced Brownian motion.

1. Introduction

The Donsker theorem says that a random walk

Xm(t) =
1√
m

[mt]
∑

k=1

Xk

where the Xk’s are independent, identically distributed random variables
with mean 0 and variance 1, converges in a functional space to the Brownian
motion B. In the original version (see [8]), the convergence was proved to
hold in the space of continuous functions. The first evolution was the paper
of Lamperti [13], which proved the convergence in Hölder spaces. Namely,
he stated that if the increments of the Xk’s are p-integrable then the random
walk Xm converges to B in Hol(1/2 − 1/p). The higher the integrability,
the stronger the topology. There are numerous other extensions which can
be made to the Donsker theorem. In the 90s, Barbour [2] estimated the
rate of convergence in the space C of continuous functions on [0, 1] equipped
with a stronger topology than the usual sup-norm topology. He proved that,
provided that E

[

|Xk|3
]

is finite, then

sup
|F |M≤1

E [F (Xm)]−E [F (B)] ≤ c
logm√

m
,

where M is roughly speaking, the set of thrice Fréchet differentiable func-
tions on C with bounded derivatives and |F |M is a function of the supre-
mum of DiF, i = 0, · · · , 3 over C. The strategy is to compare Xm with Bm,
the affine interpolation, of mesh 1/m, of the Brownian motion and then to
compare Bm with B. The latter comparison is a sample-path comparison
since the two processes live in the same probability space. This is the part
which yields the logm factor. The former comparison is done via the Stein’s
method in finite dimension. The rate of this convergence is as usual (see

[3, 14]) for Gaussian limits, of the order of m−1/2.
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In [5], we quantified the rate of convergence of Xm towards B in Besov-
Liouville spaces ([15]), which are one scale of fractional Sobolev spaces. The
spaces we considered were not included in Hölder spaces but the method
could easily be adapted to obtain convergence rate in Hölder spaces. A
slight adaptation of the proofs developed in this paper would show that
under the same hypothesis as in [2],

sup
|F |L≤1

E [F (Xm)]−E [F (B)] ≤ cm2β−1

for any β ∈ (0, 1/2) and L is the set of thrice Fréchet differentiable functions
on Wβ,3 (see below) with bounded derivatives equipped with the norm which
is the sum of the sup-norm of F and of its first three derivatives.

Note that in both [2] and [5], an higher integrability of the Xk’s would not
improve the convergence rates but would give more flexibility on the choice
of the topology in which the convergence holds: The higher the integrability,
the higher the Hölder exponent may be chosen.

In [11, Theorem 13.3.3], Friz and Victoir essentially showed that a Lam-
perti’s like result holds for the convergence of the enriched random walk in
the sense of rough path (see the definition below) to the enriched Brownian
motion.

The motivation of this paper was to quantify the rate of this convergence
in rough-paths sense. It raises several problems. The limiting process is
no longer a Gaussian process: The Lévy area of a Brownian motion is not
Gaussian. Hence we cannot expect to have a direct application of the Stein’s
method. However, there is no more randomness in the Lévy area that there
is in the Brownian motion itself: The Lévy area is adapted to the filtration
generated by the underlying Brownian motion. Saying that has two conse-
quences. First, that the probability space we have to consider depends only
on the Brownian motion. Second, that we have to find functional spaces for
which the map which sends a Brownian motion to its Lévy area is not only
continuous but also Lipschitz or at least locally Lipschitz. As mentioned in
[12], the Besov-Liouville spaces are not well fitted to deal with the iterated
integral processes we encounter in rough-paths theory. It is much better to
work with the Slobodetsky scale of fractional Sobolev spaces.

In order to avoid some complicated calculations in infinite dimensional
spaces, the idea is then to go back to the approach of [2], comparing the
random walk with the affine interpolation of the Brownian motion in the
Slobodetsky scale of fractional Sobolev spaces. This can be done by an appli-
cation of the Stein’s method in finite dimension. Then, we extend the norm
on these spaces to take into account the iterated integrals of the enriched
paths and show that the so-called signature map (see below) is Lipschitz
continuous. The final result is obtained by considering the known distance
between the enriched affine interpolation and the enriched Brownian motion
in fractional Sobolev spaces.

Besides the definition of the convenient functional spaces, one of our con-
tribution, interesting in its own, is an improvement of the Stein method.
Actually, Stein’s method for Gaussian limits in dimension 1 can be applied
to C1

b functions but when the limit is in dimension 2 or more, the stan-
dard procedure works only for functions thrice differentiable with bounded
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derivatives. We show here that we can work with Lipschitz functions in any
dimension by splitting the integral of the semi-group into two parts.

Rough paths theory is essentially a deterministic theory, it is therefore
tempting to make the estimate we need in a deterministic setting and then
to take the expectation of these bounds. This turns out to be a misleading
approach. For instance, consider a sequence of centered, independent iden-
tically distributed random variables (Xn, n ≥ 1) and let Sn =

∑n
i=1 Xi. If

we evaluate the p-th moment of Sn with Hölder inequality, we get that this
moment is bounded by a constant times mp. But if we use, as in the sequel,
the Burkholder-Davis-Gundy inequality for discrete time martingale, we get
an upper-bound proportional to mp/2. This martingale argument which is
implicitly used in [13] is the key to our work. For the sake of simplicity, this
implies to separate the treatment of the symmetric and anti-symmetric parts
of the signature. However, this is of no real importance since, as detailed
below, the symmetric part of the signature can be handled as a classical
Rd-valued process.

This paper is organized as follows: In Section 2, we give the necessary
notions about fractional Sobolev spaces and rough-paths theory. We also
give a detailed proof of Lamperti’s result in the fractional Sobolev spaces
scale for further use and comparison. In Section 3, we then define the
Kolmogorov-Rubinstein distance and show that this distance between the
random walk and the affine interpolation of the Brownian motion can be
reduced to a problem in finite dimension, should we consider a special set
of Lipschitz functions. In Section 4, we then present our development of the
Stein-Dirichlet method to estimate this distance.

2. Preliminaries

2.1. Fractional Sobolev spaces. As in [6, 12], we consider the fractional
Sobolev spaces Wη,p defined for η ∈ (0, 1) and p ≥ 1 as the the closure of C1

functions with respect to the norm

|f |pη,p =
∫ 1

0
|f(t)|p dt+

∫∫

[0,1]2

|f(t)− f(s)|p
|t− s|1+pη

dt ds.

For η = 1, W1,p is the completion of C1 for the norm:

|f |pη,p =
∫ 1

0
|f(t)|p dt+

∫ 1

0
|f ′(t)|p dt.

They are known to be Banach spaces and to satisfy the Sobolev embeddings
[1, 10]:

Wη,p ⊂ Hol(η − 1/p) for η − 1/p > 0

and

Wη,p ⊂ Wγ,q for 1 ≥ η ≥ γ and η − 1/p ≥ γ − 1/q.

As a consequence, since W1,p is separable (see [4]), so does Wη,p.

2.2. Rough paths. We give a quick introduction to the rough-paths theory.
For details, we refer to the monograph [11]. Consider T 2(Rd), the graded
algebra of step two:

T 2(Rd) = R⊕Rd ⊕ (Rd ⊗Rd).
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We endow T 2(Rd) with an algebra structure (+, .,⊗) where for all (w0, w1, w2),
(z0, z1, z2) ∈ T 2(Rd), λ ∈ R

(w0, w1, w2) + (z0, z1, z2) = (w0 + z0, w1 + z1, w2 + z2)

λ.(w0, w1, w2) = (λw0, λw1, λw2)

(w0, w1, w2)⊗ (z0, z1, z2) = (w0z0, w0z1 + z0w1, w0z2 + z0w2 + w1 ⊗ z1).

Introduce the projection maps: For i = 0, 1, 2

πi : T 2(Rd) −→ (Rd)⊗i

(w0, w1, w2) 7−→ wi,

The set

1 + t2(Rd) = {w ∈ T 2(Rd), π0(w) = 1}

=
{

g = (1, w1, w2), (w1, w2) ∈ Rd ⊕ (Rd ⊗Rd)
}

is a Lie group with respect to the tensor multiplication ⊗, [11, Prop. 7.17].
Note that

(1, w1, w2)
−1 = (1,−w1,−w2 + w1 ⊗ w1).

As usual, a Lie group, like 1+ t2(Rd), leads to a Lie algebra when equipped
with notions of product and commutator. Here, the Lie algebra is (t2(Rd),+, .)
with product ⊗ and commutator

[g,w] = g ⊗ w − w ⊗ g = 0 ⊕
(

π1(g) ⊗ π1(w)− π1(w) ⊗ π1(g)
)

,

for any w, g ∈ t2(Rd).

The exponential and logarithm maps are useful to go back and forth between
t2(Rd) and 1 + t2(Rd):

exp : t2(Rd) −→ 1 + t2(Rd)

w 7−→ 1 + w +
1

2
(π1w)

⊗2

and

log : 1 + t2(Rd) −→ t2(Rd)

(1 + w) 7−→ w − 1

2
(π1w)

⊗2.

We denote by Σ the set of finite partitions σ = {t1, · · · , tn} of [0, 1]. A con-
tinuous path z from [0, 1] into Rd is said to have 1-finite variation whenever

sup
σ={t1,··· ,tn}∈Σ

n−1
∑

i=1

|zti+1
− zti | < ∞.

The set of such functions equipped with this quantity as a norm is denoted
by C1−var.

Definition 2.1. The step-2 signature of z ∈ C1−var is given by:

S2(z) : [0, 1] −→ 1 + t2(Rd)

t 7−→
(

1, zt − z0,

∫ t

0
(zs − z0)⊗ dzs

)

.
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The free nilpotent group of order 2, G2(Rd), is the closed subgroup of 1 +
t2(Rd) defined by

G2(Rd) =
{

S2(z), z ∈ C1−V ar
}

.

We also consider Ǧ2(R
d) (Ǧ2 for short since d is fixed), the image of G2(R

d)
by the logarithm map. For z ∈ C1−var, this corresponds to consider only
the anti-symmetric part of π2(S2(z)):

Š2(z) : [0, 1] −→ t2(Rd)

t 7−→
(

zt − z0,

∫ t

0

[

(zs − z0), dzs

]

)

.

Remark 1. Denote by (ei, 1 ≤ i ≤ d) the canonical basis of Rd, so that
(ei ⊗ ej , 1 ≤ i, j ≤ d) is the canonical basis of Rd ⊗Rd. If

z(t) =

d
∑

i=1

m
∑

k=1

zik hk(t) ei

where (h1, · · · , hm) are elements of C1−var, we have

(1) log S2(z)(t) =

(

zt − z0,

∑

1≤i<j≤d

∑

1≤k<l≤m

zikzjl

(
∫ t

0
hk(s) dhl(s)−

∫ t

0
hl(s) dhk(s)

)

[ei, ej ]

)

.

For the sake of notations, we set A = {1, · · · , d} × {1, · · · ,m} and define
the ≺ relation by:

a = (a1, a2) ≺ b = (b1, b2) ⇐⇒ (a1 < b1) and (a2 < b2).

With these notations, Eqn. (1) then becomes

log S2(z)(t) =

(

zt − z0,

∑

a≺b

zazb

(∫ t

0
ha2(s) dhb2(s)−

∫ t

0
hb2(s) dha2(s)

)

[ea1 , eb1 ]

)

.

The group G2(Rd) has the structure of a sub-Riemannian manifold. We
will not dwell into the meanders of this very rich but intricate structure. It
suffices to say that we can proceed equivalently by considering usual norms
as follows.

For α ∈ (0, 1), a path w = 1⊕ w1 ⊕ w2 is said to be α-Hölder whenever

ρα(w) = max

(

sup
s 6=t

|w1(t)− w1(s)|
|t− s|α , sup

s 6=t

|π2(w(s)−1 ⊗ w(t))|1/2
|t− s|α

)

< ∞.

Note that for z ∈ C1−var,

ρα(S2(z)) = max






sup
s 6=t

|z(t)− z(s)|
|t− s|α , sup

s 6=t

∣

∣

∣

∫ t
s (zr − zs)⊗ dzr

∣

∣

∣

1/2

|t− s|α






.
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Definition 2.2. We denote by Hα(t
2(Rd)), the vector space of paths w

from [0, 1] into t2(Rd) such that ρα(w) is finite. It is equipped with the
homogeneous norm: For w and v in Hα(t

2(Rd))

|w − v|Hα(t2(Rd)) = ρα(w − v) = ρα
(

(w1 − v(1))⊕ (w2 − v(2))
)

.

Unfortunately, as mentioned in [11, Chapter 8.3], this metric space is
complete but not separable, which is unacceptable for our purpose (see Def-
inition 3.1 and the remark below). We thus introduce fractional Sobolev
spaces as in [12].

Definition 2.3. For any η ∈ (0, 1), any p ≥ 2, Ǧ2W η,p is the vector space

of paths w from [0, 1] into t2(Rd) such that

|w1|pη,p +
∫∫

[0,1]2

∣

∣

∣
π2[w

−1
s , wt]

∣

∣

∣

p/2

|t− s|1+ηp
ds dt < ∞.

The distance on Ǧ2W η,p is defined by

|w − v|Ǧ2W η,p
= |π1(w)− π1(v)|Wη,p

+







∫∫

[0,1]2

∣

∣

∣
π2[w

−1
s , wt]− π2[v

−1
s , vt]

∣

∣

∣

p/2

|t− s|1+ηp
ds dt







1/p

.

Following [12], we know that Ǧ2W η,p is a Banach space included into

Hα(t
2(Rd)) for α = η − 1/p, provided α > 0.

Lemma 2.1. For any η ∈ (0, 1), any p ≥ 2, Ǧ2W η,p is separable.

Proof. Consider the map κ defined as

κ : ([0, 1] → t2(R
d)) −→ ([0, 1]2 → t2(R

d))

w 7−→
(

(s, t) 7→
(

π1(wt)− π1(ws), π2
[

w−1
s , wt

]

)

)

.

Consider the measure dµη,p(s, t) = |t− s|−1−ηp ds dt. Then,

(2) |w|Ǧ2W η,p
= |π1 ◦ κ(w)|Lp(µη,p) + |π2 ◦ κ(w)|1/2Lp/2(µ2η,p/2)

.

For any p ≥ 1 and η ∈ (0, 1), Lp(µη,p) is isometrically isomorphic to

Lp(ds dt) hence it is separable. This entails that E = Lp(µη,p)×Lp/2(µ2η,p/2)
is separable. Equation (2) means that the application T which maps w ∈
Ǧ2W η,p to the couple (π1 ◦ κ(w), π2 ◦ κ(w)) ∈ E, is an isometry. Thus

Ǧ2W η,p is isometrically isomorphic to a closed subspace of the separable
space E, hence it is separable. �

2.3. Donsker-Lamperti theorem. For the sake for completeness and for
further comparison, we give the proof of the Donsker-Lamperti theorem
in the scale of fractional Sobolev spaces, which induces the convergence in
Hölder spaces.
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Definition 2.4. The random walk associated to the sequence (Xk, k ≥ 1)
is defined by

Xm(t) =
√
m

m
∑

k=1

Xk r
m
k (t) =

m
∑

k=1

Xk h
m
k (t)

where

rmk (t) =

∫ t

0
1((k−1)/m, k/m](s) ds and hmk =

√
m rmk .

Theorem 2.2. If for any k ≥ 1, Xk belongs to Lp for some p ≥ 2, then
there exists c > 0 such that

(3) sup
m≥1

E
[∣

∣

∣

∑m
k=1Xk

√
m (rmk (t)− rmk (s))

∣

∣

∣

p]

|t− s|p/2 < cE [|X1|p]

Proof. For 0 ≤ s < t ≤ 1 fixed, the discrete time process

Y st
m =

m
∑

k=1

Xk(r
m
k (t)− rmk (s))

is a martingale with respect to the filtration Fn = σ(Xk, 1 ≤ k ≤ m). The
Burkholder-Davis-Gundy [17] entails that

mpE

[∣

∣

∣

∣

∣

m
∑

k=1

Xk (r
m
k (t)− rmk (s))

∣

∣

∣

∣

∣

p]

≤ cmp/2E





∣

∣

∣

∣

∣

m
∑

k=1

X2
k (r

m
k (t)− rmk (s))2

∣

∣

∣

∣

∣

p/2


 .

If |t− s| ≤ 1/m, there is at most two values of k such that rmk (t)− rmk (s) is
not zero. Furthermore,

|rmk (t)− rmk (s)| ≤ |t− s|
hence

|rmk (t)− rmk (s)|2 ≤ m−1|t− s|.
In this situation,

E





∣

∣

∣

∣

∣

m
∑

k=1

X2
k (r

m
k (t)− rmk (s))2

∣

∣

∣

∣

∣

p/2


 ≤ cm−p/2E [|X1|p] |t− s|p/2,

so that (3) holds true for |t− s| ≤ 1/m. For |t− s| > 1/m, we remark that
rmk (t)− rmk (s) is not null for at most [m(t− s)] + 2 values of k and since rmk
is Lipschitz continuous, |rmk (t) − rmk (s)| ≤ 1/m for such value of k. Hence,
by convexity inequality,

E





∣

∣

∣

∣

∣

m
∑

k=1

X2
k (r

m
k (t)− rmk (s))2

∣

∣

∣

∣

∣

p/2


 ≤ c (m|t− s|+ 2)p/2 m−pE [|X1|p]

≤ cm−p/2 E [|X1|p] |t− s|p/2.
Hence, (3) is true for |t− s| ≥ 1/m. �

It is then straightforward that we have:
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Corollary 2.3. Assume that for any k ≥ 1, Xk belongs to Lp for some

p ≥ 2. Then, for any η < 1/2,

sup
m≥1

E
[

|Xm|pWη,p

]

< ∞.

Proof. Actually, (s, t) 7→ |t − s|p/2 is µη,p-integrable provided that p(1/2 −
η) > 0, i.e. η < 1/2. �

Corollary 2.4 (Lamperti). Assume that for any k ≥ 1, Xk belongs to Lp

for some p ≥ 2. Then, for any 1/p < η < 1/2, the sequence (Xm, m ≥ 1)
converges in distribution in Hol(η − 1/p) to B.

Proof. It is well-known that the finite dimensional distributions of Xm con-
verge to that of B. From the previous lemma, we know that for any
0 < η < ζ < 1/2, there exists K such that

sup
m≥1

P(|Xm|Wζ, p) ≥ K) ≤ η.

The embedding of Wζ,p into Wη, p is compact, hence the sequence (Xm, m ≥
1) is tight in Wη,p hence convergent. The result follows by the continuous
embedding of Wη,p into Hol(η − 1/p). �

3. Rate of convergence

3.1. Kolmogorov-Rubinstein distance. The proof of Lamperti’s Theo-
rem is given for one dimensional processes but it can be straightforwardly
adapted to Rd-valued random walks and Brownian motion: Xm becomes
the Rd-valued process

Xm(t) =
√
m
∑

a∈A

Xa ra2(t) ea1 =
∑

a∈A

Xa ha(t)

where ha(t) =
√
m ra2(t) ea1 and (Xa, a ∈ A) is a family of independent

identically distributed random variables of mean 0 and variance 1. Further-
more, B is the d-dimensional Brownian motion:

B(t) =
d
∑

i=1

Bi(t) ei.

The enriched Brownian motion B, is the G2(R
d)-value process defined by

B(t) = 1⊕B(t)⊕
d
∑

i,j=1

∫ t

0
Bi(s) ◦ dBj(s) ei ⊗ ej , for any t ∈ [0, 1],

where the stochastic integrals are to be understood in the Stratonovitch
sense. Theorem 13.32 of [11] says that S2(X

m) converges to B in some
Hölder type spaces. Our primary goal is to give the rate of this convergence.
For, we need to define a distance between probability measures over Hölder
spaces. There are several possibilities of such a definition, the best suited
for an estimate by the Stein method is the Kolmogorov-Rubinstein distance:
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Definition 3.1 (Kolmogorov-Rubinstein distance). For µ and ν two prob-
ability measures on a metric space (W,dW ), their Kolmogorov-Rubinstein
distance is given by

distkr(µ, ν) = sup
F∈Lip(dW )

∫

W
F dµ−

∫

W
F dν,

where

Lip(dW ) =
{

F : W → R, ∀w, v ∈ W, |F (w) − F (v)| ≤ dW (w, v)
}

.

Theorem 11.3.3 of [9] states that the topology induced by this distance on
the set of probability measures on W is the same as the topology of the con-
vergence in laws whenever the metric space W is separable. Unfortunately,
as we already mentioned, Hölder spaces are not separable, thus to have a
meaningful result, we turn to work on fractional Sobolev spaces. It is of no
importance since Sobolev embeddings ensure that convergence in fractional
Sobolev spaces induces convergence in Hölder spaces as for the Lamperti
Theorem.

Our new goal is then to estimate the Kolmogorov-Rubinstein distance in
G2Wη,p between B and S2(X

m). Remark that

π2S2(X
m) = π2Š2(X

m)

+ 2
∑

a∈A

(X2
a − 1)

∫ t

0
hma (s)⊗ dhma (s) +

∑

a∈A

hma (t)⊗ hma (t)

= Um
1 + Um

2 + Um
3 .

On the other hand,

B(t) =
∑

1≤i<j≤d

(
∫ t

0
Bi(s) ◦ dBj(s)−

∫ t

0
Bj(s) ◦ dBi(s)

)

[ei, ej ]

+ 2

d
∑

i=1

∫ t

0
Bi(s) dBi(s) ei ⊗ ei +

d
∑

i=1

t ei

= logB(t) + U2 + U3.

where in U2, the stochastic integral is taken in the Itô sense. Direct com-
putations show that Um

3 − U3 tends to 0 as 1/m. The convergence of Um
2

towards U2 is of the same kind as the standard Donsker theorem: It follows
the same convergence rate as that of the convergence of Xm to B; a rate
which is expected and which will turn out to be much slower than 1/m. In
summary, the Kolmogorov-Rubinstein distance between B and S2(X

m) has
the same asymptotic behavior as the distance between logB and Š2(X

m).
Our final objective is then to estimate the Kolmogorov-Rubinstein distance
between the distributions of logB and Š2(X

m) in Ǧ2Wη,p.

3.2. Reduction to finite dimension. Should we follow the same proce-
dure as the one we used in [5], we would face the same complications to
compute the trace term in some infinite dimensional space. To circumvent
this difficulty, we decompose the distance into two parts: Consider Bm the
affine interpolation of B, we use the results of [11] to estimate the distance
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between Š2(B
m) and logB and then resort to the Stein’s method in finite

dimension to estimate the distance between Š2(X
m) and Š2(B

m). We can
always write

sup
F∈Lip(d

Ǧ2Wη,p
)
E [F (logB)]−E

[

F (Š2(X
m))
]

≤ sup
F∈Lip(d

Ǧ2Wη,p
)
E [F (logB)]−E

[

F (Š2(B
m))
]

+ sup
F∈Lip(d

Ǧ2Wη,p
)
E
[

F (Š2(B
m))
]

−E
[

F (Š2(X
m))
]

.

On the one hand, since logB and Š2(B
m) live on the same probability space,

for F ∈ Lip(dǦ2W η,p
), according to [11, Proposition 13.20],

(4)

E [F (logB)]−E
[

F (Š2(B
m))
]

≤ E
[

| logB− Š2(B
m)|Ǧ2Wη,p

]

≤ cm−(1/2−η).

It remains to estimate

sup
F∈Lip(d

Ǧ2Wη,p
)
E
[

F (Š2(B
m))
]

−E
[

F (Š2(X
m))
]

.

Theorem 3.1. If p ≥ 3 and Xa belongs to Lp, for any η ∈ (1/p, 1/2),

sup
F∈Lip(Ǧ2W η,p)

E
[

F (Š2(B
m))
]

−E
[

F (Š2(X
m))
]

≤ c ‖Xa‖Lp m−1/2+η .

Proof of Theorem. According to Theorem 4.5,

E
[∣

∣Pτ0F (Š2(X
m)− F (Š2(X

m)
∣

∣

]

≤ c ‖Xa‖Lp m−1/2+η
√

1− e−τ0 .

Combine this upper-bound with (8) to obtain

sup
F∈Lip(Ǧ2Wη,p)

E
[

F (Š2(B
m))
]

−E
[

F (Š2(X
m))
]

≤ cm−1/2+η ‖Xa‖Lp

(

√

1− e−τ0 +m2η

∫ ∞

τ0

e−5τ/2

1− e−τ/2
dτ

)

.

The bracketed term is decreasing with respect to τ0 and tends to 1 as τ0
goes to infinity, hence the result. �

We now detail the proofs of the main estimates.

4. Improved Stein method

4.1. Finite dimensional Gelfand triplet. The title of this section may
seem pompous at first reading but the construction of the Wiener space
we are working on is of crucial importance and not so usual. In view of
the previous considerations, our computations are to be held in a finite
dimensional space and Gelfand triplet (or abstract Wiener space) are mainly
thought to be relevant for infinite dimensional spaces. Actually, our settings
should reflect the fact that we are in some sense, projecting an abstract
Wiener infinite dimensional space onto a finite dimensional Gelfand triplet.
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Recall that A = {1, · · · , d}×{1, · · · ,m}. Let Vm be the finite dimensional
vector space

Vm = span{hma , a ∈ A}
We put on Vm the norm of Wη,p. We denote by W , the space Vm equipped
with this norm. To simplify the forthcoming computations, it is useful to
introduce

gma = α−1
m hma = α−1

m (ha2 ⊗ ea1),

where the coefficient αm is chosen so that |gma |Wη,p = 1.
Furthermore, consider the space H which is Vm equipped with the scalar

product:

(gma , gmb )H = δa,b.

Recall that

Bm =
∑

a∈A

Ba h
m
a = αm

∑

a∈A

Ba g
m
a .

Let Pm be the distribution of Bm, it is a centered Gaussian probability
measure on Vm with covariance matrix α2

m Id. The triplet (H,W,Pm) is a
Gelfand triplet: Pm is a Gaussian measure on (the Banach space) W , which
contains (as a dense subset) the (Hilbert) space H and

∫

W
ei〈η,ω〉W∗ ,W dPm(ω) = exp(−1

2
|ι∗(η)|2H )

where

W ∗ ι∗−→ H∗ ≃ H
ι−→ W.

In a finite dimensional setting, all these spaces and their dual are isomorphic
and isomorphic to Rdm, but we cannot identify more than one space with
its dual, hence the necessity to define precisely the Gelfand triplet.

4.2. Malliavin-Dirichlet structure. In particular, the Cameron-Martin
theorem reads as:

(5) E

[

F (Bm + αm

∑

a∈A

ya g
m
a )

]

= E

[

F (Bm) exp
(

αm 〈y,Bm〉H − α2
m

2
|y|2H

)

]

.

We denote by ∇F the H valued gradient of F provided that it exists: For
any v ∈ Vm, for any g ∈,

〈∇F (v), g〉H,H =
d

dε
F (v + εg)

∣

∣

∣

∣

ε=0

.

The space of twice differentiable functions on Vm is denoted by C2(Vm). The
Fréchet Laplacian is defined by:

∆F (v) = trace∇(2)F (v) =
∑

a∈A

〈

∇(2)F (v), gma ⊗ gma

〉

H⊗2,H⊗2
.

Let L be the operator defined on C2(Vm) by:

LF (v) = −〈∇F (v), v〉H,H + α2
m∆F (v).
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The Cameron-Martin theorem (see Eqn. (5)) yields an integration by parts
formula on W which can be interpreted by saying that the distribution of
Bm on Vm is characterized by E [LF ] = 0 for any F ∈ C2(Vm). It induces
an Ornstein-Uhlenbeck semi-group (Pt, t ≥ 0) which can be described by
the Mehler formula:

PtF (v) =

∫

Vm

F (e−tv + βtw) dP
m(w),

where βt = (1− e−2t)1/2.
Introduce for any a ≺ b ∈ A and any 0 ≤ s < t ≤ 1,

ǧma,b(s, t)

=

{∫ t

s

(

gma2(r)− gma2(s)
)

dgmb2(r)−
∫ t

s

(

gmb2(r)− gmb2(s)
)

dgma2(r)

}

[ea1 , eb1 ].

Lemma 4.1. For any ω = (ωk, 1 ≤ k ≤ m), we have

|
m
∑

k=1

ωk h
m
k |

var,[s,t] ≤
√
m

m
∑

k=1

|ωk|
{

(t− s) ∧ 1

m

}

·

Moreover,

|
m
∑

k=1

ωk h
m
k |η,p ≤ cm−(1/2−η).

Proof. For k 6= ℓ, dhmk dhℓ = 0 hence their contribution to the overall
variation are separate:

‖
m
∑

k=1

ωk h
m
k ‖var,[s,t] =

m
∑

k=1

|ωk|‖hmk ‖var,[s,t].

It is easy to see that

‖hmk ‖var,[s,t] =
√
m (t ∧ k

m
− s ∨ k − 1

m
) ≤

√
m

{

(t− s) ∧ 1

m

}

·

The proof is thus complete. �

Lemma 4.2. For any τ > 0, for any v ∈ Vm, for any F ∈ Lip(Ǧ2W η,p),
we have

(6)
〈

∇(2)PτF (v), gma ⊗ gma

〉

=
e−3τ/2

β2
τ/2

∫∫

F
(

v(τ, y, z)
)

(y, gma )H(z, gma )H dPm(y) dPm(z),

where

v(τ, y, z) = e−τ/2(e−τ/2v + βτ/2y) + βτ/2z.

Moreover, there exists a constant c such that

(7)
∣

∣

∣

〈

∇(3)PτF (v), (gma )⊗(3)
〉∣

∣

∣

≤ c
e−5τ/2

β2
τ/2

(

∫∫

∣

∣

∣

∑

b≺a

(

vb ǧ
m
a,b

)

st

∣

∣

∣

p/2
dµη,p(t, s)

)1/p

.
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Proof. Following [16, Lemma 4.5], we have
〈

∇(2)PτF (v), gma ⊗ gma

〉

=
e−τ

βτ/2

∫

〈

∇Pτ/2F (e−τ/2v + βτ/2y), g
m
a

〉

(y, gma )H dPm(y),

where we use integration by parts to have the following representation of
the first order gradient:

〈

∇Pτ/2F (w), gma
〉

=
e−τ/2

βτ/2

∫

F (e−τ/2w + βτ/2z) (z, g
m
a )H dPm(z).

Plugging in this equation in the former yields (6). Moreover,

(v + ǫgma )(τ, y, z) = ǫe−τgma + v(τ, y, z)

and
∣

∣

∣
Š2

(

ǫe−τgma + v(τ, y, z)
)

− Š2

(

v(τ, y, z)
)∣

∣

∣

Wη,p

≤ ǫ e−τ



1 +

(

∫∫

∣

∣

∣

∑

b≺a

(

vb ǧ
m
a,b

)

st

∣

∣

∣

p/2
dµη,p(t, s)

)1/p


 .

Hence, (7) holds true. �

Lemma 4.3. Let (Ua, a ∈ A) be a family of independent identically dis-

tributed random variables which belong to Lp. Then,

E





∣

∣

∣

∣

∣

Ua

∑

b≺a

Ub ǧ
m
a,b

∣

∣

∣

∣

∣

p

Wη,p



 ≤ cE [|Ua|p]2 .

Proof. By independence and as in the proof of Theorem 2.2,

E

[∣

∣

∣

∣

∣

Ua

∑

b≺a

Ub ǧ
m
a,b(s, t)

∣

∣

∣

∣

∣

p]

≤ cE [|Ua|p]E





(

∑

b≺a

|Ub|2|ǧma,b(s, t)|2
)p/2



 .

Since a is fixed and b ≺ a, if |t−s| ≤ 1/m, ǧma,b is not zero only for b2 = a2−1

and then, it is bounded by |t − s|/√m. If |t − s| ≥ 1/m, ǧma,b is not zero

for at most [dm|t− s|] values of b and then, each term is bounded by 1/m.
Hence

E





(

∑

b≺a

|Ub|2|ǧma,b(s, t)|2
)p/2



 ≤ cm−p/2(m|t− s|)p/2E [|Ub|p] .

The result follows by integration with respect to µη,p. �

4.3. Main computations. Recall that

Xm = αm

∑

a∈A

Xa g
m
a and Bm = αm

∑

a∈A

Ba g
m
a .

and that we expect to estimate the supremum, for F ∈ Lip(Ǧ2W η,p), of

E
[

F (Š2B
m)
]

−E
[

F (Š2X
m)
]

.
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For the sake of notations, we set F̌ = F ◦ Š2. The Stein-Dirichlet represen-
tation formula (see [7]) then stands that

E
[

F̌ (Bm)
]

−E
[

F̌ (Xm)
]

= E

[
∫ ∞

0

d

dt
Pτ F̌ (Xm) dτ

]

= E
[

Pτ0F̌ (Xm)− F̌ (Xm)
]

+E

[∫ ∞

τ0

LPτ F̌ (Xm) dτ

]

,

for any τ0 > 0.

Theorem 4.4. If p ≥ 3 and Xa belongs to Lp, for any τ0 > 0, there exists

c > 0 such that

(8) E

[∫ ∞

τ0

LPτ F̌ (Xm) dτ

]

≤ c ‖Xa‖Lp/2 m−1/2+3η

∫ ∞

τ0

e−5τ/2

1− e−τ/2
dτ.

Proof. Let Xm
¬a = Xm −Xag

m
a . Since the Xa’s are independent,

E
[〈

∇Pτ F̌ (Xm), Xm
〉]

= αm E

[

∑

a∈A

Xa

〈

∇Pτ F̌ (Xm), gma
〉

]

= αm E

[

∑

a∈A

Xa

〈

∇Pτ F̌ (Xm)−∇Pτ F̌ (Xm
¬a), g

m
a

〉

]

= α2
m E

[

∑

a∈A

X2
a

〈

∇(2)Pτ F̌ (Xm
¬a), g

m
a ⊗ gma

〉

]

+ α3
m E

[

∑

a∈A

X3
a

∫ 1

0
(1− r)

〈

∇(3)Pτ F̌ (Xm
¬a + r Xag

m
a ), gma

⊗3
〉

dr

]

,

according to the Taylor formula. Since E
[

X2
a

]

= 1, we have

E [LPτF (Xm)]

= −α2
m E

[

∑

a∈A

〈

∇(2)Pτ F̌ (Xm
¬a)−∇(2)Pτ F̌ (Xm), gma ⊗ gma

〉

]

+ α3
m E

[

∑

a∈A

X3
a

∫ 1

0
(1− r)

〈

∇(3)Pτ F̌ (Xm
¬a + rαmXag

m
a ), gma

⊗3
〉

dr

]

:= −α2
m

e−3τ/2

β2
τ/2

A1 + α3
m

e−5τ/2

β2
τ/2

A2.

In view of (6),

A1 =
∑

a∈A

E

[∫∫

[

F̌
(

Xm(τ, y, z)
)

− F̌
(

Xm
¬a(τ, y, z)

)

]

×(y, gma )H(z, gma )H dPm(y) dPm(z)] .

Since F is Lipschitz continuous, we get

|A1| ≤ αm

∑

a∈A

Ba
1 + αm

∑

a∈A

Ba
2 ,
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where

Ba
1 =

∫∫

E
[

|Xm(τ, y, z) −Xm
¬a(τ, y, z)|Wη,p

]

× (y, gma )H(z, gma )H dPm(y) dPm(z)

Ba
2 =

∫∫

E

[(

∫∫

[0,1]2

∣

∣

∣π2
(

S2(X
m(τ, y, z)) − S2(X

m
¬a(τ, y, z))

)

s,t

∣

∣

∣

p/2

dµη,p(t, s)

)1/p


× (y, gma )H(z, gma )H dPm(y) dPm(z).

Since gma has unit norm in Wη,p, we readily have

Ba
1 ≤ e−τ E [|Xa|]

(
∫

|(y, gma )H | dPm(y)

)2

≤ c e−τE [|Xa|p]1/p .

Now then,

(

π2Š2(X
m(τ, y, z)) − π2Š2(X

m
¬a(τ, y, z))

)

s,t

= Xa(τ, y, z)
∑

b≺a

Xb(τ, y, z) ǧ
m
a,b(s, t).

Apply Hölder inequality,

|Ba
2 | ≤

∫∫

(

∫∫

[0,1]2
E

[

∣

∣

∣Xa(τ, y, z)
∑

b≺a

Xb(τ, y, z) ǧ
m
a,b(s, t)

∣

∣

∣

p/2
]

dµη,p(t, s)

)1/p

× |(y, gma )H ||(z, gma )H | dPm(y) dPm(z).

For y and z fixed, the family (Xa(τ, y, z), a ∈ A) satisfies the hypothesis of
Lemma 4.3, hence

|Ba
2 | ≤ c

∫∫

E
[

|Xa(τ, y, z)|p/2
]2/p

|(y, gma )H ||(z, gma )H | dPm(y) dPm(z)

≤ c ‖Xa‖Lp/2 .

It follows that for any a ∈ A, Ba
1 and Ba

2 are bounded with respect to m by
a constant times the p-th moment of Xa to the square. Since |A| = dm, A1

is bounded by m times this upper-bound. In view of (7), the same kind of
computations can be done for A2. Combining these upper-bounds, we get
the existence of a constant c such that for any τ ≥ τ0,

∣

∣E
[

LPτ F̌ (Xm)
]∣

∣ ≤ c ‖Xa‖Lp/2

e−5τ/2

β2
τ/2

mα3
m.

Since αm = m−1/2+η , the result follows. �

Theorem 4.5. For any τ0 > 0,

∣

∣E
[

Pτ0 F̌ (Xm)− F̌ (Xm)
]∣

∣ ≤ c ‖Xa‖Lp m−1/2+η
√

1− e−τ0 .
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Proof.
∣

∣E
[

Pτ0 F̌ (Xm)− F̌ (Xm)
]∣

∣

≤ E

[∫

∣

∣

∣F̌ (e−τ0Xm + βτ0y)− F̌ (Xm)
∣

∣

∣ dPm(y)

]

≤ αm E
[

|(1 − e−τ0)Xm + βτ0y|Wη,p dPm(y)
]

+ αm E





∫

(

∫∫

[0,1]2
U(Xm)s,t dµη,p(s, t)

)1/p

dPm(y)



 ,

where

U(Xm)s,t =
∣

∣

∣
π2(Š2(β

2
τ0X

m + βτ0y)s,t − Š2(X
m)s,t)

∣

∣

∣

p
.

Thus,
∣

∣E
[

Pτ0 F̌ (Xm)− F̌ (Xm)
]∣

∣

≤ c βτ0αm

(

‖Xm‖Wη,p +

∫

|y| dPm(y))

)

≤ c ‖Xa‖Lp m−1/2+η
√

1− e−τ0 ,

according to Corollary 2.3. �
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l’Institut Henri Poincaré (B) Probability and Statistics 41 (2005), 123–149.

[7] L. Decreusefond, The Stein-Dirichlet-Malliavin method, ESAIM: Proceedings (2015),
11.

[8] M. D. Donsker, An invariance principle for certain probability limit theorems, Mem.
Amer. Math. Soc. 6 (1951).

[9] R. M. Dudley, Real analysis and probability, vol. 74, Cambridge Studies in Advanced
Mathematics, no. 3, Cambridge University Press, Cambridge, 2002.

[10] D. Feyel and A. de La Pradelle, On fractional Brownian processes, Potential Anal.
10 (1999), no. 3, 273–288.

[11] P. Friz and N. Victoir, Multidimensional stochastic processes as rough paths, Cam-
bridge Studies in Advanced Mathematics, vol. 120, Cambridge University Press, Cam-
bridge, 2010.

[12] P. Friz and N. Victoir, A variation embedding theorem and applications, Journal of
Functional Analysis 239 (2006), no. 2, 631–637.

[13] J. Lamperti, On convergence of stochastic processes, Transactions of the American
Mathematical Society 104 (1962), 430–435.

[14] I. Nourdin and G. Peccati, Normal Approximations with Malliavin Calculus: From

Stein’s Method to Universality, vol. 11, Cambridge University Press, 2012.
[15] S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives,

Gordon and Breach Science, jun 1993.



CONVERGENCE RATE IN THE ROUGH DONSKER THEOREM 17

[16] H.-H. Shih, On Stein’s method for infinite-dimensional Gaussian approximation in

abstract Wiener spaces, Journal of Functional Analysis 261 (2011), no. 5, 1236–1283.
[17] D. Williams, Probability with martingales, Cambridge Mathematical Textbooks,

vol. 14, Cambridge University Press, Cambridge, 1991.
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