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We introduce several mechanisms to dissipate the energy in the Benjamin-Bona-Mahony (BBM) equation. We consider either a distributed (localized) feedback law, or a boundary feedback law. In each case, we prove the global wellposedness of the system and the convergence towards a solution of the BBM equation which is null on a band. If the Unique Continuation Property holds for the BBM equation, this implies that the origin is asymptotically stable for the damped BBM equation.

Introduction

The Benjamin-Bona-Mahony equation

v t -v xxt + v x + vv x = 0, (1.1) 
was proposed in [START_REF] Benjamin | Model equations for long waves in nonlinear dispersive systems[END_REF] as an alternative to the Korteweg-de Vries (KdV) equation as a model for the propagation of one-dimensional, unidirectional, small amplitude long waves in nonlinear dispersive media. In the context of shallow water waves, v = v(x, t) stands for the displacement of the water surface (from rest position) at location x and time t. In the paper, we shall assume that either x ∈ R, or x ∈ (0, L) or x ∈ T = R/(2πZ) (the one-dimensional torus). The dispersive term -v xxt produces a strong smoothing effect for the time regularity, thanks to which the wellposedness theory of (1.1) is easier than for KdV (see [START_REF] Bona | Sharp well-posedness for the BBM equation[END_REF][START_REF] Roumégoux | A symplectic non-squeezing theorem for BBM equation[END_REF]). Solutions of (1.1) turn out to be analytic in time. On the other hand, the control theory is at his early stage for BBM (for the control properties of KdV, we refer the reader to the recent survey [START_REF] Rosier | Control and stabilization of the Korteweg-de Vries equation: recent progresses[END_REF]). S. Micu investigated in [START_REF] Micu | On the controllability of the linearized Benjamin-Bona-Mahony equation[END_REF] the boundary controllability of the linearized BBM equation, and noticed that the exact controllability fails due to the existence of a limit point in the spectrum of the adjoint equation. The author and B.-Y. Zhang introduced in [START_REF] Rosier | Unique continuation property and control for the Benjamin-Bona-Mahony equation[END_REF] a moving control and derived with such a control both the exact controllability and the exponential stability of the full BBM equation. For a distributed control with a fixed support, the exact controllability of the linearized BBM equation fails, so that the study of the controllability of the full BBM equation seems hard. However, it is reasonable to expect that some stability properties could be derived by incorporating some dissipation in a fixed subdomain or at the boundary. The aim of this paper is to propose several dissipation mechanisms leading to systems for which one has both the global existence of solutions and 1 a nonincreasing H 1 -norm. The conclusion that all the trajectories emanating from data close to the origin are indeed attracted by the origin is valid provided that the following conjecture is true:

Unique Continuation Property (UCP) Conjecture: There exists some number δ > 0 such that for any

v 0 ∈ H 1 (T) with v 0 H 1 (T) < δ, if the solution v = v(x, t) of v t -v xxt + v x + vv x = 0, x ∈ T, v(x, 0) = v 0 (x), x ∈ T (1.2) satisfies v(x, t) = 0 ∀(x, t) ∈ ω × (0, T ) (1.3)
for some nonempty open set ω ⊂ T and some time T > 0, then v 0 = 0 (and hence v ≡ 0).

To the best knowledge of the author, the UCP for BBM as stated in the above conjecture is still open. The main difficulty comes from the fact that the lines x = 0 are characteristic for BBM, so that the "information" does not propagate well in the x-direction. For some UCP for BBM (with additional assumptions) see [START_REF] Rosier | Unique continuation property and control for the Benjamin-Bona-Mahony equation[END_REF][START_REF] Yamamoto | One unique continuation for a linearized Benjamin-Bona-Mahony equation[END_REF]. See also [START_REF] Micu | Control and stabilization of a family of Boussinesq systems[END_REF][START_REF] Micu | Stabilization of a Boussinesq system with localized damping[END_REF] for control results for some Boussinesq systems of BBM-BBM type.

The following result is a conditional UCP in which it is assumed that the initial data is small in the L ∞ -norm and it has a nonnegative mean value. Its proof was based on the analyticity in time of the trajectories and on the use of some Lyapunov function.

Theorem 1 [START_REF] Rosier | Unique continuation property and control for the Benjamin-Bona-Mahony equation[END_REF] Let u 0 ∈ H 1 (T) be such that

T v 0 (x) dx ≥ 0, (1.4 
)

and v 0 L ∞ (T) < 3. (1.5)
Assume that the solution v to (1.2) satisfies (1.3). Then v 0 = 0.

As it was noticed in [START_REF] Rosier | Unique continuation property and control for the Benjamin-Bona-Mahony equation[END_REF], the UCP for BBM cannot hold for any state in L 2 (T), for any initial data v 0 with values in {-2, 0} gives a trivial (stationary) solution of BBM. Thus, either a regularity assumption (v 0 ∈ H 1 (T)), or a bound on the norm of the initial data has to be imposed for the UCP to hold.

The paper is outlined as follows. In Section 2, we incorporate a simple localized damping in BBM equation and investigate the corresponding Cauchy problem. In Section 3, we consider another dissipation mechanism involving one derivative. The last section is concerned with the introduction of nonhomogeneous boundary conditions leading again to the dissipation of the H 1 -norm.

Stabilization of the BBM equation 2.1 Internal stabilization with a simple feedback law

We consider the BBM equation on T with a localized damping

u t -u xxt + u x + uu x + a(x)u = 0 x ∈ T, t ≥ 0, (2.1) u(x, 0) = u 0 (x) x ∈ T, (2.2) 
where a is a smooth, nonnegative function on T with a(x) > 0 on a given open set ω ⊂ T. We write (2.1)-(2.2) in its integral form

u(t) = u 0 - t 0 (1 -∂ 2 x ) -1 [a(x)u + (u + u 2 2 ) x ](τ )dτ (2.3) where (1 -∂ 2 x ) -1 f denotes for f ∈ L 2 (T) the unique solution v ∈ H 2 (T) of (1 -∂ 2 x )v = f . Define the norm • s in H s (T) as n∈Z c n e inx 2 s = n∈Z |c n | 2 (1 + |n| 2 ) s .
We have the following result.

Theorem 2 Let s ≥ 0 be given. For any u 0 ∈ H s (T), there exist T > 0 and a unique solution u of

(2.3) in C([0, T ], H s (T)). Moreover, the correspondence u 0 ∈ H s (T) → u ∈ C([0, T ], H s (T)) is Lipschitz continuous. If s = 1
, the solution exists for every T > 0, and the energy u(t) 2 1 is nonincreasing. Finally, if v 0 denotes any weak limit in H 1 (T) of a sequence u(t n ) with t n ր +∞, then the solution v of system (1.2) satisfies (1.3). In particular, if the UCP conjecture holds, then v 0 = 0, so that u(t) → 0 weakly in H 1 (T) as t → +∞, hence strongly in H s (T) for all s < 1.

Proof. We proceed as in [START_REF] Bona | Boussinesq equations and other systems for smallamplitude long waves in nonlinear dispersive media[END_REF] using the estimate

||f g|| s ≤ C||f || s+1 ||g|| s+1 ∀s ≥ -1, ∀f, g ∈ H s+1 (T). (2.4)
The estimate (2.4) follows from a similar estimate proved in [START_REF] Bona | Boussinesq equations and other systems for smallamplitude long waves in nonlinear dispersive media[END_REF] for functions defined on R, namely

|| f g|| H s (R) ≤ C|| f || H s+1 (R) ||g|| H s+1 (R) ∀s ≥ -1, ∀f, g ∈ H s+1 (R), (2.5) by letting f (x) = ϕ(x)f (x), g(x) = ϕ(x)g(x)
, where f and g are viewed as 2π-periodic functions, and

ϕ ∈ C ∞ 0 (R) denotes a cut-off function such that ϕ(x) = 1 on [0, 2π]. Indeed, we notice that ||f || H s (T) ≤ || f || H s (R) ≤ C||f || H s (T)
for some constant C > 0. Note that for any s ≥ 0

||(1 -∂ 2 x ) -1 ∂ x (f g)|| s ≤ C||f g|| s-1 ≤ C||f || s ||g|| s .
Pick any u 0 ∈ H s (T). Let us introduce the operator

(Γu)(t) := u 0 - t 0 (1 -∂ 2 x ) -1 [a(x)u + (u + u 2 2 ) x ](τ )dτ. Then sup 0≤t≤T ||(Γu -Γv)(t)|| s ≤ C 2 T 0 [||a(u -v)|| s-2 + ||u -v|| s-1 + ||u -v|| s ||u + v|| s ]dτ ≤ C 3 T (1 + 2R)||u -v|| C([0,T ],H s (T))
if we assume that u and v are in the closed ball B R of radius R centered at 0 in C([0, T ], H s (T)). We pick

T := [2C 3 (1 + 2R)] -1 so that ||Γu -Γv|| C([0,T ],H s (T)) ≤ 1 2 ||u -v|| C([0,T ],H s (T)) •
On the other hand

||Γu|| C([0,T ],H s (T)) ≤ ||u 0 || s + ||Γu -Γ0|| C([0,T ],H s (T)) ≤ ||u 0 || s + R 2 ≤ R
for the choice R = 2||u 0 || s . It follows that the map Γ contracts in B R , hence it admits a unique fixed point u in B R which solves the integral equation (2.3). Furthermore, given any ρ > 0 and any u 0 , v 0 ∈ H s (T) with ||u 0 || s ≤ ρ, ||v 0 || s ≤ ρ, one easily sees that for

T = [2C 3 (1 + 4ρ)] -1 (2.6) one has ||u -v|| C([0,T ],H s (T)) ≤ 2||u 0 -v 0 || s . (2.7)
Finally assume that s = 1. Scaling in (2.1) by u yields

1 2 ||u(T )|| 2 1 - 1 2 ||u 0 || 2 1 + T 0 T a(x)|u(x, t)| 2 dxdt = 0 (2.8) (Note that u t = -(1 -∂ 2 x ) -1 [a(x)u + (u + u 2 2 ) x ] ∈ C([0, T ], H 2 (T)
) so that each term in (2.1) belongs to C([0, T ], L 2 (T)), and the integrations by parts are valid.) It follows that the map t → ||u(t)|| 1 is nonincreasing, hence it admits a nonnegative limit l as t → ∞, and that the solution of (2.1)-(2.2) is defined for all t ≥ 0. Let T be as in (2.6) with ρ = ||u 0 || 1 . Note that ||u(t)|| 1 ≤ ||u 0 || 1 for all t ≥ 0. Let v 0 be any weak limit of {u(t)} t≥0 in H 1 (T), i.e. we have that u(t n ) → v 0 weakly in H 1 (T) for some sequence t n → +∞. Extracting a subsequence if needed, we may assume that

t n+1 -t n ≥ T for n ≥ 0. (2.9) From 1 2 ||u(t n+1 )|| 2 1 - 1 2 ||u(t n )|| 2 1 + tn+1 tn T a(x)|u(x, t)| 2 dxdt = 0, we obtain that lim n→+∞ tn+1 tn T a(x)|u(x, t)| 2 dxdt = 0. (2.10) Since u(t n ) → v 0 in H s (T) for s < 1, and ||u(t n )|| s ≤ ||u(t n )|| 1 ≤ ρ, we have from (2.7) that for all s ∈ [0, 1[ u(t n + •) → v in C([0, T ], H s (T)) as n → +∞, (2.11) 
where v = v(x, t) denotes the solution of

v t -v xxt + v x + vv x + a(x)v = 0, x ∈ T, t ≥ 0, v(x, 0) = v 0 (x),
x ∈ T.

Notice that v ∈ C([0, T ]; H 1 (T)), for v 0 ∈ H 1 (T). (2.10) combined to (2.9) and (2.11) yields

T 0 T a(x)|v| 2 dxdt = 0. (2.12) Therefore v ∈ C([0, T ]; H 1 (T)) solves v t -v xxt + v x + vv x = 0, x ∈ T, t ∈ (0, T ), v(x, 0) = v 0 (x) x ∈ T, v(x, t) = 0 x ∈ ω, t ∈ (0, T ).
If the UCP conjecture is true, we have that v ≡ 0 on R × (0, T ). It follows that v 0 ≡ 0, and that as t → +∞ u(t) → 0 weakly in H 1 (T), u(t) → 0 strongly in H s (T) for any s < 1.

Internal stabilization with one derivative in the feedback law

We now pay attention to the stabilization of the BBM equation by means of a "stronger" feedback law involving one derivative. More precisely, we consider the system

u t -u xxt + u x + uu x -(a(x)u x ) x = 0, x ∈ T, t ≥ 0, (2.13) u(x, 0) = u 0 (x), x ∈ T. (2.14)
where a = a(x) denotes again any nonnegative smooth function on T with a(x) > 0 on a given open set ω ⊂ T. Scaling in (2.13) yields (at least formally)

1 2 ||u(T )|| 2 1 - 1 2 ||u 0 || 2 1 + T 0 T a(x)|u x (x, t)| 2 dxdt = 0. (2.15)
The decay of the energy is quantified by an integral term involving the square of a localized H 1 -norm in (2.15). By contrast, the integral term in (2.8) involved the square of a localized L 2 -norm. This suggests that the damping mechanism involved in (2.13) acts in a much stronger way than in (2.1). As a matter of fact, in the trivial situation when a(x) ≥ C > 0 for all x ∈ T in (2.13), it is a simple exercise to establish the exponential stability in H 1 (T) for both the linearized equation and the nonlinear BBM equation for states with zero means.

In the general case when the function a(x) is supported in a subdomain of T, we obtain the following result.

Theorem 3 Let s ≥ 0 be given. For any u 0 ∈ H s (T), there exist T > 0 and a unique solution u of (2.13)-

(2.14) in C([0, T ], H s (T)). Moreover, the correspondence u 0 ∈ H s (T) → u ∈ C([0, T ], H s (T)) is Lipschitz continuous. If s = 1, one can pick any T > 0 and u(t) -[u 0 ] H 1 (T) is nondecreasing. If the UCP conjecture is valid by replacing (1.3) by v = C on ω × (0, T ), then u(t) → [u 0 ] = (2π) -1
T u 0 (x)dx weakly in H 1 (T ) hence strongly in H s (T) for s < 1 as t → ∞.

Proof. As the proof is very similar to those of Theorem 2, we limit ourselves to pointing out the only differences. For the wellposedness, we use the estimate valid for s ≥ 0

||(1 -∂ 2 x ) -1 (au x ) x || s ≤ C||u|| s .
For s = 1, we claim that (2.15) is justified by noticing that for u ∈ H 1 (T)

-(au x ) x , u H -1 ,H 1 = au x , u x L 2 ,L 2 .
Then the wellposedness statement is established as in Theorem 2. Let us proceed to the asymptotic behavior. Pick any u 0 ∈ H 1 (T) and any v 0 ∈ H 1 (T) which is the weak limit in H 1 (T) of a sequence u(t n ) with t n → ∞ and t n+1 -t n ≥ T . Let us still denote by v the solution of (1.2). Equation (2.12) has to be replaced by

T 0 T a(x)|v x (x, t)| 2 dxdt = 0. (2.16)
To prove (2.16), we notice first that u(t n + •) → v in C([0, T ], H s (T)) for s < 1, and that ||u(t n + •)|| L 2 (0,T ;H 1 (T)) ≤ const, so that, extracting a subsequence if needed, we have that

u(t n + •) → v weakly in L 2 (0, T ; H 1 (T)).
This yields, with (2.15),

T 0 T a(x)|v x | 2 dxdt ≤ lim inf n→∞ tn+T tn T a(x)|u nx | 2 dxdt = 0. Therefore v solves v t -v xxt + v x + vv x = 0, x ∈ T, t ∈ (0, T ), (2.17) 
v x = 0, x ∈ ω, t ∈ (0, T ), (2.18) v ∈ C([0, T ]; H s (T)) for s < 1. (2.19) 
(2.17) and (2.18

) yield v t = v x = 0 in ω × (0, T ), hence v(x, t) = C for (x, t) ∈ ω × (0, T ) for some constant C ∈ R. If the UCP Conjecture is still valid when v is constant on the band ω × (0, T ), then v ≡ C. As d[u(t)]/dt = 0, it follows that C = [u 0 ] and that as t → ∞, u(t) → [u 0 ] weakly in H 1 (T)
and strongly in H s (T) for any s < 1.

Remark 1 Similar results, but with convergences towards 0, hold for the system

u t -u xxt + u x + uu x -(a(x)u x ) x = 0, u(0, t) = u(2π, t) = 0, u(x, 0) = u 0 (x)
provided that a(x) > 0 for x ∈ (0, ε) ∪ (2π -ε, 0) for some ε > 0 and the UCP Conjecture holds.

Boundary stabilization of BBM

In this section, we are concerned with the boundary stabilization of the BBM equation. We consider the following system

u t -u xxt + u x + uu x = 0, x ∈ (0, L), t ≥ 0, (2.20) 
u tx (0, t) = αu(0, t) + 1 3 u 2 (0, t), (2.21)

u tx (L, t) = βu(L, t) + 1 3 u 2 (L, t), (2.22) u(x, 0) = u 0 (x), (2.23) 
where α and β are some real constants chosen so that

α > 1 2 and β < 1 2 •
Scaling in (2.20) by u yields (at least formally) (2.25) u(t) → 0 strongly in H s (0, L) for all s < 1.

d dt 1 2 L 0 (|u| 2 + |u x | 2 )dx = [uu tx ] L 0 - u 2 2 + u 3 3 L 0 = (β - 1 2 )|u(L, t)| 2 + ( 1 2 -α)|u(0, t)| 2 , ( 2 
(2.26)

Proof. Let us begin with the well-posedness part. Pick any u 0 ∈ H s (0, L) with s > 1 2 . Let v = u t . Then v solves the elliptic problem

(1 -∂ 2 x )v = f, x ∈ (0, L), (2.27) v x (0) = a, v x (L) = b (2.28)
with f := -u x -uu x , a := αu(0, t) + 1 3 u 2 (0, t), b := βu(L, t) + 1 3 u 2 (L, t). Note that the solution v of (2.27)-(2.28) may be written as

v = w + g where g(x) = ax + b-a 2L x 2 and w = (1 -∂ 2 x ) -1 N (f -(1 -∂ 2 x )g) solves (1 -∂ 2 x )w = f -(1 -∂ 2 x )g w x (0) = w x (L) = 0. Thus u t = v = -(1 -∂ 2 x ) -1 N (u x + uu x ) + (1 -(1 -∂ 2 x ) -1 N (1 -∂ 2 x ))g. ( 2 

.29)

We seek u as a fixed point of the integral equation

u(t) = Γ(u)(t) := u 0 + t 0 -(1 -∂ 2 x ) -1 N (u x + uu x )(τ ) +(1 -(1 -∂ 2 x ) -1 N (1 -∂ 2 x )) [αu(0, τ ) + 1 3 u 2 (0, τ )]x +(2L) -1 [βu(L, τ ) + 1 3 u 2 (l, τ ) -αu(0, τ ) - 1 3 u 2 (0, τ )]x 2 dτ.(2.30) Note that D((1 -∂ 2 x ) s 2 
N ) = H s (0, L) for -1/2 < s < 3/2. Let R > 0 be given and let B R denote the closed ball in C([0, T ], H s (0, L)) of center 0 and radius R. For 1/2 < s < 5/2 and u ∈ B R , v ∈ B R , we have that (2.24). Thus ||u(t)|| H 1 (0,L) is nonincreasing, and T may be taken as large as desired. Let us turn our attention to the asymptotic behavior. Let (t n ) n≥0 be any sequence with t n → ∞ as n → ∞. Extracting a subsequence if needed, we can assume that t n+1 -t n ≥ T for each n and that, for some v 0 ∈ H 1 (0, L), u(t n ) → v 0 weakly in H 1 (0, L) (hence strongly in H s (0, L) for s < 1) as n → ∞. The continuity of the flow map (which follows at once from the fact that the map Γ is a contraction) yields

||Γ(u)(t) -Γ(v)(t)|| H s (0,L) ≤ C t 0 (1 + R)||u(τ ) -v(τ )|| H s (0,L) dτ ≤ CT (1 + R)||u -v|| C([0,T ],H s (0,L)) and ||Γ(u)(t)|| H s (0,L) ≤ ||u 0 || H s (0,L) + CT (1 + R)||u|| C([0,T ],H s (0,L)) • Pick R = 2||u 0 || H s (0,L) and T = (2C(1 + R)) -1 . Then Γ is a contraction in B R ,
u(t n + •) → v(•)
in C([0, T ], H s (0, L)) for s < with v(x, t) = 0 for x ∈ R \ (0, L), t ∈ (0, T ).

Since v ∈ C([0, T ], H s (R)) with 1/2 < s < 1, we infer from the UCP Conjecture (if true) that v ≡ 0, hence v 0 = 0.

  hence it admits a unique fixed point which solves (2.30), or (2.29) and (2.23). Assume now that s = 1. It follows from (2.29) that u t ∈ C([0, T ], H 2 (0, L)), hence we can scale by u in (2.20) to derive

  1, where v denotes the solution of (2.20)-(2.23) issued from v 0 at t = 0. Integrating (2.24) on [t n , t n+1 ] yields Extending v(x, t) by 0 for x ∈ R \ (0, L) and t ∈ (0, T ), we infer from (2.20), (2.21), (2.22) (for v) and (2.31) that v t -v txx + v x + vv x = 0 for x ∈ R, t ∈ (0, T )

	Letting n → ∞ yields								
		(	1 2	-β)	0	T	|v(L, t)| 2 dt + (α -	1 2	)	0	T	|v(0, t)| 2 dt = 0.	(2.31)
	1 2	||u(t n+1 )|| 2 H 1 (0,L) -	1 2	||u(t n )|| 2 H 1 (0,L) +(	1 2	-β)	tn+1 tn	|u(L, t)| 2 dt+(α-	1 2	)	tn+1 tn	|u(0, t)| 2 dt.